File size: 27,524 Bytes
b9fe2b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import re
import json
import time
import copy
import infinity
from infinity.common import ConflictType, InfinityException, SortType
from infinity.index import IndexInfo, IndexType
from infinity.connection_pool import ConnectionPool
from infinity.errors import ErrorCode
from rag import settings
from rag.settings import PAGERANK_FLD
from rag.utils import singleton
import pandas as pd
from api.utils.file_utils import get_project_base_directory
from rag.utils.doc_store_conn import (
DocStoreConnection,
MatchExpr,
MatchTextExpr,
MatchDenseExpr,
FusionExpr,
OrderByExpr,
)
logger = logging.getLogger('ragflow.infinity_conn')
def equivalent_condition_to_str(condition: dict, table_instance=None) -> str | None:
assert "_id" not in condition
clmns = {}
if table_instance:
for n, ty, de, _ in table_instance.show_columns().rows():
clmns[n] = (ty, de)
def exists(cln):
nonlocal clmns
assert cln in clmns, f"'{cln}' should be in '{clmns}'."
ty, de = clmns[cln]
if ty.lower().find("cha"):
if not de:
de = ""
return f" {cln}!='{de}' "
return f"{cln}!={de}"
cond = list()
for k, v in condition.items():
if not isinstance(k, str) or k in ["kb_id"] or not v:
continue
if isinstance(v, list):
inCond = list()
for item in v:
if isinstance(item, str):
inCond.append(f"'{item}'")
else:
inCond.append(str(item))
if inCond:
strInCond = ", ".join(inCond)
strInCond = f"{k} IN ({strInCond})"
cond.append(strInCond)
elif k == "must_not":
if isinstance(v, dict):
for kk, vv in v.items():
if kk == "exists":
cond.append("NOT (%s)" % exists(vv))
elif isinstance(v, str):
cond.append(f"{k}='{v}'")
elif k == "exists":
cond.append(exists(v))
else:
cond.append(f"{k}={str(v)}")
return " AND ".join(cond) if cond else "1=1"
def concat_dataframes(df_list: list[pd.DataFrame], selectFields: list[str]) -> pd.DataFrame:
df_list2 = [df for df in df_list if not df.empty]
if df_list2:
return pd.concat(df_list2, axis=0).reset_index(drop=True)
schema = []
for field_name in selectFields:
if field_name == 'score()': # Workaround: fix schema is changed to score()
schema.append('SCORE')
elif field_name == 'similarity()': # Workaround: fix schema is changed to similarity()
schema.append('SIMILARITY')
else:
schema.append(field_name)
return pd.DataFrame(columns=schema)
@singleton
class InfinityConnection(DocStoreConnection):
def __init__(self):
self.dbName = settings.INFINITY.get("db_name", "default_db")
infinity_uri = settings.INFINITY["uri"]
if ":" in infinity_uri:
host, port = infinity_uri.split(":")
infinity_uri = infinity.common.NetworkAddress(host, int(port))
self.connPool = None
logger.info(f"Use Infinity {infinity_uri} as the doc engine.")
for _ in range(24):
try:
connPool = ConnectionPool(infinity_uri)
inf_conn = connPool.get_conn()
res = inf_conn.show_current_node()
if res.error_code == ErrorCode.OK and res.server_status in ["started", "alive"]:
self._migrate_db(inf_conn)
self.connPool = connPool
connPool.release_conn(inf_conn)
break
connPool.release_conn(inf_conn)
logger.warn(f"Infinity status: {res.server_status}. Waiting Infinity {infinity_uri} to be healthy.")
time.sleep(5)
except Exception as e:
logger.warning(f"{str(e)}. Waiting Infinity {infinity_uri} to be healthy.")
time.sleep(5)
if self.connPool is None:
msg = f"Infinity {infinity_uri} is unhealthy in 120s."
logger.error(msg)
raise Exception(msg)
logger.info(f"Infinity {infinity_uri} is healthy.")
def _migrate_db(self, inf_conn):
inf_db = inf_conn.create_database(self.dbName, ConflictType.Ignore)
fp_mapping = os.path.join(
get_project_base_directory(), "conf", "infinity_mapping.json"
)
if not os.path.exists(fp_mapping):
raise Exception(f"Mapping file not found at {fp_mapping}")
schema = json.load(open(fp_mapping))
table_names = inf_db.list_tables().table_names
for table_name in table_names:
inf_table = inf_db.get_table(table_name)
index_names = inf_table.list_indexes().index_names
if "q_vec_idx" not in index_names:
# Skip tables not created by me
continue
column_names = inf_table.show_columns()["name"]
column_names = set(column_names)
for field_name, field_info in schema.items():
if field_name in column_names:
continue
res = inf_table.add_columns({field_name: field_info})
assert res.error_code == infinity.ErrorCode.OK
logger.info(
f"INFINITY added following column to table {table_name}: {field_name} {field_info}"
)
if field_info["type"] != "varchar" or "analyzer" not in field_info:
continue
inf_table.create_index(
f"text_idx_{field_name}",
IndexInfo(
field_name, IndexType.FullText, {"ANALYZER": field_info["analyzer"]}
),
ConflictType.Ignore,
)
"""
Database operations
"""
def dbType(self) -> str:
return "infinity"
def health(self) -> dict:
"""
Return the health status of the database.
"""
inf_conn = self.connPool.get_conn()
res = inf_conn.show_current_node()
self.connPool.release_conn(inf_conn)
res2 = {
"type": "infinity",
"status": "green" if res.error_code == 0 and res.server_status in ["started", "alive"] else "red",
"error": res.error_msg,
}
return res2
"""
Table operations
"""
def createIdx(self, indexName: str, knowledgebaseId: str, vectorSize: int):
table_name = f"{indexName}_{knowledgebaseId}"
inf_conn = self.connPool.get_conn()
inf_db = inf_conn.create_database(self.dbName, ConflictType.Ignore)
fp_mapping = os.path.join(
get_project_base_directory(), "conf", "infinity_mapping.json"
)
if not os.path.exists(fp_mapping):
raise Exception(f"Mapping file not found at {fp_mapping}")
schema = json.load(open(fp_mapping))
vector_name = f"q_{vectorSize}_vec"
schema[vector_name] = {"type": f"vector,{vectorSize},float"}
inf_table = inf_db.create_table(
table_name,
schema,
ConflictType.Ignore,
)
inf_table.create_index(
"q_vec_idx",
IndexInfo(
vector_name,
IndexType.Hnsw,
{
"M": "16",
"ef_construction": "50",
"metric": "cosine",
"encode": "lvq",
},
),
ConflictType.Ignore,
)
for field_name, field_info in schema.items():
if field_info["type"] != "varchar" or "analyzer" not in field_info:
continue
inf_table.create_index(
f"text_idx_{field_name}",
IndexInfo(
field_name, IndexType.FullText, {"ANALYZER": field_info["analyzer"]}
),
ConflictType.Ignore,
)
self.connPool.release_conn(inf_conn)
logger.info(
f"INFINITY created table {table_name}, vector size {vectorSize}"
)
def deleteIdx(self, indexName: str, knowledgebaseId: str):
table_name = f"{indexName}_{knowledgebaseId}"
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
db_instance.drop_table(table_name, ConflictType.Ignore)
self.connPool.release_conn(inf_conn)
logger.info(f"INFINITY dropped table {table_name}")
def indexExist(self, indexName: str, knowledgebaseId: str) -> bool:
table_name = f"{indexName}_{knowledgebaseId}"
try:
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
_ = db_instance.get_table(table_name)
self.connPool.release_conn(inf_conn)
return True
except Exception as e:
logger.warning(f"INFINITY indexExist {str(e)}")
return False
"""
CRUD operations
"""
def search(
self, selectFields: list[str],
highlightFields: list[str],
condition: dict,
matchExprs: list[MatchExpr],
orderBy: OrderByExpr,
offset: int,
limit: int,
indexNames: str | list[str],
knowledgebaseIds: list[str],
aggFields: list[str] = [],
rank_feature: dict | None = None
) -> tuple[pd.DataFrame, int]:
"""
TODO: Infinity doesn't provide highlight
"""
if isinstance(indexNames, str):
indexNames = indexNames.split(",")
assert isinstance(indexNames, list) and len(indexNames) > 0
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
df_list = list()
table_list = list()
output = selectFields.copy()
for essential_field in ["id"]:
if essential_field not in output:
output.append(essential_field)
score_func = ""
score_column = ""
for matchExpr in matchExprs:
if isinstance(matchExpr, MatchTextExpr):
score_func = "score()"
score_column = "SCORE"
break
if not score_func:
for matchExpr in matchExprs:
if isinstance(matchExpr, MatchDenseExpr):
score_func = "similarity()"
score_column = "SIMILARITY"
break
if matchExprs:
if score_func not in output:
output.append(score_func)
if PAGERANK_FLD not in output:
output.append(PAGERANK_FLD)
output = [f for f in output if f != "_score"]
# Prepare expressions common to all tables
filter_cond = None
filter_fulltext = ""
if condition:
for indexName in indexNames:
table_name = f"{indexName}_{knowledgebaseIds[0]}"
filter_cond = equivalent_condition_to_str(condition, db_instance.get_table(table_name))
break
for matchExpr in matchExprs:
if isinstance(matchExpr, MatchTextExpr):
if filter_cond and "filter" not in matchExpr.extra_options:
matchExpr.extra_options.update({"filter": filter_cond})
fields = ",".join(matchExpr.fields)
filter_fulltext = f"filter_fulltext('{fields}', '{matchExpr.matching_text}')"
if filter_cond:
filter_fulltext = f"({filter_cond}) AND {filter_fulltext}"
minimum_should_match = matchExpr.extra_options.get("minimum_should_match", 0.0)
if isinstance(minimum_should_match, float):
str_minimum_should_match = str(int(minimum_should_match * 100)) + "%"
matchExpr.extra_options["minimum_should_match"] = str_minimum_should_match
for k, v in matchExpr.extra_options.items():
if not isinstance(v, str):
matchExpr.extra_options[k] = str(v)
logger.debug(f"INFINITY search MatchTextExpr: {json.dumps(matchExpr.__dict__)}")
elif isinstance(matchExpr, MatchDenseExpr):
if filter_fulltext and "filter" not in matchExpr.extra_options:
matchExpr.extra_options.update({"filter": filter_fulltext})
for k, v in matchExpr.extra_options.items():
if not isinstance(v, str):
matchExpr.extra_options[k] = str(v)
similarity = matchExpr.extra_options.get("similarity")
if similarity:
matchExpr.extra_options["threshold"] = similarity
del matchExpr.extra_options["similarity"]
logger.debug(f"INFINITY search MatchDenseExpr: {json.dumps(matchExpr.__dict__)}")
elif isinstance(matchExpr, FusionExpr):
logger.debug(f"INFINITY search FusionExpr: {json.dumps(matchExpr.__dict__)}")
order_by_expr_list = list()
if orderBy.fields:
for order_field in orderBy.fields:
if order_field[1] == 0:
order_by_expr_list.append((order_field[0], SortType.Asc))
else:
order_by_expr_list.append((order_field[0], SortType.Desc))
total_hits_count = 0
# Scatter search tables and gather the results
for indexName in indexNames:
for knowledgebaseId in knowledgebaseIds:
table_name = f"{indexName}_{knowledgebaseId}"
try:
table_instance = db_instance.get_table(table_name)
except Exception:
continue
table_list.append(table_name)
builder = table_instance.output(output)
if len(matchExprs) > 0:
for matchExpr in matchExprs:
if isinstance(matchExpr, MatchTextExpr):
fields = ",".join(matchExpr.fields)
builder = builder.match_text(
fields,
matchExpr.matching_text,
matchExpr.topn,
matchExpr.extra_options.copy(),
)
elif isinstance(matchExpr, MatchDenseExpr):
builder = builder.match_dense(
matchExpr.vector_column_name,
matchExpr.embedding_data,
matchExpr.embedding_data_type,
matchExpr.distance_type,
matchExpr.topn,
matchExpr.extra_options.copy(),
)
elif isinstance(matchExpr, FusionExpr):
builder = builder.fusion(
matchExpr.method, matchExpr.topn, matchExpr.fusion_params
)
else:
if len(filter_cond) > 0:
builder.filter(filter_cond)
if orderBy.fields:
builder.sort(order_by_expr_list)
builder.offset(offset).limit(limit)
kb_res, extra_result = builder.option({"total_hits_count": True}).to_df()
if extra_result:
total_hits_count += int(extra_result["total_hits_count"])
logger.debug(f"INFINITY search table: {str(table_name)}, result: {str(kb_res)}")
df_list.append(kb_res)
self.connPool.release_conn(inf_conn)
res = concat_dataframes(df_list, output)
if matchExprs:
res['Sum'] = res[score_column] + res[PAGERANK_FLD]
res = res.sort_values(by='Sum', ascending=False).reset_index(drop=True).drop(columns=['Sum'])
res = res.head(limit)
logger.debug(f"INFINITY search final result: {str(res)}")
return res, total_hits_count
def get(
self, chunkId: str, indexName: str, knowledgebaseIds: list[str]
) -> dict | None:
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
df_list = list()
assert isinstance(knowledgebaseIds, list)
table_list = list()
for knowledgebaseId in knowledgebaseIds:
table_name = f"{indexName}_{knowledgebaseId}"
table_list.append(table_name)
table_instance = None
try:
table_instance = db_instance.get_table(table_name)
except Exception:
logger.warning(
f"Table not found: {table_name}, this knowledge base isn't created in Infinity. Maybe it is created in other document engine.")
continue
kb_res, _ = table_instance.output(["*"]).filter(f"id = '{chunkId}'").to_df()
logger.debug(f"INFINITY get table: {str(table_list)}, result: {str(kb_res)}")
df_list.append(kb_res)
self.connPool.release_conn(inf_conn)
res = concat_dataframes(df_list, ["id"])
res_fields = self.getFields(res, res.columns.tolist())
return res_fields.get(chunkId, None)
def insert(
self, documents: list[dict], indexName: str, knowledgebaseId: str = None
) -> list[str]:
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
table_name = f"{indexName}_{knowledgebaseId}"
try:
table_instance = db_instance.get_table(table_name)
except InfinityException as e:
# src/common/status.cppm, kTableNotExist = 3022
if e.error_code != ErrorCode.TABLE_NOT_EXIST:
raise
vector_size = 0
patt = re.compile(r"q_(?P<vector_size>\d+)_vec")
for k in documents[0].keys():
m = patt.match(k)
if m:
vector_size = int(m.group("vector_size"))
break
if vector_size == 0:
raise ValueError("Cannot infer vector size from documents")
self.createIdx(indexName, knowledgebaseId, vector_size)
table_instance = db_instance.get_table(table_name)
# embedding fields can't have a default value....
embedding_clmns = []
clmns = table_instance.show_columns().rows()
for n, ty, _, _ in clmns:
r = re.search(r"Embedding\([a-z]+,([0-9]+)\)", ty)
if not r:
continue
embedding_clmns.append((n, int(r.group(1))))
docs = copy.deepcopy(documents)
for d in docs:
assert "_id" not in d
assert "id" in d
for k, v in d.items():
if k in ["important_kwd", "question_kwd", "entities_kwd", "tag_kwd", "source_id"]:
assert isinstance(v, list)
d[k] = "###".join(v)
elif re.search(r"_feas$", k):
d[k] = json.dumps(v)
elif k == 'kb_id':
if isinstance(d[k], list):
d[k] = d[k][0] # since d[k] is a list, but we need a str
elif k == "position_int":
assert isinstance(v, list)
arr = [num for row in v for num in row]
d[k] = "_".join(f"{num:08x}" for num in arr)
elif k in ["page_num_int", "top_int"]:
assert isinstance(v, list)
d[k] = "_".join(f"{num:08x}" for num in v)
for n, vs in embedding_clmns:
if n in d:
continue
d[n] = [0] * vs
ids = ["'{}'".format(d["id"]) for d in docs]
str_ids = ", ".join(ids)
str_filter = f"id IN ({str_ids})"
table_instance.delete(str_filter)
# for doc in documents:
# logger.info(f"insert position_int: {doc['position_int']}")
# logger.info(f"InfinityConnection.insert {json.dumps(documents)}")
table_instance.insert(docs)
self.connPool.release_conn(inf_conn)
logger.debug(f"INFINITY inserted into {table_name} {str_ids}.")
return []
def update(
self, condition: dict, newValue: dict, indexName: str, knowledgebaseId: str
) -> bool:
# if 'position_int' in newValue:
# logger.info(f"update position_int: {newValue['position_int']}")
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
table_name = f"{indexName}_{knowledgebaseId}"
table_instance = db_instance.get_table(table_name)
#if "exists" in condition:
# del condition["exists"]
filter = equivalent_condition_to_str(condition, table_instance)
for k, v in list(newValue.items()):
if k in ["important_kwd", "question_kwd", "entities_kwd", "tag_kwd", "source_id"]:
assert isinstance(v, list)
newValue[k] = "###".join(v)
elif re.search(r"_feas$", k):
newValue[k] = json.dumps(v)
elif k.endswith("_kwd") and isinstance(v, list):
newValue[k] = " ".join(v)
elif k == 'kb_id':
if isinstance(newValue[k], list):
newValue[k] = newValue[k][0] # since d[k] is a list, but we need a str
elif k == "position_int":
assert isinstance(v, list)
arr = [num for row in v for num in row]
newValue[k] = "_".join(f"{num:08x}" for num in arr)
elif k in ["page_num_int", "top_int"]:
assert isinstance(v, list)
newValue[k] = "_".join(f"{num:08x}" for num in v)
elif k == "remove":
del newValue[k]
if v in [PAGERANK_FLD]:
newValue[v] = 0
logger.debug(f"INFINITY update table {table_name}, filter {filter}, newValue {newValue}.")
table_instance.update(filter, newValue)
self.connPool.release_conn(inf_conn)
return True
def delete(self, condition: dict, indexName: str, knowledgebaseId: str) -> int:
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
table_name = f"{indexName}_{knowledgebaseId}"
try:
table_instance = db_instance.get_table(table_name)
except Exception:
logger.warning(
f"Skipped deleting from table {table_name} since the table doesn't exist."
)
return 0
filter = equivalent_condition_to_str(condition, table_instance)
logger.debug(f"INFINITY delete table {table_name}, filter {filter}.")
res = table_instance.delete(filter)
self.connPool.release_conn(inf_conn)
return res.deleted_rows
"""
Helper functions for search result
"""
def getTotal(self, res: tuple[pd.DataFrame, int] | pd.DataFrame) -> int:
if isinstance(res, tuple):
return res[1]
return len(res)
def getChunkIds(self, res: tuple[pd.DataFrame, int] | pd.DataFrame) -> list[str]:
if isinstance(res, tuple):
res = res[0]
return list(res["id"])
def getFields(self, res: tuple[pd.DataFrame, int] | pd.DataFrame, fields: list[str]) -> dict[str, dict]:
if isinstance(res, tuple):
res = res[0]
if not fields:
return {}
fieldsAll = fields.copy()
fieldsAll.append('id')
column_map = {col.lower(): col for col in res.columns}
matched_columns = {column_map[col.lower()]:col for col in set(fieldsAll) if col.lower() in column_map}
none_columns = [col for col in set(fieldsAll) if col.lower() not in column_map]
res2 = res[matched_columns.keys()]
res2 = res2.rename(columns=matched_columns)
res2.drop_duplicates(subset=['id'], inplace=True)
for column in res2.columns:
k = column.lower()
if k in ["important_kwd", "question_kwd", "entities_kwd", "tag_kwd", "source_id"]:
res2[column] = res2[column].apply(lambda v:[kwd for kwd in v.split("###") if kwd])
elif k == "position_int":
def to_position_int(v):
if v:
arr = [int(hex_val, 16) for hex_val in v.split('_')]
v = [arr[i:i + 5] for i in range(0, len(arr), 5)]
else:
v = []
return v
res2[column] = res2[column].apply(to_position_int)
elif k in ["page_num_int", "top_int"]:
res2[column] = res2[column].apply(lambda v:[int(hex_val, 16) for hex_val in v.split('_')] if v else [])
else:
pass
for column in none_columns:
res2[column] = None
return res2.set_index("id").to_dict(orient="index")
def getHighlight(self, res: tuple[pd.DataFrame, int] | pd.DataFrame, keywords: list[str], fieldnm: str):
if isinstance(res, tuple):
res = res[0]
ans = {}
num_rows = len(res)
column_id = res["id"]
if fieldnm not in res:
return {}
for i in range(num_rows):
id = column_id[i]
txt = res[fieldnm][i]
txt = re.sub(r"[\r\n]", " ", txt, flags=re.IGNORECASE | re.MULTILINE)
txts = []
for t in re.split(r"[.?!;\n]", txt):
for w in keywords:
t = re.sub(
r"(^|[ .?/'\"\(\)!,:;-])(%s)([ .?/'\"\(\)!,:;-])"
% re.escape(w),
r"\1<em>\2</em>\3",
t,
flags=re.IGNORECASE | re.MULTILINE,
)
if not re.search(
r"<em>[^<>]+</em>", t, flags=re.IGNORECASE | re.MULTILINE
):
continue
txts.append(t)
ans[id] = "...".join(txts)
return ans
def getAggregation(self, res: tuple[pd.DataFrame, int] | pd.DataFrame, fieldnm: str):
"""
TODO: Infinity doesn't provide aggregation
"""
return list()
"""
SQL
"""
def sql(sql: str, fetch_size: int, format: str):
raise NotImplementedError("Not implemented")
|