ragflow / rag /raptor.py
Starowo's picture
Upload 1411 files
b9fe2b4 verified
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import re
import umap
import numpy as np
from sklearn.mixture import GaussianMixture
import trio
from graphrag.utils import (
get_llm_cache,
get_embed_cache,
set_embed_cache,
set_llm_cache,
chat_limiter,
)
from rag.utils import truncate
class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
def __init__(
self, max_cluster, llm_model, embd_model, prompt, max_token=512, threshold=0.1
):
self._max_cluster = max_cluster
self._llm_model = llm_model
self._embd_model = embd_model
self._threshold = threshold
self._prompt = prompt
self._max_token = max_token
async def _chat(self, system, history, gen_conf):
response = get_llm_cache(self._llm_model.llm_name, system, history, gen_conf)
if response:
return response
response = await trio.to_thread.run_sync(
lambda: self._llm_model.chat(system, history, gen_conf)
)
response = re.sub(r"<think>.*</think>", "", response, flags=re.DOTALL)
if response.find("**ERROR**") >= 0:
raise Exception(response)
set_llm_cache(self._llm_model.llm_name, system, response, history, gen_conf)
return response
async def _embedding_encode(self, txt):
response = get_embed_cache(self._embd_model.llm_name, txt)
if response is not None:
return response
embds, _ = await trio.to_thread.run_sync(lambda: self._embd_model.encode([txt]))
if len(embds) < 1 or len(embds[0]) < 1:
raise Exception("Embedding error: ")
embds = embds[0]
set_embed_cache(self._embd_model.llm_name, txt, embds)
return embds
def _get_optimal_clusters(self, embeddings: np.ndarray, random_state: int):
max_clusters = min(self._max_cluster, len(embeddings))
n_clusters = np.arange(1, max_clusters)
bics = []
for n in n_clusters:
gm = GaussianMixture(n_components=n, random_state=random_state)
gm.fit(embeddings)
bics.append(gm.bic(embeddings))
optimal_clusters = n_clusters[np.argmin(bics)]
return optimal_clusters
async def __call__(self, chunks, random_state, callback=None):
layers = [(0, len(chunks))]
start, end = 0, len(chunks)
if len(chunks) <= 1:
return []
chunks = [(s, a) for s, a in chunks if s and len(a) > 0]
async def summarize(ck_idx: list[int]):
nonlocal chunks
texts = [chunks[i][0] for i in ck_idx]
len_per_chunk = int(
(self._llm_model.max_length - self._max_token) / len(texts)
)
cluster_content = "\n".join(
[truncate(t, max(1, len_per_chunk)) for t in texts]
)
async with chat_limiter:
cnt = await self._chat(
"You're a helpful assistant.",
[
{
"role": "user",
"content": self._prompt.format(
cluster_content=cluster_content
),
}
],
{"temperature": 0.3, "max_tokens": self._max_token},
)
cnt = re.sub(
"(路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵|For the content length reason, it stopped, continue?)",
"",
cnt,
)
logging.debug(f"SUM: {cnt}")
embds = await self._embedding_encode(cnt)
chunks.append((cnt, embds))
labels = []
while end - start > 1:
embeddings = [embd for _, embd in chunks[start:end]]
if len(embeddings) == 2:
await summarize([start, start + 1])
if callback:
callback(
msg="Cluster one layer: {} -> {}".format(
end - start, len(chunks) - end
)
)
labels.extend([0, 0])
layers.append((end, len(chunks)))
start = end
end = len(chunks)
continue
n_neighbors = int((len(embeddings) - 1) ** 0.8)
reduced_embeddings = umap.UMAP(
n_neighbors=max(2, n_neighbors),
n_components=min(12, len(embeddings) - 2),
metric="cosine",
).fit_transform(embeddings)
n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state)
if n_clusters == 1:
lbls = [0 for _ in range(len(reduced_embeddings))]
else:
gm = GaussianMixture(n_components=n_clusters, random_state=random_state)
gm.fit(reduced_embeddings)
probs = gm.predict_proba(reduced_embeddings)
lbls = [np.where(prob > self._threshold)[0] for prob in probs]
lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls]
async with trio.open_nursery() as nursery:
for c in range(n_clusters):
ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c]
assert len(ck_idx) > 0
async with chat_limiter:
nursery.start_soon(lambda: summarize(ck_idx))
assert len(chunks) - end == n_clusters, "{} vs. {}".format(
len(chunks) - end, n_clusters
)
labels.extend(lbls)
layers.append((end, len(chunks)))
if callback:
callback(
msg="Cluster one layer: {} -> {}".format(
end - start, len(chunks) - end
)
)
start = end
end = len(chunks)
return chunks