# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import re from functools import partial from agentic_reasoning.prompts import BEGIN_SEARCH_QUERY, BEGIN_SEARCH_RESULT, END_SEARCH_RESULT, MAX_SEARCH_LIMIT, \ END_SEARCH_QUERY, REASON_PROMPT, RELEVANT_EXTRACTION_PROMPT from api.db.services.llm_service import LLMBundle from rag.nlp import extract_between from rag.prompts import kb_prompt from rag.utils.tavily_conn import Tavily class DeepResearcher: def __init__(self, chat_mdl: LLMBundle, prompt_config: dict, kb_retrieve: partial = None, kg_retrieve: partial = None ): self.chat_mdl = chat_mdl self.prompt_config = prompt_config self._kb_retrieve = kb_retrieve self._kg_retrieve = kg_retrieve @staticmethod def _remove_query_tags(text): """Remove query tags from text""" pattern = re.escape(BEGIN_SEARCH_QUERY) + r"(.*?)" + re.escape(END_SEARCH_QUERY) return re.sub(pattern, "", text) @staticmethod def _remove_result_tags(text): """Remove result tags from text""" pattern = re.escape(BEGIN_SEARCH_RESULT) + r"(.*?)" + re.escape(END_SEARCH_RESULT) return re.sub(pattern, "", text) def _generate_reasoning(self, msg_history): """Generate reasoning steps""" query_think = "" if msg_history[-1]["role"] != "user": msg_history.append({"role": "user", "content": "Continues reasoning with the new information.\n"}) else: msg_history[-1]["content"] += "\n\nContinues reasoning with the new information.\n" for ans in self.chat_mdl.chat_streamly(REASON_PROMPT, msg_history, {"temperature": 0.7}): ans = re.sub(r".*", "", ans, flags=re.DOTALL) if not ans: continue query_think = ans yield query_think return query_think def _extract_search_queries(self, query_think, question, step_index): """Extract search queries from thinking""" queries = extract_between(query_think, BEGIN_SEARCH_QUERY, END_SEARCH_QUERY) if not queries and step_index == 0: # If this is the first step and no queries are found, use the original question as the query queries = [question] return queries def _truncate_previous_reasoning(self, all_reasoning_steps): """Truncate previous reasoning steps to maintain a reasonable length""" truncated_prev_reasoning = "" for i, step in enumerate(all_reasoning_steps): truncated_prev_reasoning += f"Step {i + 1}: {step}\n\n" prev_steps = truncated_prev_reasoning.split('\n\n') if len(prev_steps) <= 5: truncated_prev_reasoning = '\n\n'.join(prev_steps) else: truncated_prev_reasoning = '' for i, step in enumerate(prev_steps): if i == 0 or i >= len(prev_steps) - 4 or BEGIN_SEARCH_QUERY in step or BEGIN_SEARCH_RESULT in step: truncated_prev_reasoning += step + '\n\n' else: if truncated_prev_reasoning[-len('\n\n...\n\n'):] != '\n\n...\n\n': truncated_prev_reasoning += '...\n\n' return truncated_prev_reasoning.strip('\n') def _retrieve_information(self, search_query): """Retrieve information from different sources""" # 1. Knowledge base retrieval kbinfos = self._kb_retrieve(question=search_query) if self._kb_retrieve else {"chunks": [], "doc_aggs": []} # 2. Web retrieval (if Tavily API is configured) if self.prompt_config.get("tavily_api_key"): tav = Tavily(self.prompt_config["tavily_api_key"]) tav_res = tav.retrieve_chunks(search_query) kbinfos["chunks"].extend(tav_res["chunks"]) kbinfos["doc_aggs"].extend(tav_res["doc_aggs"]) # 3. Knowledge graph retrieval (if configured) if self.prompt_config.get("use_kg") and self._kg_retrieve: ck = self._kg_retrieve(question=search_query) if ck["content_with_weight"]: kbinfos["chunks"].insert(0, ck) return kbinfos def _update_chunk_info(self, chunk_info, kbinfos): """Update chunk information for citations""" if not chunk_info["chunks"]: # If this is the first retrieval, use the retrieval results directly for k in chunk_info.keys(): chunk_info[k] = kbinfos[k] else: # Merge newly retrieved information, avoiding duplicates cids = [c["chunk_id"] for c in chunk_info["chunks"]] for c in kbinfos["chunks"]: if c["chunk_id"] not in cids: chunk_info["chunks"].append(c) dids = [d["doc_id"] for d in chunk_info["doc_aggs"]] for d in kbinfos["doc_aggs"]: if d["doc_id"] not in dids: chunk_info["doc_aggs"].append(d) def _extract_relevant_info(self, truncated_prev_reasoning, search_query, kbinfos): """Extract and summarize relevant information""" summary_think = "" for ans in self.chat_mdl.chat_streamly( RELEVANT_EXTRACTION_PROMPT.format( prev_reasoning=truncated_prev_reasoning, search_query=search_query, document="\n".join(kb_prompt(kbinfos, 4096)) ), [{"role": "user", "content": f'Now you should analyze each web page and find helpful information based on the current search query "{search_query}" and previous reasoning steps.'}], {"temperature": 0.7}): ans = re.sub(r".*", "", ans, flags=re.DOTALL) if not ans: continue summary_think = ans yield summary_think return summary_think def thinking(self, chunk_info: dict, question: str): executed_search_queries = [] msg_history = [{"role": "user", "content": f'Question:\"{question}\"\n'}] all_reasoning_steps = [] think = "" for step_index in range(MAX_SEARCH_LIMIT + 1): # Check if the maximum search limit has been reached if step_index == MAX_SEARCH_LIMIT - 1: summary_think = f"\n{BEGIN_SEARCH_RESULT}\nThe maximum search limit is exceeded. You are not allowed to search.\n{END_SEARCH_RESULT}\n" yield {"answer": think + summary_think + "", "reference": {}, "audio_binary": None} all_reasoning_steps.append(summary_think) msg_history.append({"role": "assistant", "content": summary_think}) break # Step 1: Generate reasoning query_think = "" for ans in self._generate_reasoning(msg_history): query_think = ans yield {"answer": think + self._remove_query_tags(query_think) + "", "reference": {}, "audio_binary": None} think += self._remove_query_tags(query_think) all_reasoning_steps.append(query_think) # Step 2: Extract search queries queries = self._extract_search_queries(query_think, question, step_index) if not queries and step_index > 0: # If not the first step and no queries, end the search process break # Process each search query for search_query in queries: logging.info(f"[THINK]Query: {step_index}. {search_query}") msg_history.append({"role": "assistant", "content": search_query}) think += f"\n\n> {step_index + 1}. {search_query}\n\n" yield {"answer": think + "", "reference": {}, "audio_binary": None} # Check if the query has already been executed if search_query in executed_search_queries: summary_think = f"\n{BEGIN_SEARCH_RESULT}\nYou have searched this query. Please refer to previous results.\n{END_SEARCH_RESULT}\n" yield {"answer": think + summary_think + "", "reference": {}, "audio_binary": None} all_reasoning_steps.append(summary_think) msg_history.append({"role": "user", "content": summary_think}) think += summary_think continue executed_search_queries.append(search_query) # Step 3: Truncate previous reasoning steps truncated_prev_reasoning = self._truncate_previous_reasoning(all_reasoning_steps) # Step 4: Retrieve information kbinfos = self._retrieve_information(search_query) # Step 5: Update chunk information self._update_chunk_info(chunk_info, kbinfos) # Step 6: Extract relevant information think += "\n\n" summary_think = "" for ans in self._extract_relevant_info(truncated_prev_reasoning, search_query, kbinfos): summary_think = ans yield {"answer": think + self._remove_result_tags(summary_think) + "", "reference": {}, "audio_binary": None} all_reasoning_steps.append(summary_think) msg_history.append( {"role": "user", "content": f"\n\n{BEGIN_SEARCH_RESULT}{summary_think}{END_SEARCH_RESULT}\n\n"}) think += self._remove_result_tags(summary_think) logging.info(f"[THINK]Summary: {step_index}. {summary_think}") yield think + ""