# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import re from collections import defaultdict, Counter from copy import deepcopy from typing import Callable import trio from graphrag.general.graph_prompt import SUMMARIZE_DESCRIPTIONS_PROMPT from graphrag.utils import get_llm_cache, set_llm_cache, handle_single_entity_extraction, \ handle_single_relationship_extraction, split_string_by_multi_markers, flat_uniq_list, chat_limiter from rag.llm.chat_model import Base as CompletionLLM from rag.prompts import message_fit_in from rag.utils import truncate GRAPH_FIELD_SEP = "" DEFAULT_ENTITY_TYPES = ["organization", "person", "geo", "event", "category"] ENTITY_EXTRACTION_MAX_GLEANINGS = 2 class Extractor: _llm: CompletionLLM def __init__( self, llm_invoker: CompletionLLM, language: str | None = "English", entity_types: list[str] | None = None, get_entity: Callable | None = None, set_entity: Callable | None = None, get_relation: Callable | None = None, set_relation: Callable | None = None, ): self._llm = llm_invoker self._language = language self._entity_types = entity_types or DEFAULT_ENTITY_TYPES self._get_entity_ = get_entity self._set_entity_ = set_entity self._get_relation_ = get_relation self._set_relation_ = set_relation def _chat(self, system, history, gen_conf): hist = deepcopy(history) conf = deepcopy(gen_conf) response = get_llm_cache(self._llm.llm_name, system, hist, conf) if response: return response _, system_msg = message_fit_in([{"role": "system", "content": system}], int(self._llm.max_length * 0.97)) response = self._llm.chat(system_msg[0]["content"], hist, conf) response = re.sub(r".*", "", response, flags=re.DOTALL) if response.find("**ERROR**") >= 0: raise Exception(response) set_llm_cache(self._llm.llm_name, system, response, history, gen_conf) return response def _entities_and_relations(self, chunk_key: str, records: list, tuple_delimiter: str): maybe_nodes = defaultdict(list) maybe_edges = defaultdict(list) ent_types = [t.lower() for t in self._entity_types] for record in records: record_attributes = split_string_by_multi_markers( record, [tuple_delimiter] ) if_entities = handle_single_entity_extraction( record_attributes, chunk_key ) if if_entities is not None and if_entities.get("entity_type", "unknown").lower() in ent_types: maybe_nodes[if_entities["entity_name"]].append(if_entities) continue if_relation = handle_single_relationship_extraction( record_attributes, chunk_key ) if if_relation is not None: maybe_edges[(if_relation["src_id"], if_relation["tgt_id"])].append( if_relation ) return dict(maybe_nodes), dict(maybe_edges) async def __call__( self, doc_id: str, chunks: list[str], callback: Callable | None = None ): self.callback = callback start_ts = trio.current_time() out_results = [] async with trio.open_nursery() as nursery: for i, ck in enumerate(chunks): ck = truncate(ck, int(self._llm.max_length*0.8)) nursery.start_soon(lambda: self._process_single_content((doc_id, ck), i, len(chunks), out_results)) maybe_nodes = defaultdict(list) maybe_edges = defaultdict(list) sum_token_count = 0 for m_nodes, m_edges, token_count in out_results: for k, v in m_nodes.items(): maybe_nodes[k].extend(v) for k, v in m_edges.items(): maybe_edges[tuple(sorted(k))].extend(v) sum_token_count += token_count now = trio.current_time() if callback: callback(msg = f"Entities and relationships extraction done, {len(maybe_nodes)} nodes, {len(maybe_edges)} edges, {sum_token_count} tokens, {now-start_ts:.2f}s.") start_ts = now logging.info("Entities merging...") all_entities_data = [] async with trio.open_nursery() as nursery: for en_nm, ents in maybe_nodes.items(): nursery.start_soon(lambda: self._merge_nodes(en_nm, ents, all_entities_data)) now = trio.current_time() if callback: callback(msg = f"Entities merging done, {now-start_ts:.2f}s.") start_ts = now logging.info("Relationships merging...") all_relationships_data = [] async with trio.open_nursery() as nursery: for (src, tgt), rels in maybe_edges.items(): nursery.start_soon(lambda: self._merge_edges(src, tgt, rels, all_relationships_data)) now = trio.current_time() if callback: callback(msg = f"Relationships merging done, {now-start_ts:.2f}s.") if not len(all_entities_data) and not len(all_relationships_data): logging.warning( "Didn't extract any entities and relationships, maybe your LLM is not working" ) if not len(all_entities_data): logging.warning("Didn't extract any entities") if not len(all_relationships_data): logging.warning("Didn't extract any relationships") return all_entities_data, all_relationships_data async def _merge_nodes(self, entity_name: str, entities: list[dict], all_relationships_data): if not entities: return already_entity_types = [] already_source_ids = [] already_description = [] already_node = self._get_entity_(entity_name) if already_node: already_entity_types.append(already_node["entity_type"]) already_source_ids.extend(already_node["source_id"]) already_description.append(already_node["description"]) entity_type = sorted( Counter( [dp["entity_type"] for dp in entities] + already_entity_types ).items(), key=lambda x: x[1], reverse=True, )[0][0] description = GRAPH_FIELD_SEP.join( sorted(set([dp["description"] for dp in entities] + already_description)) ) already_source_ids = flat_uniq_list(entities, "source_id") description = await self._handle_entity_relation_summary(entity_name, description) node_data = dict( entity_type=entity_type, description=description, source_id=already_source_ids, ) node_data["entity_name"] = entity_name self._set_entity_(entity_name, node_data) all_relationships_data.append(node_data) async def _merge_edges( self, src_id: str, tgt_id: str, edges_data: list[dict], all_relationships_data=None ): if not edges_data: return already_weights = [] already_source_ids = [] already_description = [] already_keywords = [] relation = self._get_relation_(src_id, tgt_id) if relation: already_weights = [relation["weight"]] already_source_ids = relation["source_id"] already_description = [relation["description"]] already_keywords = relation["keywords"] weight = sum([dp["weight"] for dp in edges_data] + already_weights) description = GRAPH_FIELD_SEP.join( sorted(set([dp["description"] for dp in edges_data] + already_description)) ) keywords = flat_uniq_list(edges_data, "keywords") + already_keywords source_id = flat_uniq_list(edges_data, "source_id") + already_source_ids for need_insert_id in [src_id, tgt_id]: if self._get_entity_(need_insert_id): continue self._set_entity_(need_insert_id, { "source_id": source_id, "description": description, "entity_type": 'UNKNOWN' }) description = await self._handle_entity_relation_summary( f"({src_id}, {tgt_id})", description ) edge_data = dict( src_id=src_id, tgt_id=tgt_id, description=description, keywords=keywords, weight=weight, source_id=source_id ) self._set_relation_(src_id, tgt_id, edge_data) if all_relationships_data is not None: all_relationships_data.append(edge_data) async def _handle_entity_relation_summary( self, entity_or_relation_name: str, description: str ) -> str: summary_max_tokens = 512 use_description = truncate(description, summary_max_tokens) description_list=use_description.split(GRAPH_FIELD_SEP), if len(description_list) <= 12: return use_description prompt_template = SUMMARIZE_DESCRIPTIONS_PROMPT context_base = dict( entity_name=entity_or_relation_name, description_list=description_list, language=self._language, ) use_prompt = prompt_template.format(**context_base) logging.info(f"Trigger summary: {entity_or_relation_name}") async with chat_limiter: summary = await trio.to_thread.run_sync(lambda: self._chat(use_prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.8})) return summary