# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import json from api import settings import networkx as nx import logging import trio from api.db import LLMType from api.db.services.document_service import DocumentService from api.db.services.knowledgebase_service import KnowledgebaseService from api.db.services.llm_service import LLMBundle from api.db.services.user_service import TenantService from graphrag.general.index import update_graph from graphrag.light.graph_extractor import GraphExtractor settings.init_settings() def callback(prog=None, msg="Processing..."): logging.info(msg) async def main(): parser = argparse.ArgumentParser() parser.add_argument( "-t", "--tenant_id", default=False, help="Tenant ID", action="store", required=True, ) parser.add_argument( "-d", "--doc_id", default=False, help="Document ID", action="store", required=True, ) args = parser.parse_args() e, doc = DocumentService.get_by_id(args.doc_id) if not e: raise LookupError("Document not found.") kb_id = doc.kb_id chunks = [ d["content_with_weight"] for d in settings.retrievaler.chunk_list( args.doc_id, args.tenant_id, [kb_id], max_count=6, fields=["content_with_weight"], ) ] _, tenant = TenantService.get_by_id(args.tenant_id) llm_bdl = LLMBundle(args.tenant_id, LLMType.CHAT, tenant.llm_id) _, kb = KnowledgebaseService.get_by_id(kb_id) embed_bdl = LLMBundle(args.tenant_id, LLMType.EMBEDDING, kb.embd_id) graph, doc_ids = await update_graph( GraphExtractor, args.tenant_id, kb_id, args.doc_id, chunks, "English", llm_bdl, embed_bdl, callback, ) print(json.dumps(nx.node_link_data(graph), ensure_ascii=False, indent=2)) if __name__ == "__main__": trio.run(main)