# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import re import umap import numpy as np from sklearn.mixture import GaussianMixture import trio from graphrag.utils import ( get_llm_cache, get_embed_cache, set_embed_cache, set_llm_cache, chat_limiter, ) from rag.utils import truncate class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval: def __init__( self, max_cluster, llm_model, embd_model, prompt, max_token=512, threshold=0.1 ): self._max_cluster = max_cluster self._llm_model = llm_model self._embd_model = embd_model self._threshold = threshold self._prompt = prompt self._max_token = max_token async def _chat(self, system, history, gen_conf): response = get_llm_cache(self._llm_model.llm_name, system, history, gen_conf) if response: return response response = await trio.to_thread.run_sync( lambda: self._llm_model.chat(system, history, gen_conf) ) response = re.sub(r".*", "", response, flags=re.DOTALL) if response.find("**ERROR**") >= 0: raise Exception(response) set_llm_cache(self._llm_model.llm_name, system, response, history, gen_conf) return response async def _embedding_encode(self, txt): response = get_embed_cache(self._embd_model.llm_name, txt) if response is not None: return response embds, _ = await trio.to_thread.run_sync(lambda: self._embd_model.encode([txt])) if len(embds) < 1 or len(embds[0]) < 1: raise Exception("Embedding error: ") embds = embds[0] set_embed_cache(self._embd_model.llm_name, txt, embds) return embds def _get_optimal_clusters(self, embeddings: np.ndarray, random_state: int): max_clusters = min(self._max_cluster, len(embeddings)) n_clusters = np.arange(1, max_clusters) bics = [] for n in n_clusters: gm = GaussianMixture(n_components=n, random_state=random_state) gm.fit(embeddings) bics.append(gm.bic(embeddings)) optimal_clusters = n_clusters[np.argmin(bics)] return optimal_clusters async def __call__(self, chunks, random_state, callback=None): layers = [(0, len(chunks))] start, end = 0, len(chunks) if len(chunks) <= 1: return [] chunks = [(s, a) for s, a in chunks if s and len(a) > 0] async def summarize(ck_idx: list[int]): nonlocal chunks texts = [chunks[i][0] for i in ck_idx] len_per_chunk = int( (self._llm_model.max_length - self._max_token) / len(texts) ) cluster_content = "\n".join( [truncate(t, max(1, len_per_chunk)) for t in texts] ) async with chat_limiter: cnt = await self._chat( "You're a helpful assistant.", [ { "role": "user", "content": self._prompt.format( cluster_content=cluster_content ), } ], {"temperature": 0.3, "max_tokens": self._max_token}, ) cnt = re.sub( "(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)", "", cnt, ) logging.debug(f"SUM: {cnt}") embds = await self._embedding_encode(cnt) chunks.append((cnt, embds)) labels = [] while end - start > 1: embeddings = [embd for _, embd in chunks[start:end]] if len(embeddings) == 2: await summarize([start, start + 1]) if callback: callback( msg="Cluster one layer: {} -> {}".format( end - start, len(chunks) - end ) ) labels.extend([0, 0]) layers.append((end, len(chunks))) start = end end = len(chunks) continue n_neighbors = int((len(embeddings) - 1) ** 0.8) reduced_embeddings = umap.UMAP( n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings) - 2), metric="cosine", ).fit_transform(embeddings) n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state) if n_clusters == 1: lbls = [0 for _ in range(len(reduced_embeddings))] else: gm = GaussianMixture(n_components=n_clusters, random_state=random_state) gm.fit(reduced_embeddings) probs = gm.predict_proba(reduced_embeddings) lbls = [np.where(prob > self._threshold)[0] for prob in probs] lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls] async with trio.open_nursery() as nursery: for c in range(n_clusters): ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c] assert len(ck_idx) > 0 async with chat_limiter: nursery.start_soon(lambda: summarize(ck_idx)) assert len(chunks) - end == n_clusters, "{} vs. {}".format( len(chunks) - end, n_clusters ) labels.extend(lbls) layers.append((end, len(chunks))) if callback: callback( msg="Cluster one layer: {} -> {}".format( end - start, len(chunks) - end ) ) start = end end = len(chunks) return chunks