Spaces:
Sleeping
Sleeping
File size: 5,390 Bytes
9575051 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
from __future__ import unicode_literals, print_function
import json
import os
import nltk
import tensorflow as tf
import tensorflow_hub as hub
from nltk.tokenize import word_tokenize
from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer
from sumy.summarizers.lex_rank import LexRankSummarizer
from transformers import pipeline
from spacy.lang.en import English
nltk.download('punkt')
MAX_TOKENS = 880
MIN_WORD_PER_SENTENCE = 15
SUMMARY_MAX_LENGTH = 240
SUMMARY_MIN_LENGTH = 30
embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4")
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
class Bullet:
text = ""
publisher = "NewsBroInc."
def __init__(self, text, publisher):
self.text = text
self.publisher = publisher
def __str__(self):
return f"""{self.publisher}: {self.text}"""
class Summary:
text = ""
publisher = "NewsBroInc."
def __init__(self, text, publisher):
self.text = text
self.publisher = publisher
def getNumTokens(article):
return len(word_tokenize(article))
def lexRank(article, sentenceCount):
# Create a parser for the article text
parser = PlaintextParser.from_string(article, Tokenizer("english"))
# Create a LexRank summarizer
summarizer = LexRankSummarizer()
# Get the summary
summary = summarizer(parser.document, sentenceCount)
summaryText = []
for sentence in summary:
summaryText.append(str(sentence))
return " ".join(summaryText)
def bart(article, maxLength=SUMMARY_MAX_LENGTH, minLength=SUMMARY_MIN_LENGTH):
return summarizer(article, max_length=maxLength, min_length=minLength, do_sample=False)
def getArticles():
folder_path = "articles"
# Get the list of all files in the specified folder
files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
# Filter out only the txt files
txt_files = [f for f in files if f.endswith(".txt")]
# Create a dictionary to store the content of each text file
file_contents = {}
# Loop through each txt file and read its content
for txt_file in txt_files:
file_path = os.path.join(folder_path, txt_file)
with open(file_path, 'r', encoding='utf-8') as file:
content = file.read()
publisher = txt_file[:-4]
file_contents[publisher] = content
return file_contents
def summarizeArticle(article):
numTokens = getNumTokens(article)
lexRankedArticle = article
i = 0
while numTokens > MAX_TOKENS:
numSentences = MAX_TOKENS / (MIN_WORD_PER_SENTENCE + i)
lexRankedArticle = lexRank(article, numSentences)
numTokens = getNumTokens(lexRankedArticle)
i += 1
return bart(lexRankedArticle)
def getSummarizedArticles():
articles = getArticles()
summaries = []
for article in articles:
cur = Summary(summarizeArticle(articles[article])[0]['summary_text'], article)
summaries.append(cur)
return summaries
def areBulletsSimilar(sentence1, sentence2):
embeddings1 = embed([sentence1])
embeddings2 = embed([sentence2])
similarity = tf.reduce_sum(tf.multiply(embeddings1, embeddings2)).numpy()
# print(similarity)
return similarity > 0.5
def getSentencesFromRawText(input_text):
# Load the English NLP model from spacy
nlp = English()
# Process the text using spacy
doc = nlp(input_text)
nlp.add_pipe('sentencizer')
doc = nlp(input_text)
sentences = [sent.text.strip() for sent in doc.sents]
return sentences
def getAllBullets(summaries):
allBullets = []
for summary in summaries:
publisher = summary.publisher
curBullets = getSentencesFromRawText(summary.text)
for bulletText in curBullets:
allBullets.append(Bullet(bulletText, publisher))
return allBullets
def getFinalClusters(allBullets):
output = [[allBullets[0]]]
for i in range(1, len(allBullets)):
cur = allBullets[i]
foundSimilarInstance = False
for i in range (len(output)):
if areBulletsSimilar(cur.text, output[i][0].text):
foundSimilarInstance = True
output[i].append(cur)
break
if foundSimilarInstance == False:
output.append([cur])
return output
def getFinalOutput(clusters):
sortedList = sorted(clusters, key=len)
sortedList.reverse()
return sortedList[:5]
def getData():
allSummaries = getSummarizedArticles()
allBullets = getAllBullets(allSummaries)
clusters = getFinalClusters(allBullets)
finalOutput = (getFinalOutput(clusters))
data = []
for element in finalOutput:
publishers = []
for subElement in element:
publishers.append(subElement.publisher)
headline = {
'score' : f"""{round((len(set(publishers)) / 31) * 100, 1)}%""",
'text' : element[0].text,
'publishers' : list(set(publishers)),
}
data.append(headline)
return data
def sendData():
data = getData()
jsonString = json.dumps(data, indent=2)
print(jsonString)
file_name = 'output.json'
with open(file_name, 'w') as json_file:
json.dump(data, json_file, indent=2)
sendData()
|