Spaces:
No application file
No application file
File size: 12,805 Bytes
37d3a3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Redis LangChain OpenAI eCommerce Chatbot"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "5-h_nDGp3Kdf",
"outputId": "94191443-3844-4c1d-a26f-7619d976a55b",
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/usr/bin/zsh: /home/green/miniconda3/lib/libtinfo.so.6: no version information available (required by /usr/bin/zsh)\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.1.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.3.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"# Install requirements\n",
"!pip install -r requirements.txt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/usr/bin/zsh: /home/green/miniconda3/lib/libtinfo.so.6: no version information available (required by /usr/bin/zsh)\n",
"/home/linuxbrew/.linuxbrew/opt/[email protected]/lib/python3.11/site-packages/gdown/cli.py:126: FutureWarning: Option `--id` was deprecated in version 4.3.1 and will be removed in 5.0. You don't need to pass it anymore to use a file ID.\n",
" warnings.warn(\n",
"Downloading...\n",
"From (uriginal): https://drive.google.com/uc?id=1tHWB6u3yQCuAgOYc-DxtZ8Mru3uV5_lj\n",
"From (redirected): https://drive.google.com/uc?id=1tHWB6u3yQCuAgOYc-DxtZ8Mru3uV5_lj&confirm=t&uuid=f678b48d-4f3e-44f9-bf60-03ca828cb67c\n",
"To: /home/green/code/gatech/ai_atl/inital_work/product_data.csv\n",
"100%|ββββββββββββββββββββββββββββββββββββββββ| 225M/225M [00:09<00:00, 24.0MB/s]\n"
]
}
],
"source": [
"# Download the dataset\n",
"!gdown --id 1tHWB6u3yQCuAgOYc-DxtZ8Mru3uV5_lj"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Preprocess dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"MAX_TEXT_LENGTH=512\n",
"\n",
"def auto_truncate(val):\n",
" \"\"\"Truncate the given text.\"\"\"\n",
" return val[:MAX_TEXT_LENGTH]\n",
"\n",
"# Load Product data and truncate long text fields\n",
"all_prods_df = pd.read_csv(\"product_data.csv\", converters={\n",
" 'bullet_point': auto_truncate,\n",
" 'item_keywords': auto_truncate,\n",
" 'item_name': auto_truncate\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 669
},
"id": "00_n4VWH7FoB",
"outputId": "f26daa8c-4af9-4def-d5ab-3197777fe2f9",
"tags": []
},
"outputs": [],
"source": [
"# Contruct a primary key from item ID and domain name\n",
"all_prods_df['primary_key'] = (\n",
" all_prods_df['item_id'] + '-' + all_prods_df['domain_name']\n",
")\n",
"# Replace empty strings with None and drop\n",
"all_prods_df['item_keywords'].replace('', None, inplace=True)\n",
"all_prods_df.dropna(subset=['item_keywords'], inplace=True)\n",
"\n",
"# Reset pandas dataframe index\n",
"all_prods_df.reset_index(drop=True, inplace=True)\n",
"\n",
"all_prods_df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Num products to use (subset)\n",
"NUMBER_PRODUCTS = 2500 \n",
"\n",
"# Get the first 1000 products with non-empty item keywords\n",
"product_metadata = ( \n",
" all_prods_df\n",
" .head(NUMBER_PRODUCTS)\n",
" .to_dict(orient='index')\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Iw7rlppY8f3a",
"tags": []
},
"outputs": [],
"source": [
"# Check one of the products\n",
"product_metadata[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set up Redis as a vector db"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores.redis import Redis as RedisVectorStore\n",
"\n",
"# data that will be embedded and converted to vectors\n",
"texts = [\n",
" v['item_name'] for k, v in product_metadata.items()\n",
"]\n",
"\n",
"# product metadata that we'll store along our vectors\n",
"metadatas = list(product_metadata.values())\n",
"\n",
"# we will use OpenAI as our embeddings provider\n",
"embedding = OpenAIEmbeddings()\n",
"\n",
"# name of the Redis search index to create\n",
"index_name = \"products\"\n",
"\n",
"# assumes you have a redis stack server running on within your docker compose network\n",
"redis_url = \"redis://redis:6379\"\n",
"\n",
"# create and load redis with documents\n",
"vectorstore = RedisVectorStore.from_texts(\n",
" texts=texts,\n",
" metadatas=metadatas,\n",
" embedding=embedding,\n",
" index_name=index_name,\n",
" redis_url=redis_url\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Build the ChatBot with ConversationalRetrieverChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.callbacks.base import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"from langchain.chains import (\n",
" ConversationalRetrievalChain,\n",
" LLMChain\n",
")\n",
"from langchain.chains.question_answering import load_qa_chain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts.prompt import PromptTemplate\n",
"\n",
"template = \"\"\"Given the following chat history and a follow up question, rephrase the follow up input question to be a standalone question.\n",
"Or end the conversation if it seems like it's done.\n",
"\n",
"Chat History:\\\"\"\"\n",
"{chat_history}\n",
"\\\"\"\"\n",
"\n",
"Follow Up Input: \\\"\"\"\n",
"{question}\n",
"\\\"\"\"\n",
"\n",
"Standalone question:\"\"\"\n",
"\n",
"condense_question_prompt = PromptTemplate.from_template(template)\n",
"\n",
"template = \"\"\"You are a friendly, conversational retail shopping assistant. Use the following context including product names, descriptions, and keywords to show the shopper whats available, help find what they want, and answer any questions.\n",
"It's ok if you don't know the answer.\n",
"\n",
"Context:\\\"\"\"\n",
"{context}\n",
"\\\"\"\"\n",
"\n",
"Question:\\\"\n",
"\\\"\"\"\n",
"\n",
"Helpful Answer:\"\"\"\n",
"\n",
"qa_prompt= PromptTemplate.from_template(template)\n",
"\n",
"\n",
"# define two LLM models from OpenAI\n",
"llm = OpenAI(temperature=0)\n",
"\n",
"streaming_llm = OpenAI(\n",
" streaming=True,\n",
" callback_manager=CallbackManager([\n",
" StreamingStdOutCallbackHandler()]),\n",
" verbose=True,\n",
" temperature=0.2,\n",
" max_tokens=150\n",
")\n",
"\n",
"# use the LLM Chain to create a question creation chain\n",
"question_generator = LLMChain(\n",
" llm=llm,\n",
" prompt=condense_question_prompt\n",
")\n",
"\n",
"# use the streaming LLM to create a question answering chain\n",
"doc_chain = load_qa_chain(\n",
" llm=streaming_llm,\n",
" chain_type=\"stuff\",\n",
" prompt=qa_prompt\n",
")\n",
"\n",
"\n",
"chatbot = ConversationalRetrievalChain(\n",
" retriever=vectorstore.as_retriever(),\n",
" combine_docs_chain=doc_chain,\n",
" question_generator=question_generator\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# create a chat history buffer\n",
"chat_history = []\n",
"\n",
"# gather user input for the first question to kick off the bot\n",
"question = input(\"Hi! What are you looking for today?\")\n",
"\n",
"# keep the bot running in a loop to simulate a conversation\n",
"while True:\n",
" result = chatbot(\n",
" {\"question\": question, \"chat_history\": chat_history}\n",
" )\n",
" print(\"\\n\")\n",
" chat_history.append((result[\"question\"], result[\"answer\"]))\n",
" question = input()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Customize your chains for even better performance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import json\n",
"\n",
"from langchain.schema import BaseRetriever\n",
"from langchain.vectorstores import VectorStore\n",
"from langchain.schema import Document\n",
"from pydantic import BaseModel\n",
"\n",
"\n",
"class RedisProductRetriever(BaseRetriever, BaseModel):\n",
" vectorstore: VectorStore\n",
"\n",
" class Config:\n",
" \n",
" arbitrary_types_allowed = True\n",
"\n",
" def combine_metadata(self, doc) -> str:\n",
" metadata = doc.metadata\n",
" return (\n",
" \"Item Name: \" + metadata[\"item_name\"] + \". \" +\n",
" \"Item Description: \" + metadata[\"bullet_point\"] + \". \" +\n",
" \"Item Keywords: \" + metadata[\"item_keywords\"] + \".\"\n",
" )\n",
"\n",
" def get_relevant_documents(self, query):\n",
" docs = []\n",
" for doc in self.vectorstore.similarity_search(query):\n",
" content = self.combine_metadata(doc)\n",
" docs.append(Document(\n",
" page_content=content,\n",
" metadata=doc.metadata\n",
" ))\n",
" return docs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setup ChatBot with new retriever"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"redis_product_retriever = RedisProductRetriever(vectorstore=vectorstore)\n",
"\n",
"chatbot = ConversationalRetrievalChain(\n",
" retriever=redis_product_retriever,\n",
" combine_docs_chain=doc_chain,\n",
" question_generator=question_generator\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retry"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# create a chat history buffer\n",
"chat_history = []\n",
"\n",
"# gather user input for the first question to kick off the bot\n",
"question = input(\"Hi! What are you looking for today?\")\n",
"\n",
"# keep the bot running in a loop to simulate a conversation\n",
"while True:\n",
" result = chatbot(\n",
" {\"question\": question, \"chat_history\": chat_history}\n",
" )\n",
" print(\"\\n\")\n",
" chat_history.append((result[\"question\"], result[\"answer\"]))\n",
" question = input()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|