Staticaliza commited on
Commit
643937e
·
verified ·
1 Parent(s): f9cb653

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -90,7 +90,7 @@ campplus_model.to(device)
90
  print("[INFO] | CAMPPlus model loaded, set to eval mode, and moved to CPU.")
91
 
92
  # Load BigVGAN model
93
- bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_base_22khz_80band', use_cuda_kernel=False)
94
  bigvgan_model.remove_weight_norm()
95
  bigvgan_model = bigvgan_model.eval().to(device)
96
  print("[INFO] | BigVGAN model loaded, weight norm removed, set to eval mode, and moved to CPU.")
@@ -107,7 +107,7 @@ codec_encoder = {k: v.eval().to(device) for k, v in codec_encoder.items()}
107
  print("[INFO] | FAcodec model loaded, set to eval mode, and moved to CPU.")
108
 
109
  # Load Whisper model with float32 and compatible size
110
- whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small"
111
  whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float32).to(device)
112
  del whisper_model.decoder # Remove decoder as it's not used
113
  whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
 
90
  print("[INFO] | CAMPPlus model loaded, set to eval mode, and moved to CPU.")
91
 
92
  # Load BigVGAN model
93
+ bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
94
  bigvgan_model.remove_weight_norm()
95
  bigvgan_model = bigvgan_model.eval().to(device)
96
  print("[INFO] | BigVGAN model loaded, weight norm removed, set to eval mode, and moved to CPU.")
 
107
  print("[INFO] | FAcodec model loaded, set to eval mode, and moved to CPU.")
108
 
109
  # Load Whisper model with float32 and compatible size
110
+ whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "biodatlab/distill-whisper-th-small"
111
  whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float32).to(device)
112
  del whisper_model.decoder # Remove decoder as it's not used
113
  whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)