import gradio as gr
import numpy as np
import soundfile as sf
import spaces
import torch
import torchaudio
import librosa
import yaml
import tempfile
import os

from huggingface_hub import hf_hub_download
from transformers import AutoFeatureExtractor, WhisperModel
from torch.nn.utils import parametrizations

from modules.commons import build_model, load_checkpoint, recursive_munch
from modules.campplus.DTDNN import CAMPPlus
from modules.bigvgan import bigvgan
from modules.rmvpe import RMVPE
from modules.audio import mel_spectrogram

# ----------------------------
# Optimization Settings
# ----------------------------

# Set the number of threads to the number of CPU cores
torch.set_num_threads(os.cpu_count())
torch.set_num_interop_threads(os.cpu_count())

# Enable optimized backends
torch.backends.openmp.enabled = True
torch.backends.mkldnn.enabled = True
torch.backends.cudnn.enabled = False
torch.backends.cuda.enabled = False

torch.set_grad_enabled(False)

# Force CPU usage
device = torch.device("cpu")
print(f"[DEVICE] | Using device: {device}")

channel_numbers = 100 # 80 by default
main_model = "nvidia/bigvgan_24khz_100band" # nvidia/bigvgan_v2_22khz_80band_256x

# ----------------------------
# Load Models and Configuration
# ----------------------------

def load_custom_model_from_hf(repo_id, model_filename="pytorch_model.bin", config_filename="config.yml"):
    os.makedirs("./checkpoints", exist_ok=True)
    model_path = hf_hub_download(repo_id=repo_id, filename=model_filename, cache_dir="./checkpoints")
    if config_filename is None:
        return model_path
    config_path = hf_hub_download(repo_id=repo_id, filename=config_filename, cache_dir="./checkpoints")

    return model_path, config_path
    
# Load DiT model
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC", "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth", "config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, stage='DiT')

# Debug: Print model keys to identify correct key
print(f"[INFO] | Model keys: {model.keys()}")

hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']

# Load DiT checkpoints
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path, load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model:
    model[key].eval()
    model[key].to(device)
print("[INFO] | DiT model loaded and set to eval mode.")

model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)

# Ensure 'CAMPPlus' is correctly imported and defined
try:
    campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
    print("[INFO] | CAMPPlus model instantiated.")
except NameError:
    print("[ERROR] | CAMPPlus is not defined. Please check the import path and ensure CAMPPlus is correctly defined.")
    raise

# Set weights_only=True for security
campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
campplus_state = torch.load(campplus_ckpt_path, map_location="cpu", weights_only=True)
campplus_model.load_state_dict(campplus_state)
campplus_model.eval()
campplus_model.to(device)
print("[INFO] | CAMPPlus model loaded, set to eval mode, and moved to CPU.")

# Load BigVGAN model
bigvgan_model = bigvgan.BigVGAN.from_pretrained(main_model, use_cuda_kernel=False)
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval().to(device)
print("[INFO] | BigVGAN model loaded, weight norm removed, set to eval mode, and moved to CPU.")

# Load FAcodec model
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
codec_config = yaml.safe_load(open(config_path))
codec_model_params = recursive_munch(codec_config['model_params'])
codec_encoder = build_model(codec_model_params, stage="codec")
ckpt_params = torch.load(ckpt_path, map_location="cpu", weights_only=True)
for key in codec_encoder:
    codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
codec_encoder = {k: v.eval().to(device) for k, v in codec_encoder.items()}
print("[INFO] | FAcodec model loaded, set to eval mode, and moved to CPU.")

# Load Whisper model with float32 and compatible size
whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "biodatlab/distill-whisper-th-small"
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float32).to(device)
del whisper_model.decoder  # Remove decoder as it's not used
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
print(f"[INFO] | Whisper model '{whisper_name}' loaded with dtype {whisper_model.dtype} and moved to CPU.")

# Generate mel spectrograms with optimized parameters
mel_fn_args = {
    "n_fft": 1024,
    "win_size": 1024,
    "hop_size": 256,
    "num_mels": channel_numbers,
    "sampling_rate": sr,
    "fmin": 0,
    "fmax": None,
    "center": False
}
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)

# Load F0 conditioned model
dit_checkpoint_path_f0, dit_config_path_f0 = load_custom_model_from_hf("Plachta/Seed-VC", "DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth", "config_dit_mel_seed_uvit_whisper_base_f0_44k.yml")
config_f0 = yaml.safe_load(open(dit_config_path_f0, 'r'))
model_params_f0 = recursive_munch(config_f0['model_params'])
model_f0 = build_model(model_params_f0, stage='DiT')

hop_length_f0 = config_f0['preprocess_params']['spect_params']['hop_length']
sr_f0 = config_f0['preprocess_params']['sr']

# Load F0 model checkpoints
model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path_f0, load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model_f0:
    model_f0[key].eval()
    model_f0[key].to(device)
print("[INFO] | F0 conditioned DiT model loaded and set to eval mode.")

model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)

# Load F0 extractor
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
rmvpe = RMVPE(model_path, is_half=False, device=device)
print("[INFO] | RMVPE model loaded and moved to CPU.")

mel_fn_args_f0 = {
    "n_fft": config_f0['preprocess_params']['spect_params']['n_fft'],
    "win_size": config_f0['preprocess_params']['spect_params']['win_length'],
    "hop_size": config_f0['preprocess_params']['spect_params']['hop_length'],
    "num_mels": channel_numbers,
    "sampling_rate": sr_f0,
    "fmin": 0,
    "fmax": None,
    "center": False
}
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)

# Load BigVGAN 44kHz model
bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
bigvgan_44k_model.remove_weight_norm()
bigvgan_44k_model = bigvgan_44k_model.eval().to(device)
print("[INFO] | BigVGAN 44kHz model loaded, weight norm removed, set to eval mode, and moved to CPU.")

# CSS Styling
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

# ----------------------------
# Functions
# ----------------------------

@torch.no_grad()
@torch.inference_mode()
def voice_conversion(input, reference, steps, guidance, pitch, speed):
    print("[INFO] | Voice conversion started.")
    
    inference_module, mel_fn, bigvgan_fn = model, to_mel, bigvgan_model
    bitrate, sampling_rate, sr_current, hop_length_current = "320k", 16000, 22050, 256
    max_context_window, overlap_wave_len = sr_current // hop_length_current * 30, 16 * hop_length_current
    
    # Load audio using librosa
    print("[INFO] | Loading source and reference audio.")
    source_audio, _ = librosa.load(input, sr=sr_current)
    ref_audio, _ = librosa.load(reference, sr=sr_current)
    
    # Clip reference audio to 25 seconds
    ref_audio = ref_audio[:sr_current * 25]
    print(f"[INFO] | Source audio length: {len(source_audio)/sr_current:.2f}s, Reference audio length: {len(ref_audio)/sr_current:.2f}s")
    
    # Convert audio to tensors
    source_audio_tensor = torch.tensor(source_audio).unsqueeze(0).float().to(device)
    ref_audio_tensor = torch.tensor(ref_audio).unsqueeze(0).float().to(device)
    
    # Resample to 16kHz
    ref_waves_16k = torchaudio.functional.resample(ref_audio_tensor, sr_current, sampling_rate)
    converted_waves_16k = torchaudio.functional.resample(source_audio_tensor, sr_current, sampling_rate)
    
    # Generate Whisper features
    print("[INFO] | Generating Whisper features for source audio.")
    if converted_waves_16k.size(-1) <= sampling_rate * 30:
        alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=sampling_rate)
        alt_input_features = whisper_model._mask_input_features(alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
        alt_outputs = whisper_model.encoder(alt_input_features.to(torch.float32), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True)
        S_alt = alt_outputs.last_hidden_state.to(torch.float32)
        S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
        print(f"[INFO] | S_alt shape: {S_alt.shape}")
    else:
        # Process in chunks
        print("[INFO] | Processing source audio in chunks.")
        overlapping_time = 5  # seconds
        chunk_size = sampling_rate * 30  # 30 seconds
        overlap_size = sampling_rate * overlapping_time
        S_alt_list = []
        buffer = None
        traversed_time = 0
        total_length = converted_waves_16k.size(-1)
        
        while traversed_time < total_length:
            if buffer is None:
                chunk = converted_waves_16k[:, traversed_time:traversed_time + chunk_size]
            else:
                chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + chunk_size - overlap_size]], dim=-1)
            alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=sampling_rate)
            alt_input_features = whisper_model._mask_input_features(alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
            alt_outputs = whisper_model.encoder(alt_input_features.to(torch.float32), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True)
            S_chunk = alt_outputs.last_hidden_state.to(torch.float32)
            S_chunk = S_chunk[:, :chunk.size(-1) // 320 + 1]
            print(f"[INFO] | Processed chunk with S_chunk shape: {S_chunk.shape}")
            
            if traversed_time == 0:
                S_alt_list.append(S_chunk)
            else:
                skip_frames = 50 * overlapping_time
                S_alt_list.append(S_chunk[:, skip_frames:])
                
            buffer = chunk[:, -overlap_size:]
            traversed_time += chunk_size - overlap_size
        
        S_alt = torch.cat(S_alt_list, dim=1)
        print(f"[INFO] | Final S_alt shape after chunk processing: {S_alt.shape}")
    
    # Original Whisper features
    print("[INFO] | Generating Whisper features for reference audio.")
    ori_waves_16k = torchaudio.functional.resample(ref_audio_tensor, sr_current, sampling_rate)
    ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=sampling_rate)
    ori_input_features = whisper_model._mask_input_features(ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
    ori_outputs = whisper_model.encoder(ori_input_features.to(torch.float32), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True)
    S_ori = ori_outputs.last_hidden_state.to(torch.float32)
    S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]
    print(f"[INFO] | S_ori shape: {S_ori.shape}")
    
    # Generate mel spectrograms
    print("[INFO] | Generating mel spectrograms.")
    mel = mel_fn(source_audio_tensor.float())
    mel2 = mel_fn(ref_audio_tensor.float())
    print(f"[INFO] | Mel spectrogram shapes: mel={mel.shape}, mel2={mel2.shape}")
    
    # Length adjustment
    target_lengths = torch.LongTensor([int(mel.size(2) / speed)]).to(mel.device)
    target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
    print(f"[INFO] | Target lengths: {target_lengths.item()}, {target2_lengths.item()}")
    
    # Extract style features
    print("[INFO] | Extracting style features from reference audio.")
    feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k, num_mel_bins=channel_numbers, dither=0, sample_frequency=sampling_rate)
    feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
    style2 = campplus_model(feat2.unsqueeze(0))
    print(f"[INFO] | Style2 shape: {style2.shape}")
    
    # Length Regulation
    print("[INFO] | Applying length regulation.")
    cond, _, _, _, _ = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=3, f0=None)
    prompt_condition, _, _, _, _ = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=3, f0=None)
    print(f"[INFO] | Cond shape: {cond.shape}, Prompt condition shape: {prompt_condition.shape}")
    
    # Initialize variables for audio generation
    max_source_window = max_context_window - mel2.size(2)
    processed_frames = 0
    generated_wave_chunks = []
    
    print("[INFO] | Starting inference and audio generation.")
    
    while processed_frames < cond.size(1):
        chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
        is_last_chunk = processed_frames + max_source_window >= cond.size(1)
        cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
        
        # Perform inference
        vc_target = inference_module.cfm.inference(cat_condition, torch.LongTensor([cat_condition.size(1)]).to(mel2.device), mel2, style2, None, steps, inference_cfg_rate=guidance)
        vc_target = vc_target[:, :, mel2.size(2):]
        print(f"[INFO] | vc_target shape: {vc_target.shape}")

        # Generate waveform using BigVGAN
        vc_wave = bigvgan_fn(vc_target.float())[0]
        print(f"[INFO] | vc_wave shape: {vc_wave.shape}")
        
        # Handle the generated waveform
        output_wave = vc_wave[0].cpu().numpy()
        generated_wave_chunks.append(output_wave)
        
        # Ensure processed_frames increments correctly to avoid infinite loop
        processed_frames += vc_target.size(2)
        
        print(f"[INFO] | Processed frames updated to: {processed_frames}")
    
    # Concatenate all generated wave chunks
    final_audio = np.concatenate(generated_wave_chunks).astype(np.float32)
    
    # Pitch Shifting using librosa
    print("[INFO] | Applying pitch shifting.")
    try:
        if pitch != 0:
            final_audio = librosa.effects.pitch_shift(final_audio, sr=sr_current, n_steps=pitch)
            print(f"[INFO] | Pitch shifted by {pitch} semitones.")
        else:
            print("[INFO] | No pitch shift applied.")
    except Exception as e:
        print(f"[ERROR] | Pitch shifting failed: {e}")
        
    # Normalize the audio to ensure it's within [-1.0, 1.0]
    max_val = np.max(np.abs(final_audio))
    if max_val > 1.0:
        final_audio = final_audio / max_val
    print("[INFO] | Final audio normalized.")

    # Save the audio to a temporary WAV file
    print("[INFO] | Saving final audio to a temporary WAV file.")
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
        sf.write(tmp_file.name, final_audio, sr_current, format='WAV')
        temp_file_path = tmp_file.name
        
    print(f"[INFO] | Final audio saved to {temp_file_path}")
    
    return temp_file_path
    
def cloud():
    print("[CLOUD] | Space maintained.")

@spaces.GPU(duration=15)
def gpu():
    return

# ----------------------------
# Gradio Interface
# ----------------------------

with gr.Blocks(css=css) as main:
    with gr.Column():
        gr.Markdown("🪄 Add tone to audio.")

    with gr.Column():
        input = gr.Audio(label="Input Audio", type="filepath")
        reference_input = gr.Audio(label="Reference Audio", type="filepath")
        
    with gr.Column():
        steps = gr.Slider(label="Steps", value=4, minimum=1, maximum=100, step=1)
        guidance = gr.Slider(label="Guidance", value=0.7, minimum=0.0, maximum=1.0, step=0.1)
        pitch = gr.Slider(label="Pitch", value=0.0, minimum=-10.0, maximum=10.0, step=0.1)
        speed = gr.Slider(label="Speed", value=1.0, minimum=0.1, maximum=10.0, step=0.1)

    with gr.Column():
        submit = gr.Button("▶")
        maintain = gr.Button("☁️")
        
    with gr.Column():
        output = gr.Audio(label="Output", type="filepath")

    submit.click(voice_conversion, inputs=[input, reference_input, steps, guidance, pitch, speed], outputs=output, queue=False)
    maintain.click(cloud, inputs=[], outputs=[], queue=False)

main.launch(show_api=True)