Spaces:
Runtime error
Runtime error
File size: 11,685 Bytes
a6370a9 23dc4e5 944743c 23dc4e5 944743c 23dc4e5 6cad840 23dc4e5 b382e61 23dc4e5 b382e61 23dc4e5 7cd73f4 a6370a9 23dc4e5 3171475 23dc4e5 3171475 8bfe9e9 23dc4e5 8bfe9e9 23dc4e5 8bfe9e9 23dc4e5 944743c 23dc4e5 8bfe9e9 23dc4e5 8bfe9e9 23dc4e5 8bfe9e9 23dc4e5 8bfe9e9 23dc4e5 8bfe9e9 23dc4e5 8bfe9e9 23dc4e5 8bfe9e9 23dc4e5 8bfe9e9 23dc4e5 8bfe9e9 23dc4e5 3171475 23dc4e5 3171475 23dc4e5 8bfe9e9 23dc4e5 3a7347e 23dc4e5 8bfe9e9 23dc4e5 8bfe9e9 23dc4e5 8bb8aaa 23dc4e5 8bb8aaa 23dc4e5 8bfe9e9 55f3e87 8bfe9e9 8bb8aaa 8bfe9e9 18943e0 8bfe9e9 18943e0 8bfe9e9 23dc4e5 8bfe9e9 23dc4e5 18943e0 8bfe9e9 18943e0 8bfe9e9 18943e0 8bfe9e9 18943e0 8bfe9e9 18943e0 8bfe9e9 23dc4e5 8bfe9e9 23dc4e5 18943e0 8bfe9e9 18943e0 1ec5128 8bfe9e9 23dc4e5 8bb8aaa 2be57ea 23dc4e5 8bb8aaa 138fa16 8bb8aaa 2e18475 138fa16 b6050ac 8bb8aaa 2e18475 8bb8aaa 407b0ed 8bb8aaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import gradio as gr
import numpy as np
import soundfile as sf
import spaces
import torch
import torchaudio
import librosa
import yaml
import tempfile
import os
from huggingface_hub import hf_hub_download
from transformers import AutoFeatureExtractor, WhisperModel
from torch.nn.utils import parametrizations
from modules.commons import build_model, load_checkpoint, recursive_munch
from modules.campplus.DTDNN import CAMPPlus
from modules.bigvgan import bigvgan
from modules.rmvpe import RMVPE
from modules.audio import mel_spectrogram
# ----------------------------
# Optimization Settings
# ----------------------------
# Set the number of threads to the number of CPU cores
torch.set_num_threads(os.cpu_count())
torch.set_num_interop_threads(os.cpu_count())
# Enable optimized backends
torch.backends.openmp.enabled = True
torch.backends.mkldnn.enabled = True
torch.backends.cudnn.enabled = False
torch.backends.cuda.enabled = False
torch.set_grad_enabled(False)
# Force CPU usage and set default dtype to float16
torch.set_default_dtype(torch.float16)
device = torch.device("cpu")
print(f"[DEVICE] | Using device: {device} with dtype {torch.get_default_dtype()}")
# ----------------------------
# Load Models and Configuration
# ----------------------------
def load_custom_model_from_hf(repo_id, model_filename="pytorch_model.bin", config_filename="config.yml"):
os.makedirs("./checkpoints", exist_ok=True)
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename, cache_dir="./checkpoints")
if config_filename is None:
return model_path
config_path = hf_hub_download(repo_id=repo_id, filename=config_filename, cache_dir="./checkpoints")
return model_path, config_path
# Load DiT model
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf(
"Plachta/Seed-VC",
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml"
)
config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, stage='DiT')
# Debug: Print model keys to identify correct key
print(f"[INFO] | Model keys: {model.keys()}")
hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']
# Load DiT checkpoints
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path, load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model:
model[key] = model[key].eval().to(device).half()
print("[INFO] | DiT model loaded, set to eval mode, and converted to float16.")
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Ensure 'CAMPPlus' is correctly imported and defined
try:
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
print("[INFO] | CAMPPlus model instantiated.")
except NameError:
print("[ERROR] | CAMPPlus is not defined. Please check the import path and ensure CAMPPlus is correctly defined.")
raise
campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
campplus_state = torch.load(campplus_ckpt_path, map_location="cpu")
campplus_model.load_state_dict(campplus_state)
campplus_model = campplus_model.eval().to(device).half()
print("[INFO] | CAMPPlus model loaded, set to eval mode, and converted to float16.")
# Load BigVGAN model
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval().to(device).half()
print("[INFO] | BigVGAN model loaded, weight norm removed, set to eval mode, and converted to float16.")
# Load FAcodec model
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
codec_config = yaml.safe_load(open(config_path))
codec_model_params = recursive_munch(codec_config['model_params'])
codec_encoder = build_model(codec_model_params, stage="codec")
ckpt_params = torch.load(ckpt_path, map_location="cpu")
for key in codec_encoder:
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
codec_encoder = {k: v.eval().to(device).half() for k, v in codec_encoder.items()}
print("[INFO] | FAcodec model loaded, set to eval mode, and converted to float16.")
# Load Whisper model with float16 and compatible size
whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small"
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
del whisper_model.decoder # Remove decoder as it's not used
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
print(f"[INFO] | Whisper model '{whisper_name}' loaded with dtype {whisper_model.dtype} and moved to CPU.")
# Generate mel spectrograms with optimized parameters
mel_fn_args = {
"n_fft": 1024,
"win_size": 1024,
"hop_size": 256,
"num_mels": 80,
"sampling_rate": sr,
"fmin": 0,
"fmax": None,
"center": False
}
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
# Load F0 conditioned model
dit_checkpoint_path_f0, dit_config_path_f0 = load_custom_model_from_hf(
"Plachta/Seed-VC",
"DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth",
"config_dit_mel_seed_uvit_whisper_base_f0_44k.yml"
)
config_f0 = yaml.safe_load(open(dit_config_path_f0, 'r'))
model_params_f0 = recursive_munch(config_f0['model_params'])
model_f0 = build_model(model_params_f0, stage='DiT')
hop_length_f0 = config_f0['preprocess_params']['spect_params']['hop_length']
sr_f0 = config_f0['preprocess_params']['sr']
# Load F0 model checkpoints
model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path_f0, load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model_f0:
model_f0[key] = model_f0[key].eval().to(device).half()
print("[INFO] | F0 conditioned DiT model loaded and set to eval mode.")
model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Load F0 extractor
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
rmvpe = RMVPE(model_path, is_half=True, device=device) # Ensure RMVPE supports half precision
print("[INFO] | RMVPE model loaded and converted to float16.")
mel_fn_args_f0 = {
"n_fft": config_f0['preprocess_params']['spect_params']['n_fft'],
"win_size": config_f0['preprocess_params']['spect_params']['win_length'],
"hop_size": config_f0['preprocess_params']['spect_params']['hop_length'],
"num_mels": 80, # Ensure this matches the primary model
"sampling_rate": sr_f0,
"fmin": 0,
"fmax": None,
"center": False
}
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
# Load BigVGAN 44kHz model
bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
bigvgan_44k_model.remove_weight_norm()
bigvgan_44k_model = bigvgan_44k_model.eval().to(device).half()
print("[INFO] | BigVGAN 44kHz model loaded, weight norm removed, set to eval mode, and converted to float16.")
# CSS Styling
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
# ----------------------------
# Functions
# ----------------------------
@torch.no_grad()
@torch.inference_mode()
def voice_conversion(input, reference, steps, guidance, pitch, speed):
inference_module, mel_fn, bigvgan_fn = model, to_mel, bigvgan_model
bitrate, sampling_rate, sr_current, hop_length_current = "320k", 16000, 22050, 256
max_context_window, overlap_wave_len = sr_current // hop_length_current * 30, 16 * hop_length_current
# Load and process input audio
source_audio, _ = librosa.load(input, sr=sr_current)
ref_audio, _ = librosa.load(reference, sr=sr_current)
source_audio_tensor = torch.tensor(source_audio, dtype=torch.float16).unsqueeze(0).to(device)
ref_audio_tensor = torch.tensor(ref_audio, dtype=torch.float16).unsqueeze(0).to(device)
# Generate Whisper features
alt_inputs = whisper_feature_extractor(
[source_audio_tensor.squeeze(0).cpu().numpy()],
return_tensors="pt",
sampling_rate=sampling_rate
)
alt_input_features = whisper_model._mask_input_features(
alt_inputs.input_features.to(torch.float16),
attention_mask=alt_inputs.attention_mask
).to(device)
alt_outputs = whisper_model.encoder(alt_input_features).last_hidden_state.to(torch.float16)
# Generate mel spectrograms
mel = mel_fn(source_audio_tensor)
mel2 = mel_fn(ref_audio_tensor)
# Extract style features
feat2 = torchaudio.compliance.kaldi.fbank(
ref_audio_tensor, num_mel_bins=80, dither=0, sample_frequency=sampling_rate
)
style2 = campplus_model(feat2.unsqueeze(0).to(torch.float16))
# Length regulation
cond, _, _, _, _ = inference_module.length_regulator(
alt_outputs, ylens=target_lengths, n_quantizers=3, f0=None
)
prompt_condition, _, _, _, _ = inference_module.length_regulator(
mel2, ylens=target2_lengths, n_quantizers=3, f0=None
)
# Inference and waveform generation
generated_wave_chunks = []
while processed_frames < cond.size(1):
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1).to(torch.float16)
vc_target = inference_module.cfm.inference(
cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
mel2, style2, None, steps, inference_cfg_rate=guidance
)
vc_wave = bigvgan_model(vc_target.float())[0].to(torch.float16)
generated_wave_chunks.append(vc_wave.cpu().numpy())
# Concatenate and process final audio
final_audio = np.concatenate(generated_wave_chunks).astype(np.float16)
final_audio = librosa.effects.pitch_shift(
final_audio.astype(np.float32), sr=sr_current, n_steps=pitch
).astype(np.float16)
final_audio /= np.max(np.abs(final_audio)).astype(np.float16)
# Save and return audio
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
sf.write(tmp_file.name, final_audio, sr_current, format='WAV')
return tmp_file.name
def cloud():
print("[CLOUD] | Space maintained.")
@spaces.GPU(duration=15)
def gpu():
return
# ----------------------------
# Gradio Interface
# ----------------------------
with gr.Blocks(css=css) as main:
with gr.Column():
gr.Markdown("🪄 Add tone to audio.")
with gr.Column():
input = gr.Audio(label="Input Audio", type="filepath")
reference_input = gr.Audio(label="Reference Audio", type="filepath")
with gr.Column():
steps = gr.Slider(label="Steps", value=4, minimum=1, maximum=100, step=1)
guidance = gr.Slider(label="Guidance", value=0.7, minimum=0.0, maximum=1.0, step=0.1)
pitch = gr.Slider(label="Pitch", value=0.0, minimum=-10.0, maximum=10.0, step=0.1)
speed = gr.Slider(label="Speed", value=1.0, minimum=0.1, maximum=10.0, step=0.1)
with gr.Column():
submit = gr.Button("▶")
maintain = gr.Button("☁️")
with gr.Column():
output = gr.Audio(label="Output", type="filepath")
submit.click(voice_conversion, inputs=[input, reference_input, steps, guidance, pitch, speed], outputs=output, queue=False)
maintain.click(cloud, inputs=[], outputs=[], queue=False)
main.launch(show_api=True) |