Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,20 @@
|
|
|
|
|
|
1 |
import spaces
|
|
|
2 |
from kokoro import KModel, KPipeline
|
3 |
-
import gradio as gr
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
|
11 |
CHOICES = {
|
12 |
"🇺🇸 🚺 Heart ❤️": "af_heart",
|
@@ -39,45 +47,55 @@ CHOICES = {
|
|
39 |
"🇬🇧 🚹 Daniel": "bm_daniel",
|
40 |
}
|
41 |
|
|
|
|
|
|
|
|
|
42 |
for v in CHOICES.values():
|
43 |
PIPELINES[v[0]].load_voice(v)
|
44 |
|
45 |
MODEL = KModel().eval()
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
pipeline = PIPELINES[voice[0]]
|
50 |
pack = pipeline.load_voice(voice)
|
|
|
51 |
for _, ps, _ in pipeline(text, voice, speed):
|
52 |
ref_s = pack[len(ps) - 1]
|
53 |
audio = MODEL(ps, ref_s, speed)
|
54 |
return (24000, audio.numpy())
|
55 |
-
return None
|
56 |
|
57 |
-
def
|
58 |
-
|
59 |
-
|
60 |
-
def generate_all(text, voice="af_heart", speed=1):
|
61 |
-
text = text.strip()[:CHAR_LIMIT]
|
62 |
-
pipeline = PIPELINES[voice[0]]
|
63 |
-
pack = pipeline.load_voice(voice)
|
64 |
-
for _, ps, _ in pipeline(text, voice, speed):
|
65 |
-
ref_s = pack[len(ps) - 1]
|
66 |
-
audio = MODEL(ps, ref_s, speed)
|
67 |
-
yield 24000, audio.numpy()
|
68 |
|
69 |
@spaces.GPU()
|
70 |
def gpu():
|
71 |
return
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
app.launch()
|
|
|
1 |
+
# Imports
|
2 |
+
import gradio as gr
|
3 |
import spaces
|
4 |
+
|
5 |
from kokoro import KModel, KPipeline
|
|
|
6 |
|
7 |
+
# Pre-Initialize
|
8 |
+
DEVICE = "auto"
|
9 |
+
if DEVICE == "auto":
|
10 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
|
12 |
|
13 |
+
# Variables
|
14 |
+
CHAR_LIMIT = 2000
|
15 |
+
|
16 |
+
DEFAULT_INPUT = ""
|
17 |
+
DEFAULT_VOICE = "af_heart"
|
18 |
|
19 |
CHOICES = {
|
20 |
"🇺🇸 🚺 Heart ❤️": "af_heart",
|
|
|
47 |
"🇬🇧 🚹 Daniel": "bm_daniel",
|
48 |
}
|
49 |
|
50 |
+
PIPELINES = {lang: KPipeline(lang_code=lang, model=False) for lang in "ab"}
|
51 |
+
PIPELINES["a"].g2p.lexicon.golds["kokoro"] = "kˈOkəɹO"
|
52 |
+
PIPELINES["b"].g2p.lexicon.golds["kokoro"] = "kˈQkəɹQ"
|
53 |
+
|
54 |
for v in CHOICES.values():
|
55 |
PIPELINES[v[0]].load_voice(v)
|
56 |
|
57 |
MODEL = KModel().eval()
|
58 |
|
59 |
+
css = '''
|
60 |
+
.gradio-container{max-width: 560px !important}
|
61 |
+
h1{text-align:center}
|
62 |
+
footer {
|
63 |
+
visibility: hidden
|
64 |
+
}
|
65 |
+
'''
|
66 |
+
|
67 |
+
# Functions
|
68 |
+
def generate(text=DEFAULT_INPUT, voice=DEFAULT_VOICE, speed=1):
|
69 |
+
text = text.strip()[:CHAR_LIMIT] + "."
|
70 |
pipeline = PIPELINES[voice[0]]
|
71 |
pack = pipeline.load_voice(voice)
|
72 |
+
|
73 |
for _, ps, _ in pipeline(text, voice, speed):
|
74 |
ref_s = pack[len(ps) - 1]
|
75 |
audio = MODEL(ps, ref_s, speed)
|
76 |
return (24000, audio.numpy())
|
|
|
77 |
|
78 |
+
def cloud():
|
79 |
+
print("[CLOUD] | Space maintained.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
@spaces.GPU()
|
82 |
def gpu():
|
83 |
return
|
84 |
|
85 |
+
# Initialize
|
86 |
+
with gr.Blocks(css=css) as main:
|
87 |
+
with gr.Column():
|
88 |
+
input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input")
|
89 |
+
voice_input = gr.Dropdown(list(CHOICES.items()), value=DEFAULT_VOICE, label="Voice")
|
90 |
+
speed_input = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label="Speed")
|
91 |
+
|
92 |
+
submit = gr.Button("▶")
|
93 |
+
maintain = gr.Button("☁️")
|
94 |
+
|
95 |
+
with gr.Column():
|
96 |
+
output = gr.Audio(label="Output")
|
97 |
+
|
98 |
+
submit.click(fn=generate, inputs=[input, voice_input, speed_input], outputs=output)
|
99 |
+
maintain.click(cloud, inputs=[], outputs=[], queue=False)
|
100 |
|
101 |
+
main.launch(show_api=True)
|
|