Spaces:
Running
Running
Upload resample.py
Browse files- modules/bigvgan/resample.py +58 -0
modules/bigvgan/resample.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
| 2 |
+
# LICENSE is in incl_licenses directory.
|
| 3 |
+
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
from .filter import LowPassFilter1d
|
| 7 |
+
from .filter import kaiser_sinc_filter1d
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class UpSample1d(nn.Module):
|
| 11 |
+
def __init__(self, ratio=2, kernel_size=None):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.ratio = ratio
|
| 14 |
+
self.kernel_size = (
|
| 15 |
+
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
| 16 |
+
)
|
| 17 |
+
self.stride = ratio
|
| 18 |
+
self.pad = self.kernel_size // ratio - 1
|
| 19 |
+
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
| 20 |
+
self.pad_right = (
|
| 21 |
+
self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
| 22 |
+
)
|
| 23 |
+
filter = kaiser_sinc_filter1d(
|
| 24 |
+
cutoff=0.5 / ratio, half_width=0.6 / ratio, kernel_size=self.kernel_size
|
| 25 |
+
)
|
| 26 |
+
self.register_buffer("filter", filter)
|
| 27 |
+
|
| 28 |
+
# x: [B, C, T]
|
| 29 |
+
def forward(self, x):
|
| 30 |
+
_, C, _ = x.shape
|
| 31 |
+
|
| 32 |
+
x = F.pad(x, (self.pad, self.pad), mode="replicate")
|
| 33 |
+
x = self.ratio * F.conv_transpose1d(
|
| 34 |
+
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C
|
| 35 |
+
)
|
| 36 |
+
x = x[..., self.pad_left : -self.pad_right]
|
| 37 |
+
|
| 38 |
+
return x
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class DownSample1d(nn.Module):
|
| 42 |
+
def __init__(self, ratio=2, kernel_size=None):
|
| 43 |
+
super().__init__()
|
| 44 |
+
self.ratio = ratio
|
| 45 |
+
self.kernel_size = (
|
| 46 |
+
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
| 47 |
+
)
|
| 48 |
+
self.lowpass = LowPassFilter1d(
|
| 49 |
+
cutoff=0.5 / ratio,
|
| 50 |
+
half_width=0.6 / ratio,
|
| 51 |
+
stride=ratio,
|
| 52 |
+
kernel_size=self.kernel_size,
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
def forward(self, x):
|
| 56 |
+
xx = self.lowpass(x)
|
| 57 |
+
|
| 58 |
+
return xx
|