Staticaliza commited on
Commit
91f5a22
1 Parent(s): 7cdcad6

Create modules.py

Browse files
Files changed (1) hide show
  1. model/modules.py +574 -0
model/modules.py ADDED
@@ -0,0 +1,574 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ein notation:
3
+ b - batch
4
+ n - sequence
5
+ nt - text sequence
6
+ nw - raw wave length
7
+ d - dimension
8
+ """
9
+
10
+ from __future__ import annotations
11
+ from typing import Optional
12
+ import math
13
+
14
+ import torch
15
+ from torch import nn
16
+ import torch.nn.functional as F
17
+ import torchaudio
18
+
19
+ from einops import rearrange
20
+ from x_transformers.x_transformers import apply_rotary_pos_emb
21
+
22
+
23
+ # raw wav to mel spec
24
+
25
+ class MelSpec(nn.Module):
26
+ def __init__(
27
+ self,
28
+ filter_length = 1024,
29
+ hop_length = 256,
30
+ win_length = 1024,
31
+ n_mel_channels = 100,
32
+ target_sample_rate = 24_000,
33
+ normalize = False,
34
+ power = 1,
35
+ norm = None,
36
+ center = True,
37
+ ):
38
+ super().__init__()
39
+ self.n_mel_channels = n_mel_channels
40
+
41
+ self.mel_stft = torchaudio.transforms.MelSpectrogram(
42
+ sample_rate = target_sample_rate,
43
+ n_fft = filter_length,
44
+ win_length = win_length,
45
+ hop_length = hop_length,
46
+ n_mels = n_mel_channels,
47
+ power = power,
48
+ center = center,
49
+ normalized = normalize,
50
+ norm = norm,
51
+ )
52
+
53
+ self.register_buffer('dummy', torch.tensor(0), persistent = False)
54
+
55
+ def forward(self, inp):
56
+ if len(inp.shape) == 3:
57
+ inp = rearrange(inp, 'b 1 nw -> b nw')
58
+
59
+ assert len(inp.shape) == 2
60
+
61
+ if self.dummy.device != inp.device:
62
+ self.to(inp.device)
63
+
64
+ mel = self.mel_stft(inp)
65
+ mel = mel.clamp(min = 1e-5).log()
66
+ return mel
67
+
68
+
69
+ # sinusoidal position embedding
70
+
71
+ class SinusPositionEmbedding(nn.Module):
72
+ def __init__(self, dim):
73
+ super().__init__()
74
+ self.dim = dim
75
+
76
+ def forward(self, x, scale=1000):
77
+ device = x.device
78
+ half_dim = self.dim // 2
79
+ emb = math.log(10000) / (half_dim - 1)
80
+ emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
81
+ emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
82
+ emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
83
+ return emb
84
+
85
+
86
+ # convolutional position embedding
87
+
88
+ class ConvPositionEmbedding(nn.Module):
89
+ def __init__(self, dim, kernel_size = 31, groups = 16):
90
+ super().__init__()
91
+ assert kernel_size % 2 != 0
92
+ self.conv1d = nn.Sequential(
93
+ nn.Conv1d(dim, dim, kernel_size, groups = groups, padding = kernel_size // 2),
94
+ nn.Mish(),
95
+ nn.Conv1d(dim, dim, kernel_size, groups = groups, padding = kernel_size // 2),
96
+ nn.Mish(),
97
+ )
98
+
99
+ def forward(self, x: float['b n d'], mask: bool['b n'] | None = None):
100
+ if mask is not None:
101
+ mask = mask[..., None]
102
+ x = x.masked_fill(~mask, 0.)
103
+
104
+ x = rearrange(x, 'b n d -> b d n')
105
+ x = self.conv1d(x)
106
+ out = rearrange(x, 'b d n -> b n d')
107
+
108
+ if mask is not None:
109
+ out = out.masked_fill(~mask, 0.)
110
+
111
+ return out
112
+
113
+
114
+ # rotary positional embedding related
115
+
116
+ def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.):
117
+ # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
118
+ # has some connection to NTK literature
119
+ # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
120
+ # https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
121
+ theta *= theta_rescale_factor ** (dim / (dim - 2))
122
+ freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
123
+ t = torch.arange(end, device=freqs.device) # type: ignore
124
+ freqs = torch.outer(t, freqs).float() # type: ignore
125
+ freqs_cos = torch.cos(freqs) # real part
126
+ freqs_sin = torch.sin(freqs) # imaginary part
127
+ return torch.cat([freqs_cos, freqs_sin], dim=-1)
128
+
129
+ def get_pos_embed_indices(start, length, max_pos, scale=1.):
130
+ # length = length if isinstance(length, int) else length.max()
131
+ scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar
132
+ pos = start.unsqueeze(1) + (
133
+ torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) *
134
+ scale.unsqueeze(1)).long()
135
+ # avoid extra long error.
136
+ pos = torch.where(pos < max_pos, pos, max_pos - 1)
137
+ return pos
138
+
139
+
140
+ # Global Response Normalization layer (Instance Normalization ?)
141
+
142
+ class GRN(nn.Module):
143
+ def __init__(self, dim):
144
+ super().__init__()
145
+ self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
146
+ self.beta = nn.Parameter(torch.zeros(1, 1, dim))
147
+
148
+ def forward(self, x):
149
+ Gx = torch.norm(x, p=2, dim=1, keepdim=True)
150
+ Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
151
+ return self.gamma * (x * Nx) + self.beta + x
152
+
153
+
154
+ # ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
155
+ # ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108
156
+
157
+ class ConvNeXtV2Block(nn.Module):
158
+ def __init__(
159
+ self,
160
+ dim: int,
161
+ intermediate_dim: int,
162
+ dilation: int = 1,
163
+ ):
164
+ super().__init__()
165
+ padding = (dilation * (7 - 1)) // 2
166
+ self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation) # depthwise conv
167
+ self.norm = nn.LayerNorm(dim, eps=1e-6)
168
+ self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
169
+ self.act = nn.GELU()
170
+ self.grn = GRN(intermediate_dim)
171
+ self.pwconv2 = nn.Linear(intermediate_dim, dim)
172
+
173
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
174
+ residual = x
175
+ x = x.transpose(1, 2) # b n d -> b d n
176
+ x = self.dwconv(x)
177
+ x = x.transpose(1, 2) # b d n -> b n d
178
+ x = self.norm(x)
179
+ x = self.pwconv1(x)
180
+ x = self.act(x)
181
+ x = self.grn(x)
182
+ x = self.pwconv2(x)
183
+ return residual + x
184
+
185
+
186
+ # AdaLayerNormZero
187
+ # return with modulated x for attn input, and params for later mlp modulation
188
+
189
+ class AdaLayerNormZero(nn.Module):
190
+ def __init__(self, dim):
191
+ super().__init__()
192
+
193
+ self.silu = nn.SiLU()
194
+ self.linear = nn.Linear(dim, dim * 6)
195
+
196
+ self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
197
+
198
+ def forward(self, x, emb = None):
199
+ emb = self.linear(self.silu(emb))
200
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)
201
+
202
+ x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
203
+ return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
204
+
205
+
206
+ # AdaLayerNormZero for final layer
207
+ # return only with modulated x for attn input, cuz no more mlp modulation
208
+
209
+ class AdaLayerNormZero_Final(nn.Module):
210
+ def __init__(self, dim):
211
+ super().__init__()
212
+
213
+ self.silu = nn.SiLU()
214
+ self.linear = nn.Linear(dim, dim * 2)
215
+
216
+ self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
217
+
218
+ def forward(self, x, emb):
219
+ emb = self.linear(self.silu(emb))
220
+ scale, shift = torch.chunk(emb, 2, dim=1)
221
+
222
+ x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
223
+ return x
224
+
225
+
226
+ # FeedForward
227
+
228
+ class FeedForward(nn.Module):
229
+ def __init__(self, dim, dim_out = None, mult = 4, dropout = 0., approximate: str = 'none'):
230
+ super().__init__()
231
+ inner_dim = int(dim * mult)
232
+ dim_out = dim_out if dim_out is not None else dim
233
+
234
+ activation = nn.GELU(approximate=approximate)
235
+ project_in = nn.Sequential(
236
+ nn.Linear(dim, inner_dim),
237
+ activation
238
+ )
239
+ self.ff = nn.Sequential(
240
+ project_in,
241
+ nn.Dropout(dropout),
242
+ nn.Linear(inner_dim, dim_out)
243
+ )
244
+
245
+ def forward(self, x):
246
+ return self.ff(x)
247
+
248
+
249
+ # Attention with possible joint part
250
+ # modified from diffusers/src/diffusers/models/attention_processor.py
251
+
252
+ class Attention(nn.Module):
253
+ def __init__(
254
+ self,
255
+ processor: JointAttnProcessor | AttnProcessor,
256
+ dim: int,
257
+ heads: int = 8,
258
+ dim_head: int = 64,
259
+ dropout: float = 0.0,
260
+ context_dim: Optional[int] = None, # if not None -> joint attention
261
+ context_pre_only = None,
262
+ ):
263
+ super().__init__()
264
+
265
+ if not hasattr(F, "scaled_dot_product_attention"):
266
+ raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
267
+
268
+ self.processor = processor
269
+
270
+ self.dim = dim
271
+ self.heads = heads
272
+ self.inner_dim = dim_head * heads
273
+ self.dropout = dropout
274
+
275
+ self.context_dim = context_dim
276
+ self.context_pre_only = context_pre_only
277
+
278
+ self.to_q = nn.Linear(dim, self.inner_dim)
279
+ self.to_k = nn.Linear(dim, self.inner_dim)
280
+ self.to_v = nn.Linear(dim, self.inner_dim)
281
+
282
+ if self.context_dim is not None:
283
+ self.to_k_c = nn.Linear(context_dim, self.inner_dim)
284
+ self.to_v_c = nn.Linear(context_dim, self.inner_dim)
285
+ if self.context_pre_only is not None:
286
+ self.to_q_c = nn.Linear(context_dim, self.inner_dim)
287
+
288
+ self.to_out = nn.ModuleList([])
289
+ self.to_out.append(nn.Linear(self.inner_dim, dim))
290
+ self.to_out.append(nn.Dropout(dropout))
291
+
292
+ if self.context_pre_only is not None and not self.context_pre_only:
293
+ self.to_out_c = nn.Linear(self.inner_dim, dim)
294
+
295
+ def forward(
296
+ self,
297
+ x: float['b n d'], # noised input x
298
+ c: float['b n d'] = None, # context c
299
+ mask: bool['b n'] | None = None,
300
+ rope = None, # rotary position embedding for x
301
+ c_rope = None, # rotary position embedding for c
302
+ ) -> torch.Tensor:
303
+ if c is not None:
304
+ return self.processor(self, x, c = c, mask = mask, rope = rope, c_rope = c_rope)
305
+ else:
306
+ return self.processor(self, x, mask = mask, rope = rope)
307
+
308
+
309
+ # Attention processor
310
+
311
+ class AttnProcessor:
312
+ def __init__(self):
313
+ pass
314
+
315
+ def __call__(
316
+ self,
317
+ attn: Attention,
318
+ x: float['b n d'], # noised input x
319
+ mask: bool['b n'] | None = None,
320
+ rope = None, # rotary position embedding
321
+ ) -> torch.FloatTensor:
322
+
323
+ batch_size = x.shape[0]
324
+
325
+ # `sample` projections.
326
+ query = attn.to_q(x)
327
+ key = attn.to_k(x)
328
+ value = attn.to_v(x)
329
+
330
+ # apply rotary position embedding
331
+ if rope is not None:
332
+ freqs, xpos_scale = rope
333
+ q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if xpos_scale is not None else (1., 1.)
334
+
335
+ query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
336
+ key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
337
+
338
+ # attention
339
+ inner_dim = key.shape[-1]
340
+ head_dim = inner_dim // attn.heads
341
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
342
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
343
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
344
+
345
+ # mask. e.g. inference got a batch with different target durations, mask out the padding
346
+ if mask is not None:
347
+ attn_mask = mask
348
+ attn_mask = rearrange(attn_mask, 'b n -> b 1 1 n')
349
+ attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
350
+ else:
351
+ attn_mask = None
352
+
353
+ x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
354
+ x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
355
+ x = x.to(query.dtype)
356
+
357
+ # linear proj
358
+ x = attn.to_out[0](x)
359
+ # dropout
360
+ x = attn.to_out[1](x)
361
+
362
+ if mask is not None:
363
+ mask = rearrange(mask, 'b n -> b n 1')
364
+ x = x.masked_fill(~mask, 0.)
365
+
366
+ return x
367
+
368
+
369
+ # Joint Attention processor for MM-DiT
370
+ # modified from diffusers/src/diffusers/models/attention_processor.py
371
+
372
+ class JointAttnProcessor:
373
+ def __init__(self):
374
+ pass
375
+
376
+ def __call__(
377
+ self,
378
+ attn: Attention,
379
+ x: float['b n d'], # noised input x
380
+ c: float['b nt d'] = None, # context c, here text
381
+ mask: bool['b n'] | None = None,
382
+ rope = None, # rotary position embedding for x
383
+ c_rope = None, # rotary position embedding for c
384
+ ) -> torch.FloatTensor:
385
+ residual = x
386
+
387
+ batch_size = c.shape[0]
388
+
389
+ # `sample` projections.
390
+ query = attn.to_q(x)
391
+ key = attn.to_k(x)
392
+ value = attn.to_v(x)
393
+
394
+ # `context` projections.
395
+ c_query = attn.to_q_c(c)
396
+ c_key = attn.to_k_c(c)
397
+ c_value = attn.to_v_c(c)
398
+
399
+ # apply rope for context and noised input independently
400
+ if rope is not None:
401
+ freqs, xpos_scale = rope
402
+ q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if xpos_scale is not None else (1., 1.)
403
+ query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
404
+ key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
405
+ if c_rope is not None:
406
+ freqs, xpos_scale = c_rope
407
+ q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if xpos_scale is not None else (1., 1.)
408
+ c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
409
+ c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)
410
+
411
+ # attention
412
+ query = torch.cat([query, c_query], dim=1)
413
+ key = torch.cat([key, c_key], dim=1)
414
+ value = torch.cat([value, c_value], dim=1)
415
+
416
+ inner_dim = key.shape[-1]
417
+ head_dim = inner_dim // attn.heads
418
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
419
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
420
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
421
+
422
+ # mask. e.g. inference got a batch with different target durations, mask out the padding
423
+ if mask is not None:
424
+ attn_mask = F.pad(mask, (0, c.shape[1]), value = True) # no mask for c (text)
425
+ attn_mask = rearrange(attn_mask, 'b n -> b 1 1 n')
426
+ attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
427
+ else:
428
+ attn_mask = None
429
+
430
+ x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
431
+ x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
432
+ x = x.to(query.dtype)
433
+
434
+ # Split the attention outputs.
435
+ x, c = (
436
+ x[:, :residual.shape[1]],
437
+ x[:, residual.shape[1]:],
438
+ )
439
+
440
+ # linear proj
441
+ x = attn.to_out[0](x)
442
+ # dropout
443
+ x = attn.to_out[1](x)
444
+ if not attn.context_pre_only:
445
+ c = attn.to_out_c(c)
446
+
447
+ if mask is not None:
448
+ mask = rearrange(mask, 'b n -> b n 1')
449
+ x = x.masked_fill(~mask, 0.)
450
+ # c = c.masked_fill(~mask, 0.) # no mask for c (text)
451
+
452
+ return x, c
453
+
454
+
455
+ # DiT Block
456
+
457
+ class DiTBlock(nn.Module):
458
+
459
+ def __init__(self, dim, heads, dim_head, ff_mult = 4, dropout = 0.1):
460
+ super().__init__()
461
+
462
+ self.attn_norm = AdaLayerNormZero(dim)
463
+ self.attn = Attention(
464
+ processor = AttnProcessor(),
465
+ dim = dim,
466
+ heads = heads,
467
+ dim_head = dim_head,
468
+ dropout = dropout,
469
+ )
470
+
471
+ self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
472
+ self.ff = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh")
473
+
474
+ def forward(self, x, t, mask = None, rope = None): # x: noised input, t: time embedding
475
+ # pre-norm & modulation for attention input
476
+ norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
477
+
478
+ # attention
479
+ attn_output = self.attn(x=norm, mask=mask, rope=rope)
480
+
481
+ # process attention output for input x
482
+ x = x + gate_msa.unsqueeze(1) * attn_output
483
+
484
+ norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
485
+ ff_output = self.ff(norm)
486
+ x = x + gate_mlp.unsqueeze(1) * ff_output
487
+
488
+ return x
489
+
490
+
491
+ # MMDiT Block https://arxiv.org/abs/2403.03206
492
+
493
+ class MMDiTBlock(nn.Module):
494
+ r"""
495
+ modified from diffusers/src/diffusers/models/attention.py
496
+ notes.
497
+ _c: context related. text, cond, etc. (left part in sd3 fig2.b)
498
+ _x: noised input related. (right part)
499
+ context_pre_only: last layer only do prenorm + modulation cuz no more ffn
500
+ """
501
+
502
+ def __init__(self, dim, heads, dim_head, ff_mult = 4, dropout = 0.1, context_pre_only = False):
503
+ super().__init__()
504
+
505
+ self.context_pre_only = context_pre_only
506
+
507
+ self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim)
508
+ self.attn_norm_x = AdaLayerNormZero(dim)
509
+ self.attn = Attention(
510
+ processor = JointAttnProcessor(),
511
+ dim = dim,
512
+ heads = heads,
513
+ dim_head = dim_head,
514
+ dropout = dropout,
515
+ context_dim = dim,
516
+ context_pre_only = context_pre_only,
517
+ )
518
+
519
+ if not context_pre_only:
520
+ self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
521
+ self.ff_c = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh")
522
+ else:
523
+ self.ff_norm_c = None
524
+ self.ff_c = None
525
+ self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
526
+ self.ff_x = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh")
527
+
528
+ def forward(self, x, c, t, mask = None, rope = None, c_rope = None): # x: noised input, c: context, t: time embedding
529
+ # pre-norm & modulation for attention input
530
+ if self.context_pre_only:
531
+ norm_c = self.attn_norm_c(c, t)
532
+ else:
533
+ norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t)
534
+ norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t)
535
+
536
+ # attention
537
+ x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope)
538
+
539
+ # process attention output for context c
540
+ if self.context_pre_only:
541
+ c = None
542
+ else: # if not last layer
543
+ c = c + c_gate_msa.unsqueeze(1) * c_attn_output
544
+
545
+ norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
546
+ c_ff_output = self.ff_c(norm_c)
547
+ c = c + c_gate_mlp.unsqueeze(1) * c_ff_output
548
+
549
+ # process attention output for input x
550
+ x = x + x_gate_msa.unsqueeze(1) * x_attn_output
551
+
552
+ norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None]
553
+ x_ff_output = self.ff_x(norm_x)
554
+ x = x + x_gate_mlp.unsqueeze(1) * x_ff_output
555
+
556
+ return c, x
557
+
558
+
559
+ # time step conditioning embedding
560
+
561
+ class TimestepEmbedding(nn.Module):
562
+ def __init__(self, dim, freq_embed_dim=256):
563
+ super().__init__()
564
+ self.time_embed = SinusPositionEmbedding(freq_embed_dim)
565
+ self.time_mlp = nn.Sequential(
566
+ nn.Linear(freq_embed_dim, dim),
567
+ nn.SiLU(),
568
+ nn.Linear(dim, dim)
569
+ )
570
+
571
+ def forward(self, timestep: float['b']):
572
+ time_hidden = self.time_embed(timestep)
573
+ time = self.time_mlp(time_hidden) # b d
574
+ return time