Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,382 +1,182 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import soundfile as sf
|
4 |
import spaces
|
5 |
-
import
|
6 |
-
import
|
7 |
-
import librosa
|
8 |
-
import yaml
|
9 |
-
import tempfile
|
10 |
import os
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
torch.set_grad_enabled(False)
|
37 |
-
|
38 |
-
# Force CPU usage
|
39 |
-
device = torch.device("cpu")
|
40 |
-
print(f"[DEVICE] | Using device: {device}")
|
41 |
-
|
42 |
-
# ----------------------------
|
43 |
-
# Load Models and Configuration
|
44 |
-
# ----------------------------
|
45 |
-
|
46 |
-
def load_custom_model_from_hf(repo_id, model_filename="pytorch_model.bin", config_filename="config.yml"):
|
47 |
-
os.makedirs("./checkpoints", exist_ok=True)
|
48 |
-
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename, cache_dir="./checkpoints")
|
49 |
-
if config_filename is None:
|
50 |
-
return model_path
|
51 |
-
config_path = hf_hub_download(repo_id=repo_id, filename=config_filename, cache_dir="./checkpoints")
|
52 |
-
|
53 |
-
return model_path, config_path
|
54 |
-
|
55 |
-
# Load DiT model
|
56 |
-
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC", "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth", "config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
|
57 |
-
config = yaml.safe_load(open(dit_config_path, 'r'))
|
58 |
-
model_params = recursive_munch(config['model_params'])
|
59 |
-
model = build_model(model_params, stage='DiT')
|
60 |
-
|
61 |
-
# Debug: Print model keys to identify correct key
|
62 |
-
print(f"[INFO] | Model keys: {model.keys()}")
|
63 |
-
|
64 |
-
hop_length = config['preprocess_params']['spect_params']['hop_length']
|
65 |
-
sr = config['preprocess_params']['sr']
|
66 |
-
|
67 |
-
# Load DiT checkpoints
|
68 |
-
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path, load_only_params=True, ignore_modules=[], is_distributed=False)
|
69 |
-
for key in model:
|
70 |
-
model[key].eval()
|
71 |
-
model[key].to(device)
|
72 |
-
print("[INFO] | DiT model loaded and set to eval mode.")
|
73 |
-
|
74 |
-
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
75 |
-
|
76 |
-
# Ensure 'CAMPPlus' is correctly imported and defined
|
77 |
-
try:
|
78 |
-
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
|
79 |
-
print("[INFO] | CAMPPlus model instantiated.")
|
80 |
-
except NameError:
|
81 |
-
print("[ERROR] | CAMPPlus is not defined. Please check the import path and ensure CAMPPlus is correctly defined.")
|
82 |
-
raise
|
83 |
-
|
84 |
-
# Set weights_only=True for security
|
85 |
-
campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
|
86 |
-
campplus_state = torch.load(campplus_ckpt_path, map_location="cpu", weights_only=True)
|
87 |
-
campplus_model.load_state_dict(campplus_state)
|
88 |
-
campplus_model.eval()
|
89 |
-
campplus_model.to(device)
|
90 |
-
print("[INFO] | CAMPPlus model loaded, set to eval mode, and moved to CPU.")
|
91 |
-
|
92 |
-
# Load BigVGAN model
|
93 |
-
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
|
94 |
-
bigvgan_model.remove_weight_norm()
|
95 |
-
bigvgan_model = bigvgan_model.eval().to(device)
|
96 |
-
print("[INFO] | BigVGAN model loaded, weight norm removed, set to eval mode, and moved to CPU.")
|
97 |
-
|
98 |
-
# Load FAcodec model
|
99 |
-
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
|
100 |
-
codec_config = yaml.safe_load(open(config_path))
|
101 |
-
codec_model_params = recursive_munch(codec_config['model_params'])
|
102 |
-
codec_encoder = build_model(codec_model_params, stage="codec")
|
103 |
-
ckpt_params = torch.load(ckpt_path, map_location="cpu", weights_only=True)
|
104 |
-
for key in codec_encoder:
|
105 |
-
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
|
106 |
-
codec_encoder = {k: v.eval().to(device) for k, v in codec_encoder.items()}
|
107 |
-
print("[INFO] | FAcodec model loaded, set to eval mode, and moved to CPU.")
|
108 |
-
|
109 |
-
# Load Whisper model with float32 and compatible size
|
110 |
-
whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small"
|
111 |
-
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float32).to(device)
|
112 |
-
del whisper_model.decoder # Remove decoder as it's not used
|
113 |
-
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
|
114 |
-
print(f"[INFO] | Whisper model '{whisper_name}' loaded with dtype {whisper_model.dtype} and moved to CPU.")
|
115 |
-
|
116 |
-
# Generate mel spectrograms with optimized parameters
|
117 |
-
mel_fn_args = {
|
118 |
-
"n_fft": 1024,
|
119 |
-
"win_size": 1024,
|
120 |
-
"hop_size": 256,
|
121 |
-
"num_mels": 80,
|
122 |
-
"sampling_rate": sr,
|
123 |
-
"fmin": 0,
|
124 |
-
"fmax": None,
|
125 |
-
"center": False
|
126 |
-
}
|
127 |
-
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
|
128 |
-
|
129 |
-
# Load F0 conditioned model
|
130 |
-
dit_checkpoint_path_f0, dit_config_path_f0 = load_custom_model_from_hf("Plachta/Seed-VC", "DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth", "config_dit_mel_seed_uvit_whisper_base_f0_44k.yml")
|
131 |
-
config_f0 = yaml.safe_load(open(dit_config_path_f0, 'r'))
|
132 |
-
model_params_f0 = recursive_munch(config_f0['model_params'])
|
133 |
-
model_f0 = build_model(model_params_f0, stage='DiT')
|
134 |
-
|
135 |
-
hop_length_f0 = config_f0['preprocess_params']['spect_params']['hop_length']
|
136 |
-
sr_f0 = config_f0['preprocess_params']['sr']
|
137 |
-
|
138 |
-
# Load F0 model checkpoints
|
139 |
-
model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path_f0, load_only_params=True, ignore_modules=[], is_distributed=False)
|
140 |
-
for key in model_f0:
|
141 |
-
model_f0[key].eval()
|
142 |
-
model_f0[key].to(device)
|
143 |
-
print("[INFO] | F0 conditioned DiT model loaded and set to eval mode.")
|
144 |
-
|
145 |
-
model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
146 |
-
|
147 |
-
# Load F0 extractor
|
148 |
-
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
|
149 |
-
rmvpe = RMVPE(model_path, is_half=False, device=device)
|
150 |
-
print("[INFO] | RMVPE model loaded and moved to CPU.")
|
151 |
-
|
152 |
-
mel_fn_args_f0 = {
|
153 |
-
"n_fft": config_f0['preprocess_params']['spect_params']['n_fft'],
|
154 |
-
"win_size": config_f0['preprocess_params']['spect_params']['win_length'],
|
155 |
-
"hop_size": config_f0['preprocess_params']['spect_params']['hop_length'],
|
156 |
-
"num_mels": 80, # Ensure this matches the primary model
|
157 |
-
"sampling_rate": sr_f0,
|
158 |
-
"fmin": 0,
|
159 |
-
"fmax": None,
|
160 |
-
"center": False
|
161 |
-
}
|
162 |
-
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
|
163 |
-
|
164 |
-
# Load BigVGAN 44kHz model
|
165 |
-
bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
|
166 |
-
bigvgan_44k_model.remove_weight_norm()
|
167 |
-
bigvgan_44k_model = bigvgan_44k_model.eval().to(device)
|
168 |
-
print("[INFO] | BigVGAN 44kHz model loaded, weight norm removed, set to eval mode, and moved to CPU.")
|
169 |
-
|
170 |
-
# CSS Styling
|
171 |
-
css = '''
|
172 |
-
.gradio-container{max-width: 560px !important}
|
173 |
-
h1{text-align:center}
|
174 |
-
footer {
|
175 |
-
visibility: hidden
|
176 |
-
}
|
177 |
-
'''
|
178 |
-
|
179 |
-
# ----------------------------
|
180 |
-
# Functions
|
181 |
-
# ----------------------------
|
182 |
-
|
183 |
-
@torch.no_grad()
|
184 |
-
@torch.inference_mode()
|
185 |
-
def voice_conversion(input, reference, steps, guidance, pitch, speed):
|
186 |
-
print("[INFO] | Voice conversion started.")
|
187 |
-
|
188 |
-
inference_module, mel_fn, bigvgan_fn = model, to_mel, bigvgan_model
|
189 |
-
bitrate, sampling_rate, sr_current, hop_length_current = "320k", 16000, 22050, 256
|
190 |
-
max_context_window, overlap_wave_len = sr_current // hop_length_current * 30, 16 * hop_length_current
|
191 |
-
|
192 |
-
# Load audio using librosa
|
193 |
-
print("[INFO] | Loading source and reference audio.")
|
194 |
-
source_audio, _ = librosa.load(input, sr=sr_current)
|
195 |
-
ref_audio, _ = librosa.load(reference, sr=sr_current)
|
196 |
-
|
197 |
-
# Clip reference audio to 25 seconds
|
198 |
-
ref_audio = ref_audio[:sr_current * 25]
|
199 |
-
print(f"[INFO] | Source audio length: {len(source_audio)/sr_current:.2f}s, Reference audio length: {len(ref_audio)/sr_current:.2f}s")
|
200 |
-
|
201 |
-
# Convert audio to tensors
|
202 |
-
source_audio_tensor = torch.tensor(source_audio).unsqueeze(0).float().to(device)
|
203 |
-
ref_audio_tensor = torch.tensor(ref_audio).unsqueeze(0).float().to(device)
|
204 |
-
|
205 |
-
# Resample to 16kHz
|
206 |
-
ref_waves_16k = torchaudio.functional.resample(ref_audio_tensor, sr_current, sampling_rate)
|
207 |
-
converted_waves_16k = torchaudio.functional.resample(source_audio_tensor, sr_current, sampling_rate)
|
208 |
-
|
209 |
-
# Generate Whisper features
|
210 |
-
print("[INFO] | Generating Whisper features for source audio.")
|
211 |
-
if converted_waves_16k.size(-1) <= sampling_rate * 30:
|
212 |
-
alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=sampling_rate)
|
213 |
-
alt_input_features = whisper_model._mask_input_features(alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
|
214 |
-
alt_outputs = whisper_model.encoder(alt_input_features.to(torch.float32), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True)
|
215 |
-
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
|
216 |
-
S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
|
217 |
-
print(f"[INFO] | S_alt shape: {S_alt.shape}")
|
218 |
-
else:
|
219 |
-
# Process in chunks
|
220 |
-
print("[INFO] | Processing source audio in chunks.")
|
221 |
-
overlapping_time = 5 # seconds
|
222 |
-
chunk_size = sampling_rate * 30 # 30 seconds
|
223 |
-
overlap_size = sampling_rate * overlapping_time
|
224 |
-
S_alt_list = []
|
225 |
-
buffer = None
|
226 |
-
traversed_time = 0
|
227 |
-
total_length = converted_waves_16k.size(-1)
|
228 |
-
|
229 |
-
while traversed_time < total_length:
|
230 |
-
if buffer is None:
|
231 |
-
chunk = converted_waves_16k[:, traversed_time:traversed_time + chunk_size]
|
232 |
else:
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
print(f"[INFO] | Processed chunk with S_chunk shape: {S_chunk.shape}")
|
240 |
-
|
241 |
-
if traversed_time == 0:
|
242 |
-
S_alt_list.append(S_chunk)
|
243 |
else:
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
final_audio = np.concatenate(generated_wave_chunks).astype(np.float32)
|
319 |
-
|
320 |
-
# Pitch Shifting using librosa
|
321 |
-
print("[INFO] | Applying pitch shifting.")
|
322 |
-
try:
|
323 |
-
if pitch != 0:
|
324 |
-
final_audio = librosa.effects.pitch_shift(final_audio, sr=sr_current, n_steps=pitch)
|
325 |
-
print(f"[INFO] | Pitch shifted by {pitch} semitones.")
|
326 |
-
else:
|
327 |
-
print("[INFO] | No pitch shift applied.")
|
328 |
-
except Exception as e:
|
329 |
-
print(f"[ERROR] | Pitch shifting failed: {e}")
|
330 |
-
|
331 |
-
# Normalize the audio to ensure it's within [-1.0, 1.0]
|
332 |
-
max_val = np.max(np.abs(final_audio))
|
333 |
-
if max_val > 1.0:
|
334 |
-
final_audio = final_audio / max_val
|
335 |
-
print("[INFO] | Final audio normalized.")
|
336 |
-
|
337 |
-
# Save the audio to a temporary WAV file
|
338 |
-
print("[INFO] | Saving final audio to a temporary WAV file.")
|
339 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
|
340 |
-
sf.write(tmp_file.name, final_audio, sr_current, format='WAV')
|
341 |
-
temp_file_path = tmp_file.name
|
342 |
-
|
343 |
-
print(f"[INFO] | Final audio saved to {temp_file_path}")
|
344 |
-
|
345 |
-
return temp_file_path
|
346 |
-
|
347 |
-
def cloud():
|
348 |
-
print("[CLOUD] | Space maintained.")
|
349 |
-
|
350 |
-
@spaces.GPU(duration=15)
|
351 |
-
def gpu():
|
352 |
-
return
|
353 |
-
|
354 |
-
# ----------------------------
|
355 |
-
# Gradio Interface
|
356 |
-
# ----------------------------
|
357 |
-
|
358 |
-
with gr.Blocks(css=css) as main:
|
359 |
-
with gr.Column():
|
360 |
-
gr.Markdown("πͺ Add tone to audio.")
|
361 |
-
|
362 |
-
with gr.Column():
|
363 |
-
input = gr.Audio(label="Input Audio", type="filepath")
|
364 |
-
reference_input = gr.Audio(label="Reference Audio", type="filepath")
|
365 |
-
|
366 |
-
with gr.Column():
|
367 |
-
steps = gr.Slider(label="Steps", value=4, minimum=1, maximum=100, step=1)
|
368 |
-
guidance = gr.Slider(label="Guidance", value=0.7, minimum=0.0, maximum=1.0, step=0.1)
|
369 |
-
pitch = gr.Slider(label="Pitch", value=0.0, minimum=-10.0, maximum=10.0, step=0.1)
|
370 |
-
speed = gr.Slider(label="Speed", value=1.0, minimum=0.1, maximum=10.0, step=0.1)
|
371 |
|
372 |
-
|
373 |
-
|
374 |
-
maintain = gr.Button("βοΈ")
|
375 |
-
|
376 |
-
with gr.Column():
|
377 |
-
output = gr.Audio(label="Output", type="filepath")
|
378 |
|
379 |
-
|
380 |
-
|
|
|
|
|
|
|
|
|
381 |
|
382 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
+
from kokoro import KModel, KPipeline
|
3 |
+
import gradio as gr
|
|
|
|
|
|
|
4 |
import os
|
5 |
+
import random
|
6 |
+
import torch
|
7 |
|
8 |
+
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
|
9 |
+
CHAR_LIMIT = None if IS_DUPLICATE else 5000
|
10 |
+
|
11 |
+
CUDA_AVAILABLE = torch.cuda.is_available()
|
12 |
+
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
|
13 |
+
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'}
|
14 |
+
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kΛOkΙΙΉO'
|
15 |
+
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kΛQkΙΙΉQ'
|
16 |
+
|
17 |
+
@spaces.GPU(duration=10)
|
18 |
+
def forward_gpu(ps, ref_s, speed):
|
19 |
+
return models[True](ps, ref_s, speed)
|
20 |
+
|
21 |
+
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
22 |
+
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
23 |
+
pipeline = pipelines[voice[0]]
|
24 |
+
pack = pipeline.load_voice(voice)
|
25 |
+
use_gpu = use_gpu and CUDA_AVAILABLE
|
26 |
+
for _, ps, _ in pipeline(text, voice, speed):
|
27 |
+
ref_s = pack[len(ps)-1]
|
28 |
+
try:
|
29 |
+
if use_gpu:
|
30 |
+
audio = forward_gpu(ps, ref_s, speed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
else:
|
32 |
+
audio = models[False](ps, ref_s, speed)
|
33 |
+
except gr.exceptions.Error as e:
|
34 |
+
if use_gpu:
|
35 |
+
gr.Warning(str(e))
|
36 |
+
gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
|
37 |
+
audio = models[False](ps, ref_s, speed)
|
|
|
|
|
|
|
|
|
38 |
else:
|
39 |
+
raise gr.Error(e)
|
40 |
+
return (24000, audio.numpy()), ps
|
41 |
+
return None, ''
|
42 |
+
|
43 |
+
# Arena API
|
44 |
+
def predict(text, voice='af_heart', speed=1):
|
45 |
+
return generate_first(text, voice, speed, use_gpu=False)[0]
|
46 |
+
|
47 |
+
def tokenize_first(text, voice='af_heart'):
|
48 |
+
pipeline = pipelines[voice[0]]
|
49 |
+
for _, ps, _ in pipeline(text, voice):
|
50 |
+
return ps
|
51 |
+
return ''
|
52 |
+
|
53 |
+
def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
54 |
+
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
55 |
+
pipeline = pipelines[voice[0]]
|
56 |
+
pack = pipeline.load_voice(voice)
|
57 |
+
use_gpu = use_gpu and CUDA_AVAILABLE
|
58 |
+
for _, ps, _ in pipeline(text, voice, speed):
|
59 |
+
ref_s = pack[len(ps)-1]
|
60 |
+
try:
|
61 |
+
if use_gpu:
|
62 |
+
audio = forward_gpu(ps, ref_s, speed)
|
63 |
+
else:
|
64 |
+
audio = models[False](ps, ref_s, speed)
|
65 |
+
except gr.exceptions.Error as e:
|
66 |
+
if use_gpu:
|
67 |
+
gr.Warning(str(e))
|
68 |
+
gr.Info('Switching to CPU')
|
69 |
+
audio = models[False](ps, ref_s, speed)
|
70 |
+
else:
|
71 |
+
raise gr.Error(e)
|
72 |
+
yield 24000, audio.numpy()
|
73 |
+
|
74 |
+
random_texts = {}
|
75 |
+
for lang in ['en']:
|
76 |
+
with open(f'{lang}.txt', 'r') as r:
|
77 |
+
random_texts[lang] = [line.strip() for line in r]
|
78 |
+
|
79 |
+
def get_random_text(voice):
|
80 |
+
lang = dict(a='en', b='en')[voice[0]]
|
81 |
+
return random.choice(random_texts[lang])
|
82 |
+
|
83 |
+
CHOICES = {
|
84 |
+
'πΊπΈ πΊ Heart β€οΈ': 'af_heart',
|
85 |
+
'πΊπΈ πΊ Bella π₯': 'af_bella',
|
86 |
+
'πΊπΈ πΊ Nicole π§': 'af_nicole',
|
87 |
+
'πΊπΈ πΊ Aoede': 'af_aoede',
|
88 |
+
'πΊπΈ πΊ Kore': 'af_kore',
|
89 |
+
'πΊπΈ πΊ Sarah': 'af_sarah',
|
90 |
+
'πΊπΈ πΊ Nova': 'af_nova',
|
91 |
+
'πΊπΈ πΊ Sky': 'af_sky',
|
92 |
+
'πΊπΈ πΊ Alloy': 'af_alloy',
|
93 |
+
'πΊπΈ πΊ Jessica': 'af_jessica',
|
94 |
+
'πΊπΈ πΊ River': 'af_river',
|
95 |
+
'πΊπΈ πΉ Michael': 'am_michael',
|
96 |
+
'πΊπΈ πΉ Fenrir': 'am_fenrir',
|
97 |
+
'πΊπΈ πΉ Puck': 'am_puck',
|
98 |
+
'πΊπΈ πΉ Echo': 'am_echo',
|
99 |
+
'πΊπΈ πΉ Eric': 'am_eric',
|
100 |
+
'πΊπΈ πΉ Liam': 'am_liam',
|
101 |
+
'πΊπΈ πΉ Onyx': 'am_onyx',
|
102 |
+
'πΊπΈ πΉ Santa': 'am_santa',
|
103 |
+
'πΊπΈ πΉ Adam': 'am_adam',
|
104 |
+
'π¬π§ πΊ Emma': 'bf_emma',
|
105 |
+
'π¬π§ πΊ Isabella': 'bf_isabella',
|
106 |
+
'π¬π§ πΊ Alice': 'bf_alice',
|
107 |
+
'π¬π§ πΊ Lily': 'bf_lily',
|
108 |
+
'π¬π§ πΉ George': 'bm_george',
|
109 |
+
'π¬π§ πΉ Fable': 'bm_fable',
|
110 |
+
'π¬π§ πΉ Lewis': 'bm_lewis',
|
111 |
+
'π¬π§ πΉ Daniel': 'bm_daniel',
|
112 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
+
for v in CHOICES.values():
|
115 |
+
pipelines[v[0]].load_voice(v)
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
TOKEN_NOTE = '''
|
118 |
+
π‘ Customize pronunciation with Markdown link syntax and /slashes/ like `[Kokoro](/kΛOkΙΙΉO/)`
|
119 |
+
π¬ To adjust intonation, try punctuation `;:,.!?ββ¦"()ββ` or stress `Λ` and `Λ`
|
120 |
+
β¬οΈ Lower stress `[1 level](-1)` or `[2 levels](-2)`
|
121 |
+
β¬οΈ Raise stress 1 level `[or](+2)` 2 levels (only works on less stressed, usually short words)
|
122 |
+
'''
|
123 |
|
124 |
+
with gr.Blocks() as generate_tab:
|
125 |
+
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
|
126 |
+
generate_btn = gr.Button('Generate', variant='primary')
|
127 |
+
with gr.Accordion('Output Tokens', open=True):
|
128 |
+
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
|
129 |
+
tokenize_btn = gr.Button('Tokenize', variant='secondary')
|
130 |
+
gr.Markdown(TOKEN_NOTE)
|
131 |
+
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
|
132 |
+
|
133 |
+
STREAM_NOTE = ['β οΈ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.']
|
134 |
+
if CHAR_LIMIT is not None:
|
135 |
+
STREAM_NOTE.append(f'βοΈ Each stream is capped at {CHAR_LIMIT} characters.')
|
136 |
+
STREAM_NOTE.append('π Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:')
|
137 |
+
STREAM_NOTE = '\n\n'.join(STREAM_NOTE)
|
138 |
+
|
139 |
+
with gr.Blocks() as stream_tab:
|
140 |
+
out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
|
141 |
+
with gr.Row():
|
142 |
+
stream_btn = gr.Button('Stream', variant='primary')
|
143 |
+
stop_btn = gr.Button('Stop', variant='stop')
|
144 |
+
with gr.Accordion('Note', open=True):
|
145 |
+
gr.Markdown(STREAM_NOTE)
|
146 |
+
gr.DuplicateButton()
|
147 |
+
|
148 |
+
BANNER_TEXT = '''
|
149 |
+
[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
|
150 |
+
As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
|
151 |
+
This demo only showcases English, but you can directly use the model to access other languages.
|
152 |
+
'''
|
153 |
+
API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
|
154 |
+
API_NAME = None if API_OPEN else False
|
155 |
+
with gr.Blocks() as app:
|
156 |
+
with gr.Row():
|
157 |
+
gr.Markdown(BANNER_TEXT, container=True)
|
158 |
+
with gr.Row():
|
159 |
+
with gr.Column():
|
160 |
+
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'β' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
|
161 |
+
with gr.Row():
|
162 |
+
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
|
163 |
+
use_gpu = gr.Dropdown(
|
164 |
+
[('ZeroGPU π', True), ('CPU π', False)],
|
165 |
+
value=CUDA_AVAILABLE,
|
166 |
+
label='Hardware',
|
167 |
+
info='GPU is usually faster, but has a usage quota',
|
168 |
+
interactive=CUDA_AVAILABLE
|
169 |
+
)
|
170 |
+
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
|
171 |
+
random_btn = gr.Button('Random Text', variant='secondary')
|
172 |
+
with gr.Column():
|
173 |
+
gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream'])
|
174 |
+
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME)
|
175 |
+
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
|
176 |
+
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
|
177 |
+
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream], api_name=API_NAME)
|
178 |
+
stop_btn.click(fn=None, cancels=stream_event)
|
179 |
+
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
|
180 |
+
|
181 |
+
if __name__ == '__main__':
|
182 |
+
app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)
|