Spaces:
Running
Running
Staticaliza
commited on
Commit
•
c38f823
1
Parent(s):
76f383f
Upload 3 files
Browse files
model/backbones/model_backbones_dit.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ein notation:
|
3 |
+
b - batch
|
4 |
+
n - sequence
|
5 |
+
nt - text sequence
|
6 |
+
nw - raw wave length
|
7 |
+
d - dimension
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch import nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
|
16 |
+
from einops import repeat
|
17 |
+
|
18 |
+
from x_transformers.x_transformers import RotaryEmbedding
|
19 |
+
|
20 |
+
from model.modules import (
|
21 |
+
TimestepEmbedding,
|
22 |
+
ConvNeXtV2Block,
|
23 |
+
ConvPositionEmbedding,
|
24 |
+
DiTBlock,
|
25 |
+
AdaLayerNormZero_Final,
|
26 |
+
precompute_freqs_cis, get_pos_embed_indices,
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
# Text embedding
|
31 |
+
|
32 |
+
class TextEmbedding(nn.Module):
|
33 |
+
def __init__(self, text_num_embeds, text_dim, conv_layers = 0, conv_mult = 2):
|
34 |
+
super().__init__()
|
35 |
+
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
36 |
+
|
37 |
+
if conv_layers > 0:
|
38 |
+
self.extra_modeling = True
|
39 |
+
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
40 |
+
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
|
41 |
+
self.text_blocks = nn.Sequential(*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)])
|
42 |
+
else:
|
43 |
+
self.extra_modeling = False
|
44 |
+
|
45 |
+
def forward(self, text: int['b nt'], seq_len, drop_text = False):
|
46 |
+
batch, text_len = text.shape[0], text.shape[1]
|
47 |
+
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
|
48 |
+
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
49 |
+
text = F.pad(text, (0, seq_len - text_len), value = 0)
|
50 |
+
|
51 |
+
if drop_text: # cfg for text
|
52 |
+
text = torch.zeros_like(text)
|
53 |
+
|
54 |
+
text = self.text_embed(text) # b n -> b n d
|
55 |
+
|
56 |
+
# possible extra modeling
|
57 |
+
if self.extra_modeling:
|
58 |
+
# sinus pos emb
|
59 |
+
batch_start = torch.zeros((batch,), dtype=torch.long)
|
60 |
+
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
|
61 |
+
text_pos_embed = self.freqs_cis[pos_idx]
|
62 |
+
text = text + text_pos_embed
|
63 |
+
|
64 |
+
# convnextv2 blocks
|
65 |
+
text = self.text_blocks(text)
|
66 |
+
|
67 |
+
return text
|
68 |
+
|
69 |
+
|
70 |
+
# noised input audio and context mixing embedding
|
71 |
+
|
72 |
+
class InputEmbedding(nn.Module):
|
73 |
+
def __init__(self, mel_dim, text_dim, out_dim):
|
74 |
+
super().__init__()
|
75 |
+
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
|
76 |
+
self.conv_pos_embed = ConvPositionEmbedding(dim = out_dim)
|
77 |
+
|
78 |
+
def forward(self, x: float['b n d'], cond: float['b n d'], text_embed: float['b n d'], drop_audio_cond = False):
|
79 |
+
if drop_audio_cond: # cfg for cond audio
|
80 |
+
cond = torch.zeros_like(cond)
|
81 |
+
|
82 |
+
x = self.proj(torch.cat((x, cond, text_embed), dim = -1))
|
83 |
+
x = self.conv_pos_embed(x) + x
|
84 |
+
return x
|
85 |
+
|
86 |
+
|
87 |
+
# Transformer backbone using DiT blocks
|
88 |
+
|
89 |
+
class DiT(nn.Module):
|
90 |
+
def __init__(self, *,
|
91 |
+
dim, depth = 8, heads = 8, dim_head = 64, dropout = 0.1, ff_mult = 4,
|
92 |
+
mel_dim = 100, text_num_embeds = 256, text_dim = None, conv_layers = 0,
|
93 |
+
long_skip_connection = False,
|
94 |
+
):
|
95 |
+
super().__init__()
|
96 |
+
|
97 |
+
self.time_embed = TimestepEmbedding(dim)
|
98 |
+
if text_dim is None:
|
99 |
+
text_dim = mel_dim
|
100 |
+
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers = conv_layers)
|
101 |
+
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
|
102 |
+
|
103 |
+
self.rotary_embed = RotaryEmbedding(dim_head)
|
104 |
+
|
105 |
+
self.dim = dim
|
106 |
+
self.depth = depth
|
107 |
+
|
108 |
+
self.transformer_blocks = nn.ModuleList(
|
109 |
+
[
|
110 |
+
DiTBlock(
|
111 |
+
dim = dim,
|
112 |
+
heads = heads,
|
113 |
+
dim_head = dim_head,
|
114 |
+
ff_mult = ff_mult,
|
115 |
+
dropout = dropout
|
116 |
+
)
|
117 |
+
for _ in range(depth)
|
118 |
+
]
|
119 |
+
)
|
120 |
+
self.long_skip_connection = nn.Linear(dim * 2, dim, bias = False) if long_skip_connection else None
|
121 |
+
|
122 |
+
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
|
123 |
+
self.proj_out = nn.Linear(dim, mel_dim)
|
124 |
+
|
125 |
+
def forward(
|
126 |
+
self,
|
127 |
+
x: float['b n d'], # nosied input audio
|
128 |
+
cond: float['b n d'], # masked cond audio
|
129 |
+
text: int['b nt'], # text
|
130 |
+
time: float['b'] | float[''], # time step
|
131 |
+
drop_audio_cond, # cfg for cond audio
|
132 |
+
drop_text, # cfg for text
|
133 |
+
mask: bool['b n'] | None = None,
|
134 |
+
):
|
135 |
+
batch, seq_len = x.shape[0], x.shape[1]
|
136 |
+
if time.ndim == 0:
|
137 |
+
time = repeat(time, ' -> b', b = batch)
|
138 |
+
|
139 |
+
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
140 |
+
t = self.time_embed(time)
|
141 |
+
text_embed = self.text_embed(text, seq_len, drop_text = drop_text)
|
142 |
+
x = self.input_embed(x, cond, text_embed, drop_audio_cond = drop_audio_cond)
|
143 |
+
|
144 |
+
rope = self.rotary_embed.forward_from_seq_len(seq_len)
|
145 |
+
|
146 |
+
if self.long_skip_connection is not None:
|
147 |
+
residual = x
|
148 |
+
|
149 |
+
for block in self.transformer_blocks:
|
150 |
+
x = block(x, t, mask = mask, rope = rope)
|
151 |
+
|
152 |
+
if self.long_skip_connection is not None:
|
153 |
+
x = self.long_skip_connection(torch.cat((x, residual), dim = -1))
|
154 |
+
|
155 |
+
x = self.norm_out(x, t)
|
156 |
+
output = self.proj_out(x)
|
157 |
+
|
158 |
+
return output
|
model/backbones/model_backbones_mmdit.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ein notation:
|
3 |
+
b - batch
|
4 |
+
n - sequence
|
5 |
+
nt - text sequence
|
6 |
+
nw - raw wave length
|
7 |
+
d - dimension
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch import nn
|
14 |
+
|
15 |
+
from einops import repeat
|
16 |
+
|
17 |
+
from x_transformers.x_transformers import RotaryEmbedding
|
18 |
+
|
19 |
+
from model.modules import (
|
20 |
+
TimestepEmbedding,
|
21 |
+
ConvPositionEmbedding,
|
22 |
+
MMDiTBlock,
|
23 |
+
AdaLayerNormZero_Final,
|
24 |
+
precompute_freqs_cis, get_pos_embed_indices,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
# text embedding
|
29 |
+
|
30 |
+
class TextEmbedding(nn.Module):
|
31 |
+
def __init__(self, out_dim, text_num_embeds):
|
32 |
+
super().__init__()
|
33 |
+
self.text_embed = nn.Embedding(text_num_embeds + 1, out_dim) # will use 0 as filler token
|
34 |
+
|
35 |
+
self.precompute_max_pos = 1024
|
36 |
+
self.register_buffer("freqs_cis", precompute_freqs_cis(out_dim, self.precompute_max_pos), persistent=False)
|
37 |
+
|
38 |
+
def forward(self, text: int['b nt'], drop_text = False) -> int['b nt d']:
|
39 |
+
text = text + 1
|
40 |
+
if drop_text:
|
41 |
+
text = torch.zeros_like(text)
|
42 |
+
text = self.text_embed(text)
|
43 |
+
|
44 |
+
# sinus pos emb
|
45 |
+
batch_start = torch.zeros((text.shape[0],), dtype=torch.long)
|
46 |
+
batch_text_len = text.shape[1]
|
47 |
+
pos_idx = get_pos_embed_indices(batch_start, batch_text_len, max_pos=self.precompute_max_pos)
|
48 |
+
text_pos_embed = self.freqs_cis[pos_idx]
|
49 |
+
|
50 |
+
text = text + text_pos_embed
|
51 |
+
|
52 |
+
return text
|
53 |
+
|
54 |
+
|
55 |
+
# noised input & masked cond audio embedding
|
56 |
+
|
57 |
+
class AudioEmbedding(nn.Module):
|
58 |
+
def __init__(self, in_dim, out_dim):
|
59 |
+
super().__init__()
|
60 |
+
self.linear = nn.Linear(2 * in_dim, out_dim)
|
61 |
+
self.conv_pos_embed = ConvPositionEmbedding(out_dim)
|
62 |
+
|
63 |
+
def forward(self, x: float['b n d'], cond: float['b n d'], drop_audio_cond = False):
|
64 |
+
if drop_audio_cond:
|
65 |
+
cond = torch.zeros_like(cond)
|
66 |
+
x = torch.cat((x, cond), dim = -1)
|
67 |
+
x = self.linear(x)
|
68 |
+
x = self.conv_pos_embed(x) + x
|
69 |
+
return x
|
70 |
+
|
71 |
+
|
72 |
+
# Transformer backbone using MM-DiT blocks
|
73 |
+
|
74 |
+
class MMDiT(nn.Module):
|
75 |
+
def __init__(self, *,
|
76 |
+
dim, depth = 8, heads = 8, dim_head = 64, dropout = 0.1, ff_mult = 4,
|
77 |
+
text_num_embeds = 256, mel_dim = 100,
|
78 |
+
):
|
79 |
+
super().__init__()
|
80 |
+
|
81 |
+
self.time_embed = TimestepEmbedding(dim)
|
82 |
+
self.text_embed = TextEmbedding(dim, text_num_embeds)
|
83 |
+
self.audio_embed = AudioEmbedding(mel_dim, dim)
|
84 |
+
|
85 |
+
self.rotary_embed = RotaryEmbedding(dim_head)
|
86 |
+
|
87 |
+
self.dim = dim
|
88 |
+
self.depth = depth
|
89 |
+
|
90 |
+
self.transformer_blocks = nn.ModuleList(
|
91 |
+
[
|
92 |
+
MMDiTBlock(
|
93 |
+
dim = dim,
|
94 |
+
heads = heads,
|
95 |
+
dim_head = dim_head,
|
96 |
+
dropout = dropout,
|
97 |
+
ff_mult = ff_mult,
|
98 |
+
context_pre_only = i == depth - 1,
|
99 |
+
)
|
100 |
+
for i in range(depth)
|
101 |
+
]
|
102 |
+
)
|
103 |
+
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
|
104 |
+
self.proj_out = nn.Linear(dim, mel_dim)
|
105 |
+
|
106 |
+
def forward(
|
107 |
+
self,
|
108 |
+
x: float['b n d'], # nosied input audio
|
109 |
+
cond: float['b n d'], # masked cond audio
|
110 |
+
text: int['b nt'], # text
|
111 |
+
time: float['b'] | float[''], # time step
|
112 |
+
drop_audio_cond, # cfg for cond audio
|
113 |
+
drop_text, # cfg for text
|
114 |
+
mask: bool['b n'] | None = None,
|
115 |
+
):
|
116 |
+
batch = x.shape[0]
|
117 |
+
if time.ndim == 0:
|
118 |
+
time = repeat(time, ' -> b', b = batch)
|
119 |
+
|
120 |
+
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
|
121 |
+
t = self.time_embed(time)
|
122 |
+
c = self.text_embed(text, drop_text = drop_text)
|
123 |
+
x = self.audio_embed(x, cond, drop_audio_cond = drop_audio_cond)
|
124 |
+
|
125 |
+
seq_len = x.shape[1]
|
126 |
+
text_len = text.shape[1]
|
127 |
+
rope_audio = self.rotary_embed.forward_from_seq_len(seq_len)
|
128 |
+
rope_text = self.rotary_embed.forward_from_seq_len(text_len)
|
129 |
+
|
130 |
+
for block in self.transformer_blocks:
|
131 |
+
c, x = block(x, c, t, mask = mask, rope = rope_audio, c_rope = rope_text)
|
132 |
+
|
133 |
+
x = self.norm_out(x, t)
|
134 |
+
output = self.proj_out(x)
|
135 |
+
|
136 |
+
return output
|
model/backbones/model_backbones_unett.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ein notation:
|
3 |
+
b - batch
|
4 |
+
n - sequence
|
5 |
+
nt - text sequence
|
6 |
+
nw - raw wave length
|
7 |
+
d - dimension
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
from typing import Literal
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
|
17 |
+
from einops import repeat, pack, unpack
|
18 |
+
|
19 |
+
from x_transformers import RMSNorm
|
20 |
+
from x_transformers.x_transformers import RotaryEmbedding
|
21 |
+
|
22 |
+
from model.modules import (
|
23 |
+
TimestepEmbedding,
|
24 |
+
ConvNeXtV2Block,
|
25 |
+
ConvPositionEmbedding,
|
26 |
+
Attention,
|
27 |
+
AttnProcessor,
|
28 |
+
FeedForward,
|
29 |
+
precompute_freqs_cis, get_pos_embed_indices,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
# Text embedding
|
34 |
+
|
35 |
+
class TextEmbedding(nn.Module):
|
36 |
+
def __init__(self, text_num_embeds, text_dim, conv_layers = 0, conv_mult = 2):
|
37 |
+
super().__init__()
|
38 |
+
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
39 |
+
|
40 |
+
if conv_layers > 0:
|
41 |
+
self.extra_modeling = True
|
42 |
+
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
43 |
+
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
|
44 |
+
self.text_blocks = nn.Sequential(*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)])
|
45 |
+
else:
|
46 |
+
self.extra_modeling = False
|
47 |
+
|
48 |
+
def forward(self, text: int['b nt'], seq_len, drop_text = False):
|
49 |
+
batch, text_len = text.shape[0], text.shape[1]
|
50 |
+
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
|
51 |
+
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
52 |
+
text = F.pad(text, (0, seq_len - text_len), value = 0)
|
53 |
+
|
54 |
+
if drop_text: # cfg for text
|
55 |
+
text = torch.zeros_like(text)
|
56 |
+
|
57 |
+
text = self.text_embed(text) # b n -> b n d
|
58 |
+
|
59 |
+
# possible extra modeling
|
60 |
+
if self.extra_modeling:
|
61 |
+
# sinus pos emb
|
62 |
+
batch_start = torch.zeros((batch,), dtype=torch.long)
|
63 |
+
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
|
64 |
+
text_pos_embed = self.freqs_cis[pos_idx]
|
65 |
+
text = text + text_pos_embed
|
66 |
+
|
67 |
+
# convnextv2 blocks
|
68 |
+
text = self.text_blocks(text)
|
69 |
+
|
70 |
+
return text
|
71 |
+
|
72 |
+
|
73 |
+
# noised input audio and context mixing embedding
|
74 |
+
|
75 |
+
class InputEmbedding(nn.Module):
|
76 |
+
def __init__(self, mel_dim, text_dim, out_dim):
|
77 |
+
super().__init__()
|
78 |
+
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
|
79 |
+
self.conv_pos_embed = ConvPositionEmbedding(dim = out_dim)
|
80 |
+
|
81 |
+
def forward(self, x: float['b n d'], cond: float['b n d'], text_embed: float['b n d'], drop_audio_cond = False):
|
82 |
+
if drop_audio_cond: # cfg for cond audio
|
83 |
+
cond = torch.zeros_like(cond)
|
84 |
+
|
85 |
+
x = self.proj(torch.cat((x, cond, text_embed), dim = -1))
|
86 |
+
x = self.conv_pos_embed(x) + x
|
87 |
+
return x
|
88 |
+
|
89 |
+
|
90 |
+
# Flat UNet Transformer backbone
|
91 |
+
|
92 |
+
class UNetT(nn.Module):
|
93 |
+
def __init__(self, *,
|
94 |
+
dim, depth = 8, heads = 8, dim_head = 64, dropout = 0.1, ff_mult = 4,
|
95 |
+
mel_dim = 100, text_num_embeds = 256, text_dim = None, conv_layers = 0,
|
96 |
+
skip_connect_type: Literal['add', 'concat', 'none'] = 'concat',
|
97 |
+
):
|
98 |
+
super().__init__()
|
99 |
+
assert depth % 2 == 0, "UNet-Transformer's depth should be even."
|
100 |
+
|
101 |
+
self.time_embed = TimestepEmbedding(dim)
|
102 |
+
if text_dim is None:
|
103 |
+
text_dim = mel_dim
|
104 |
+
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers = conv_layers)
|
105 |
+
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
|
106 |
+
|
107 |
+
self.rotary_embed = RotaryEmbedding(dim_head)
|
108 |
+
|
109 |
+
# transformer layers & skip connections
|
110 |
+
|
111 |
+
self.dim = dim
|
112 |
+
self.skip_connect_type = skip_connect_type
|
113 |
+
needs_skip_proj = skip_connect_type == 'concat'
|
114 |
+
|
115 |
+
self.depth = depth
|
116 |
+
self.layers = nn.ModuleList([])
|
117 |
+
|
118 |
+
for idx in range(depth):
|
119 |
+
is_later_half = idx >= (depth // 2)
|
120 |
+
|
121 |
+
attn_norm = RMSNorm(dim)
|
122 |
+
attn = Attention(
|
123 |
+
processor = AttnProcessor(),
|
124 |
+
dim = dim,
|
125 |
+
heads = heads,
|
126 |
+
dim_head = dim_head,
|
127 |
+
dropout = dropout,
|
128 |
+
)
|
129 |
+
|
130 |
+
ff_norm = RMSNorm(dim)
|
131 |
+
ff = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh")
|
132 |
+
|
133 |
+
skip_proj = nn.Linear(dim * 2, dim, bias = False) if needs_skip_proj and is_later_half else None
|
134 |
+
|
135 |
+
self.layers.append(nn.ModuleList([
|
136 |
+
skip_proj,
|
137 |
+
attn_norm,
|
138 |
+
attn,
|
139 |
+
ff_norm,
|
140 |
+
ff,
|
141 |
+
]))
|
142 |
+
|
143 |
+
self.norm_out = RMSNorm(dim)
|
144 |
+
self.proj_out = nn.Linear(dim, mel_dim)
|
145 |
+
|
146 |
+
def forward(
|
147 |
+
self,
|
148 |
+
x: float['b n d'], # nosied input audio
|
149 |
+
cond: float['b n d'], # masked cond audio
|
150 |
+
text: int['b nt'], # text
|
151 |
+
time: float['b'] | float[''], # time step
|
152 |
+
drop_audio_cond, # cfg for cond audio
|
153 |
+
drop_text, # cfg for text
|
154 |
+
mask: bool['b n'] | None = None,
|
155 |
+
):
|
156 |
+
batch, seq_len = x.shape[0], x.shape[1]
|
157 |
+
if time.ndim == 0:
|
158 |
+
time = repeat(time, ' -> b', b = batch)
|
159 |
+
|
160 |
+
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
161 |
+
t = self.time_embed(time)
|
162 |
+
text_embed = self.text_embed(text, seq_len, drop_text = drop_text)
|
163 |
+
x = self.input_embed(x, cond, text_embed, drop_audio_cond = drop_audio_cond)
|
164 |
+
|
165 |
+
# postfix time t to input x, [b n d] -> [b n+1 d]
|
166 |
+
x, ps = pack((t, x), 'b * d')
|
167 |
+
if mask is not None:
|
168 |
+
mask = F.pad(mask, (1, 0), value=1)
|
169 |
+
|
170 |
+
rope = self.rotary_embed.forward_from_seq_len(seq_len + 1)
|
171 |
+
|
172 |
+
# flat unet transformer
|
173 |
+
skip_connect_type = self.skip_connect_type
|
174 |
+
skips = []
|
175 |
+
for idx, (maybe_skip_proj, attn_norm, attn, ff_norm, ff) in enumerate(self.layers):
|
176 |
+
layer = idx + 1
|
177 |
+
|
178 |
+
# skip connection logic
|
179 |
+
is_first_half = layer <= (self.depth // 2)
|
180 |
+
is_later_half = not is_first_half
|
181 |
+
|
182 |
+
if is_first_half:
|
183 |
+
skips.append(x)
|
184 |
+
|
185 |
+
if is_later_half:
|
186 |
+
skip = skips.pop()
|
187 |
+
if skip_connect_type == 'concat':
|
188 |
+
x = torch.cat((x, skip), dim = -1)
|
189 |
+
x = maybe_skip_proj(x)
|
190 |
+
elif skip_connect_type == 'add':
|
191 |
+
x = x + skip
|
192 |
+
|
193 |
+
# attention and feedforward blocks
|
194 |
+
x = attn(attn_norm(x), rope = rope, mask = mask) + x
|
195 |
+
x = ff(ff_norm(x)) + x
|
196 |
+
|
197 |
+
assert len(skips) == 0
|
198 |
+
|
199 |
+
_, x = unpack(self.norm_out(x), ps, 'b * d')
|
200 |
+
|
201 |
+
return self.proj_out(x)
|