Staticaliza commited on
Commit
fcf7ece
1 Parent(s): db0ac26

Upload 12 files

Browse files
Files changed (12) hide show
  1. DS_Store +0 -0
  2. Dockerfile +25 -0
  3. app.py +794 -0
  4. finetune-cli.py +108 -0
  5. finetune_gradio.py +734 -0
  6. gradio_app.py +824 -0
  7. inference-cli.py +428 -0
  8. inference-cli.toml +10 -0
  9. requirements.txt +23 -0
  10. requirements_eval.txt +5 -0
  11. speech_edit.py +183 -0
  12. train.py +94 -0
DS_Store ADDED
Binary file (6.15 kB). View file
 
Dockerfile ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM pytorch/pytorch:2.4.0-cuda12.4-cudnn9-devel
2
+
3
+ USER root
4
+
5
+ ARG DEBIAN_FRONTEND=noninteractive
6
+
7
+ LABEL github_repo="https://github.com/SWivid/F5-TTS"
8
+
9
+ RUN set -x \
10
+ && apt-get update \
11
+ && apt-get -y install wget curl man git less openssl libssl-dev unzip unar build-essential aria2 tmux vim \
12
+ && apt-get install -y openssh-server sox libsox-fmt-all libsox-fmt-mp3 libsndfile1-dev ffmpeg \
13
+ && rm -rf /var/lib/apt/lists/* \
14
+ && apt-get clean
15
+
16
+ WORKDIR /workspace
17
+
18
+ RUN git clone https://github.com/SWivid/F5-TTS.git \
19
+ && cd F5-TTS \
20
+ && pip install --no-cache-dir -r requirements.txt \
21
+ && pip install --no-cache-dir -r requirements_eval.txt
22
+
23
+ ENV SHELL=/bin/bash
24
+
25
+ WORKDIR /workspace/F5-TTS
app.py ADDED
@@ -0,0 +1,794 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import torch
3
+ import torchaudio
4
+ import gradio as gr
5
+ import numpy as np
6
+ import tempfile
7
+ from einops import rearrange
8
+ from vocos import Vocos
9
+ from pydub import AudioSegment, silence
10
+ from model import CFM, UNetT, DiT, MMDiT
11
+ from cached_path import cached_path
12
+ from model.utils import (
13
+ load_checkpoint,
14
+ get_tokenizer,
15
+ convert_char_to_pinyin,
16
+ save_spectrogram,
17
+ )
18
+ from transformers import pipeline
19
+ import click
20
+ import soundfile as sf
21
+
22
+ try:
23
+ import spaces
24
+ USING_SPACES = True
25
+ except ImportError:
26
+ USING_SPACES = False
27
+
28
+ def gpu_decorator(func):
29
+ if USING_SPACES:
30
+ return spaces.GPU(func)
31
+ else:
32
+ return func
33
+
34
+ device = (
35
+ "cuda"
36
+ if torch.cuda.is_available()
37
+ else "mps" if torch.backends.mps.is_available() else "cpu"
38
+ )
39
+
40
+ print(f"Using {device} device")
41
+
42
+ pipe = pipeline(
43
+ "automatic-speech-recognition",
44
+ model="openai/whisper-large-v3-turbo",
45
+ torch_dtype=torch.float16,
46
+ device=device,
47
+ )
48
+ vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
49
+
50
+ # --------------------- Settings -------------------- #
51
+
52
+ target_sample_rate = 24000
53
+ n_mel_channels = 100
54
+ hop_length = 256
55
+ target_rms = 0.1
56
+ nfe_step = 32 # 16, 32
57
+ cfg_strength = 2.0
58
+ ode_method = "euler"
59
+ sway_sampling_coef = -1.0
60
+ speed = 1.0
61
+ fix_duration = None
62
+
63
+
64
+ def load_model(repo_name, exp_name, model_cls, model_cfg, ckpt_step):
65
+ ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
66
+ # ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors
67
+ vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
68
+ model = CFM(
69
+ transformer=model_cls(
70
+ **model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
71
+ ),
72
+ mel_spec_kwargs=dict(
73
+ target_sample_rate=target_sample_rate,
74
+ n_mel_channels=n_mel_channels,
75
+ hop_length=hop_length,
76
+ ),
77
+ odeint_kwargs=dict(
78
+ method=ode_method,
79
+ ),
80
+ vocab_char_map=vocab_char_map,
81
+ ).to(device)
82
+
83
+ model = load_checkpoint(model, ckpt_path, device, use_ema = True)
84
+
85
+ return model
86
+
87
+
88
+ # load models
89
+ F5TTS_model_cfg = dict(
90
+ dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
91
+ )
92
+ E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
93
+
94
+ F5TTS_ema_model = load_model(
95
+ "F5-TTS", "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000
96
+ )
97
+ E2TTS_ema_model = load_model(
98
+ "E2-TTS", "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000
99
+ )
100
+
101
+ def chunk_text(text, max_chars=135):
102
+ """
103
+ Splits the input text into chunks, each with a maximum number of characters.
104
+
105
+ Args:
106
+ text (str): The text to be split.
107
+ max_chars (int): The maximum number of characters per chunk.
108
+
109
+ Returns:
110
+ List[str]: A list of text chunks.
111
+ """
112
+ chunks = []
113
+ current_chunk = ""
114
+ # Split the text into sentences based on punctuation followed by whitespace
115
+ sentences = re.split(r'(?<=[;:,.!?])\s+|(?<=[;:,。!?])', text)
116
+
117
+ for sentence in sentences:
118
+ if len(current_chunk.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
119
+ current_chunk += sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
120
+ else:
121
+ if current_chunk:
122
+ chunks.append(current_chunk.strip())
123
+ current_chunk = sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
124
+
125
+ if current_chunk:
126
+ chunks.append(current_chunk.strip())
127
+
128
+ return chunks
129
+
130
+ @gpu_decorator
131
+ def infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence, cross_fade_duration=0.15, progress=gr.Progress()):
132
+ if exp_name == "F5-TTS":
133
+ ema_model = F5TTS_ema_model
134
+ elif exp_name == "E2-TTS":
135
+ ema_model = E2TTS_ema_model
136
+
137
+ audio, sr = ref_audio
138
+ if audio.shape[0] > 1:
139
+ audio = torch.mean(audio, dim=0, keepdim=True)
140
+
141
+ rms = torch.sqrt(torch.mean(torch.square(audio)))
142
+ if rms < target_rms:
143
+ audio = audio * target_rms / rms
144
+ if sr != target_sample_rate:
145
+ resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
146
+ audio = resampler(audio)
147
+ audio = audio.to(device)
148
+
149
+ generated_waves = []
150
+ spectrograms = []
151
+
152
+ if len(ref_text[-1].encode('utf-8')) == 1:
153
+ ref_text = ref_text + " "
154
+ for i, gen_text in enumerate(progress.tqdm(gen_text_batches)):
155
+ # Prepare the text
156
+ text_list = [ref_text + gen_text]
157
+ final_text_list = convert_char_to_pinyin(text_list)
158
+
159
+ # Calculate duration
160
+ ref_audio_len = audio.shape[-1] // hop_length
161
+ zh_pause_punc = r"。,、;:?!"
162
+ ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text))
163
+ gen_text_len = len(gen_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
164
+ duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
165
+
166
+ # inference
167
+ with torch.inference_mode():
168
+ generated, _ = ema_model.sample(
169
+ cond=audio,
170
+ text=final_text_list,
171
+ duration=duration,
172
+ steps=nfe_step,
173
+ cfg_strength=cfg_strength,
174
+ sway_sampling_coef=sway_sampling_coef,
175
+ )
176
+
177
+ generated = generated[:, ref_audio_len:, :]
178
+ generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
179
+ generated_wave = vocos.decode(generated_mel_spec.cpu())
180
+ if rms < target_rms:
181
+ generated_wave = generated_wave * rms / target_rms
182
+
183
+ # wav -> numpy
184
+ generated_wave = generated_wave.squeeze().cpu().numpy()
185
+
186
+ generated_waves.append(generated_wave)
187
+ spectrograms.append(generated_mel_spec[0].cpu().numpy())
188
+
189
+ # Combine all generated waves with cross-fading
190
+ if cross_fade_duration <= 0:
191
+ # Simply concatenate
192
+ final_wave = np.concatenate(generated_waves)
193
+ else:
194
+ final_wave = generated_waves[0]
195
+ for i in range(1, len(generated_waves)):
196
+ prev_wave = final_wave
197
+ next_wave = generated_waves[i]
198
+
199
+ # Calculate cross-fade samples, ensuring it does not exceed wave lengths
200
+ cross_fade_samples = int(cross_fade_duration * target_sample_rate)
201
+ cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
202
+
203
+ if cross_fade_samples <= 0:
204
+ # No overlap possible, concatenate
205
+ final_wave = np.concatenate([prev_wave, next_wave])
206
+ continue
207
+
208
+ # Overlapping parts
209
+ prev_overlap = prev_wave[-cross_fade_samples:]
210
+ next_overlap = next_wave[:cross_fade_samples]
211
+
212
+ # Fade out and fade in
213
+ fade_out = np.linspace(1, 0, cross_fade_samples)
214
+ fade_in = np.linspace(0, 1, cross_fade_samples)
215
+
216
+ # Cross-faded overlap
217
+ cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
218
+
219
+ # Combine
220
+ new_wave = np.concatenate([
221
+ prev_wave[:-cross_fade_samples],
222
+ cross_faded_overlap,
223
+ next_wave[cross_fade_samples:]
224
+ ])
225
+
226
+ final_wave = new_wave
227
+
228
+ # Remove silence
229
+ if remove_silence:
230
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
231
+ sf.write(f.name, final_wave, target_sample_rate)
232
+ aseg = AudioSegment.from_file(f.name)
233
+ non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
234
+ non_silent_wave = AudioSegment.silent(duration=0)
235
+ for non_silent_seg in non_silent_segs:
236
+ non_silent_wave += non_silent_seg
237
+ aseg = non_silent_wave
238
+ aseg.export(f.name, format="wav")
239
+ final_wave, _ = torchaudio.load(f.name)
240
+ final_wave = final_wave.squeeze().cpu().numpy()
241
+
242
+ # Create a combined spectrogram
243
+ combined_spectrogram = np.concatenate(spectrograms, axis=1)
244
+
245
+ with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
246
+ spectrogram_path = tmp_spectrogram.name
247
+ save_spectrogram(combined_spectrogram, spectrogram_path)
248
+
249
+ return (target_sample_rate, final_wave), spectrogram_path
250
+
251
+ @gpu_decorator
252
+ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, cross_fade_duration=0.15):
253
+
254
+ print(gen_text)
255
+
256
+ gr.Info("Converting audio...")
257
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
258
+ aseg = AudioSegment.from_file(ref_audio_orig)
259
+
260
+ non_silent_segs = silence.split_on_silence(
261
+ aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000
262
+ )
263
+ non_silent_wave = AudioSegment.silent(duration=0)
264
+ for non_silent_seg in non_silent_segs:
265
+ non_silent_wave += non_silent_seg
266
+ aseg = non_silent_wave
267
+
268
+ audio_duration = len(aseg)
269
+ if audio_duration > 15000:
270
+ gr.Warning("Audio is over 15s, clipping to only first 15s.")
271
+ aseg = aseg[:15000]
272
+ aseg.export(f.name, format="wav")
273
+ ref_audio = f.name
274
+
275
+ if not ref_text.strip():
276
+ gr.Info("No reference text provided, transcribing reference audio...")
277
+ ref_text = pipe(
278
+ ref_audio,
279
+ chunk_length_s=30,
280
+ batch_size=128,
281
+ generate_kwargs={"task": "transcribe"},
282
+ return_timestamps=False,
283
+ )["text"].strip()
284
+ gr.Info("Finished transcription")
285
+ else:
286
+ gr.Info("Using custom reference text...")
287
+
288
+ # Add the functionality to ensure it ends with ". "
289
+ if not ref_text.endswith(". "):
290
+ if ref_text.endswith("."):
291
+ ref_text += " "
292
+ else:
293
+ ref_text += ". "
294
+
295
+ audio, sr = torchaudio.load(ref_audio)
296
+
297
+ # Use the new chunk_text function to split gen_text
298
+ max_chars = int(len(ref_text.encode('utf-8')) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
299
+ gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
300
+ print('ref_text', ref_text)
301
+ for i, batch_text in enumerate(gen_text_batches):
302
+ print(f'gen_text {i}', batch_text)
303
+
304
+ gr.Info(f"Generating audio using {exp_name} in {len(gen_text_batches)} batches")
305
+ return infer_batch((audio, sr), ref_text, gen_text_batches, exp_name, remove_silence, cross_fade_duration)
306
+
307
+
308
+ @gpu_decorator
309
+ def generate_podcast(script, speaker1_name, ref_audio1, ref_text1, speaker2_name, ref_audio2, ref_text2, exp_name, remove_silence):
310
+ # Split the script into speaker blocks
311
+ speaker_pattern = re.compile(f"^({re.escape(speaker1_name)}|{re.escape(speaker2_name)}):", re.MULTILINE)
312
+ speaker_blocks = speaker_pattern.split(script)[1:] # Skip the first empty element
313
+
314
+ generated_audio_segments = []
315
+
316
+ for i in range(0, len(speaker_blocks), 2):
317
+ speaker = speaker_blocks[i]
318
+ text = speaker_blocks[i+1].strip()
319
+
320
+ # Determine which speaker is talking
321
+ if speaker == speaker1_name:
322
+ ref_audio = ref_audio1
323
+ ref_text = ref_text1
324
+ elif speaker == speaker2_name:
325
+ ref_audio = ref_audio2
326
+ ref_text = ref_text2
327
+ else:
328
+ continue # Skip if the speaker is neither speaker1 nor speaker2
329
+
330
+ # Generate audio for this block
331
+ audio, _ = infer(ref_audio, ref_text, text, exp_name, remove_silence)
332
+
333
+ # Convert the generated audio to a numpy array
334
+ sr, audio_data = audio
335
+
336
+ # Save the audio data as a WAV file
337
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
338
+ sf.write(temp_file.name, audio_data, sr)
339
+ audio_segment = AudioSegment.from_wav(temp_file.name)
340
+
341
+ generated_audio_segments.append(audio_segment)
342
+
343
+ # Add a short pause between speakers
344
+ pause = AudioSegment.silent(duration=500) # 500ms pause
345
+ generated_audio_segments.append(pause)
346
+
347
+ # Concatenate all audio segments
348
+ final_podcast = sum(generated_audio_segments)
349
+
350
+ # Export the final podcast
351
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
352
+ podcast_path = temp_file.name
353
+ final_podcast.export(podcast_path, format="wav")
354
+
355
+ return podcast_path
356
+
357
+ def parse_speechtypes_text(gen_text):
358
+ # Pattern to find (Emotion)
359
+ pattern = r'\((.*?)\)'
360
+
361
+ # Split the text by the pattern
362
+ tokens = re.split(pattern, gen_text)
363
+
364
+ segments = []
365
+
366
+ current_emotion = 'Regular'
367
+
368
+ for i in range(len(tokens)):
369
+ if i % 2 == 0:
370
+ # This is text
371
+ text = tokens[i].strip()
372
+ if text:
373
+ segments.append({'emotion': current_emotion, 'text': text})
374
+ else:
375
+ # This is emotion
376
+ emotion = tokens[i].strip()
377
+ current_emotion = emotion
378
+
379
+ return segments
380
+
381
+ def update_speed(new_speed):
382
+ global speed
383
+ speed = new_speed
384
+ return f"Speed set to: {speed}"
385
+
386
+ with gr.Blocks() as app_credits:
387
+ gr.Markdown("""
388
+ # Credits
389
+
390
+ * [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
391
+ * [RootingInLoad](https://github.com/RootingInLoad) for the podcast generation
392
+ * [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation
393
+ """)
394
+ with gr.Blocks() as app_tts:
395
+ gr.Markdown("# Batched TTS")
396
+ ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
397
+ gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
398
+ model_choice = gr.Radio(
399
+ choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
400
+ )
401
+ generate_btn = gr.Button("Synthesize", variant="primary")
402
+ with gr.Accordion("Advanced Settings", open=False):
403
+ ref_text_input = gr.Textbox(
404
+ label="Reference Text",
405
+ info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
406
+ lines=2,
407
+ )
408
+ remove_silence = gr.Checkbox(
409
+ label="Remove Silences",
410
+ info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
411
+ value=False,
412
+ )
413
+ speed_slider = gr.Slider(
414
+ label="Speed",
415
+ minimum=0.3,
416
+ maximum=2.0,
417
+ value=speed,
418
+ step=0.1,
419
+ info="Adjust the speed of the audio.",
420
+ )
421
+ cross_fade_duration_slider = gr.Slider(
422
+ label="Cross-Fade Duration (s)",
423
+ minimum=0.0,
424
+ maximum=1.0,
425
+ value=0.15,
426
+ step=0.01,
427
+ info="Set the duration of the cross-fade between audio clips.",
428
+ )
429
+ speed_slider.change(update_speed, inputs=speed_slider)
430
+
431
+ audio_output = gr.Audio(label="Synthesized Audio")
432
+ spectrogram_output = gr.Image(label="Spectrogram")
433
+
434
+ generate_btn.click(
435
+ infer,
436
+ inputs=[
437
+ ref_audio_input,
438
+ ref_text_input,
439
+ gen_text_input,
440
+ model_choice,
441
+ remove_silence,
442
+ cross_fade_duration_slider,
443
+ ],
444
+ outputs=[audio_output, spectrogram_output],
445
+ )
446
+
447
+ with gr.Blocks() as app_podcast:
448
+ gr.Markdown("# Podcast Generation")
449
+ speaker1_name = gr.Textbox(label="Speaker 1 Name")
450
+ ref_audio_input1 = gr.Audio(label="Reference Audio (Speaker 1)", type="filepath")
451
+ ref_text_input1 = gr.Textbox(label="Reference Text (Speaker 1)", lines=2)
452
+
453
+ speaker2_name = gr.Textbox(label="Speaker 2 Name")
454
+ ref_audio_input2 = gr.Audio(label="Reference Audio (Speaker 2)", type="filepath")
455
+ ref_text_input2 = gr.Textbox(label="Reference Text (Speaker 2)", lines=2)
456
+
457
+ script_input = gr.Textbox(label="Podcast Script", lines=10,
458
+ placeholder="Enter the script with speaker names at the start of each block, e.g.:\nSean: How did you start studying...\n\nMeghan: I came to my interest in technology...\nIt was a long journey...\n\nSean: That's fascinating. Can you elaborate...")
459
+
460
+ podcast_model_choice = gr.Radio(
461
+ choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
462
+ )
463
+ podcast_remove_silence = gr.Checkbox(
464
+ label="Remove Silences",
465
+ value=True,
466
+ )
467
+ generate_podcast_btn = gr.Button("Generate Podcast", variant="primary")
468
+ podcast_output = gr.Audio(label="Generated Podcast")
469
+
470
+ def podcast_generation(script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence):
471
+ return generate_podcast(script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence)
472
+
473
+ generate_podcast_btn.click(
474
+ podcast_generation,
475
+ inputs=[
476
+ script_input,
477
+ speaker1_name,
478
+ ref_audio_input1,
479
+ ref_text_input1,
480
+ speaker2_name,
481
+ ref_audio_input2,
482
+ ref_text_input2,
483
+ podcast_model_choice,
484
+ podcast_remove_silence,
485
+ ],
486
+ outputs=podcast_output,
487
+ )
488
+
489
+ def parse_emotional_text(gen_text):
490
+ # Pattern to find (Emotion)
491
+ pattern = r'\((.*?)\)'
492
+
493
+ # Split the text by the pattern
494
+ tokens = re.split(pattern, gen_text)
495
+
496
+ segments = []
497
+
498
+ current_emotion = 'Regular'
499
+
500
+ for i in range(len(tokens)):
501
+ if i % 2 == 0:
502
+ # This is text
503
+ text = tokens[i].strip()
504
+ if text:
505
+ segments.append({'emotion': current_emotion, 'text': text})
506
+ else:
507
+ # This is emotion
508
+ emotion = tokens[i].strip()
509
+ current_emotion = emotion
510
+
511
+ return segments
512
+
513
+ with gr.Blocks() as app_emotional:
514
+ # New section for emotional generation
515
+ gr.Markdown(
516
+ """
517
+ # Multiple Speech-Type Generation
518
+
519
+ This section allows you to upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the "Add Speech Type" button. Enter your text in the format shown below, and the system will generate speech using the appropriate emotions. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.
520
+
521
+ **Example Input:**
522
+
523
+ (Regular) Hello, I'd like to order a sandwich please. (Surprised) What do you mean you're out of bread? (Sad) I really wanted a sandwich though... (Angry) You know what, darn you and your little shop, you suck! (Whisper) I'll just go back home and cry now. (Shouting) Why me?!
524
+ """
525
+ )
526
+
527
+ gr.Markdown("Upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button.")
528
+
529
+ # Regular speech type (mandatory)
530
+ with gr.Row():
531
+ regular_name = gr.Textbox(value='Regular', label='Speech Type Name', interactive=False)
532
+ regular_audio = gr.Audio(label='Regular Reference Audio', type='filepath')
533
+ regular_ref_text = gr.Textbox(label='Reference Text (Regular)', lines=2)
534
+
535
+ # Additional speech types (up to 99 more)
536
+ max_speech_types = 100
537
+ speech_type_names = []
538
+ speech_type_audios = []
539
+ speech_type_ref_texts = []
540
+ speech_type_delete_btns = []
541
+
542
+ for i in range(max_speech_types - 1):
543
+ with gr.Row():
544
+ name_input = gr.Textbox(label='Speech Type Name', visible=False)
545
+ audio_input = gr.Audio(label='Reference Audio', type='filepath', visible=False)
546
+ ref_text_input = gr.Textbox(label='Reference Text', lines=2, visible=False)
547
+ delete_btn = gr.Button("Delete", variant="secondary", visible=False)
548
+ speech_type_names.append(name_input)
549
+ speech_type_audios.append(audio_input)
550
+ speech_type_ref_texts.append(ref_text_input)
551
+ speech_type_delete_btns.append(delete_btn)
552
+
553
+ # Button to add speech type
554
+ add_speech_type_btn = gr.Button("Add Speech Type")
555
+
556
+ # Keep track of current number of speech types
557
+ speech_type_count = gr.State(value=0)
558
+
559
+ # Function to add a speech type
560
+ def add_speech_type_fn(speech_type_count):
561
+ if speech_type_count < max_speech_types - 1:
562
+ speech_type_count += 1
563
+ # Prepare updates for the components
564
+ name_updates = []
565
+ audio_updates = []
566
+ ref_text_updates = []
567
+ delete_btn_updates = []
568
+ for i in range(max_speech_types - 1):
569
+ if i < speech_type_count:
570
+ name_updates.append(gr.update(visible=True))
571
+ audio_updates.append(gr.update(visible=True))
572
+ ref_text_updates.append(gr.update(visible=True))
573
+ delete_btn_updates.append(gr.update(visible=True))
574
+ else:
575
+ name_updates.append(gr.update())
576
+ audio_updates.append(gr.update())
577
+ ref_text_updates.append(gr.update())
578
+ delete_btn_updates.append(gr.update())
579
+ else:
580
+ # Optionally, show a warning
581
+ # gr.Warning("Maximum number of speech types reached.")
582
+ name_updates = [gr.update() for _ in range(max_speech_types - 1)]
583
+ audio_updates = [gr.update() for _ in range(max_speech_types - 1)]
584
+ ref_text_updates = [gr.update() for _ in range(max_speech_types - 1)]
585
+ delete_btn_updates = [gr.update() for _ in range(max_speech_types - 1)]
586
+ return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates
587
+
588
+ add_speech_type_btn.click(
589
+ add_speech_type_fn,
590
+ inputs=speech_type_count,
591
+ outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns
592
+ )
593
+
594
+ # Function to delete a speech type
595
+ def make_delete_speech_type_fn(index):
596
+ def delete_speech_type_fn(speech_type_count):
597
+ # Prepare updates
598
+ name_updates = []
599
+ audio_updates = []
600
+ ref_text_updates = []
601
+ delete_btn_updates = []
602
+
603
+ for i in range(max_speech_types - 1):
604
+ if i == index:
605
+ name_updates.append(gr.update(visible=False, value=''))
606
+ audio_updates.append(gr.update(visible=False, value=None))
607
+ ref_text_updates.append(gr.update(visible=False, value=''))
608
+ delete_btn_updates.append(gr.update(visible=False))
609
+ else:
610
+ name_updates.append(gr.update())
611
+ audio_updates.append(gr.update())
612
+ ref_text_updates.append(gr.update())
613
+ delete_btn_updates.append(gr.update())
614
+
615
+ speech_type_count = max(0, speech_type_count - 1)
616
+
617
+ return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates
618
+
619
+ return delete_speech_type_fn
620
+
621
+ for i, delete_btn in enumerate(speech_type_delete_btns):
622
+ delete_fn = make_delete_speech_type_fn(i)
623
+ delete_btn.click(
624
+ delete_fn,
625
+ inputs=speech_type_count,
626
+ outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns
627
+ )
628
+
629
+ # Text input for the prompt
630
+ gen_text_input_emotional = gr.Textbox(label="Text to Generate", lines=10)
631
+
632
+ # Model choice
633
+ model_choice_emotional = gr.Radio(
634
+ choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
635
+ )
636
+
637
+ with gr.Accordion("Advanced Settings", open=False):
638
+ remove_silence_emotional = gr.Checkbox(
639
+ label="Remove Silences",
640
+ value=True,
641
+ )
642
+
643
+ # Generate button
644
+ generate_emotional_btn = gr.Button("Generate Emotional Speech", variant="primary")
645
+
646
+ # Output audio
647
+ audio_output_emotional = gr.Audio(label="Synthesized Audio")
648
+ @gpu_decorator
649
+ def generate_emotional_speech(
650
+ regular_audio,
651
+ regular_ref_text,
652
+ gen_text,
653
+ *args,
654
+ ):
655
+ num_additional_speech_types = max_speech_types - 1
656
+ speech_type_names_list = args[:num_additional_speech_types]
657
+ speech_type_audios_list = args[num_additional_speech_types:2 * num_additional_speech_types]
658
+ speech_type_ref_texts_list = args[2 * num_additional_speech_types:3 * num_additional_speech_types]
659
+ model_choice = args[3 * num_additional_speech_types]
660
+ remove_silence = args[3 * num_additional_speech_types + 1]
661
+
662
+ # Collect the speech types and their audios into a dict
663
+ speech_types = {'Regular': {'audio': regular_audio, 'ref_text': regular_ref_text}}
664
+
665
+ for name_input, audio_input, ref_text_input in zip(speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list):
666
+ if name_input and audio_input:
667
+ speech_types[name_input] = {'audio': audio_input, 'ref_text': ref_text_input}
668
+
669
+ # Parse the gen_text into segments
670
+ segments = parse_speechtypes_text(gen_text)
671
+
672
+ # For each segment, generate speech
673
+ generated_audio_segments = []
674
+ current_emotion = 'Regular'
675
+
676
+ for segment in segments:
677
+ emotion = segment['emotion']
678
+ text = segment['text']
679
+
680
+ if emotion in speech_types:
681
+ current_emotion = emotion
682
+ else:
683
+ # If emotion not available, default to Regular
684
+ current_emotion = 'Regular'
685
+
686
+ ref_audio = speech_types[current_emotion]['audio']
687
+ ref_text = speech_types[current_emotion].get('ref_text', '')
688
+
689
+ # Generate speech for this segment
690
+ audio, _ = infer(ref_audio, ref_text, text, model_choice, remove_silence, 0)
691
+ sr, audio_data = audio
692
+
693
+ generated_audio_segments.append(audio_data)
694
+
695
+ # Concatenate all audio segments
696
+ if generated_audio_segments:
697
+ final_audio_data = np.concatenate(generated_audio_segments)
698
+ return (sr, final_audio_data)
699
+ else:
700
+ gr.Warning("No audio generated.")
701
+ return None
702
+
703
+ generate_emotional_btn.click(
704
+ generate_emotional_speech,
705
+ inputs=[
706
+ regular_audio,
707
+ regular_ref_text,
708
+ gen_text_input_emotional,
709
+ ] + speech_type_names + speech_type_audios + speech_type_ref_texts + [
710
+ model_choice_emotional,
711
+ remove_silence_emotional,
712
+ ],
713
+ outputs=audio_output_emotional,
714
+ )
715
+
716
+ # Validation function to disable Generate button if speech types are missing
717
+ def validate_speech_types(
718
+ gen_text,
719
+ regular_name,
720
+ *args
721
+ ):
722
+ num_additional_speech_types = max_speech_types - 1
723
+ speech_type_names_list = args[:num_additional_speech_types]
724
+
725
+ # Collect the speech types names
726
+ speech_types_available = set()
727
+ if regular_name:
728
+ speech_types_available.add(regular_name)
729
+ for name_input in speech_type_names_list:
730
+ if name_input:
731
+ speech_types_available.add(name_input)
732
+
733
+ # Parse the gen_text to get the speech types used
734
+ segments = parse_emotional_text(gen_text)
735
+ speech_types_in_text = set(segment['emotion'] for segment in segments)
736
+
737
+ # Check if all speech types in text are available
738
+ missing_speech_types = speech_types_in_text - speech_types_available
739
+
740
+ if missing_speech_types:
741
+ # Disable the generate button
742
+ return gr.update(interactive=False)
743
+ else:
744
+ # Enable the generate button
745
+ return gr.update(interactive=True)
746
+
747
+ gen_text_input_emotional.change(
748
+ validate_speech_types,
749
+ inputs=[gen_text_input_emotional, regular_name] + speech_type_names,
750
+ outputs=generate_emotional_btn
751
+ )
752
+ with gr.Blocks() as app:
753
+ gr.Markdown(
754
+ """
755
+ # E2/F5 TTS
756
+
757
+ This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:
758
+
759
+ * [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
760
+ * [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
761
+
762
+ The checkpoints support English and Chinese.
763
+
764
+ If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
765
+
766
+ **NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
767
+ """
768
+ )
769
+ gr.TabbedInterface([app_tts, app_podcast, app_emotional, app_credits], ["TTS", "Podcast", "Multi-Style", "Credits"])
770
+
771
+ @click.command()
772
+ @click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
773
+ @click.option("--host", "-H", default=None, help="Host to run the app on")
774
+ @click.option(
775
+ "--share",
776
+ "-s",
777
+ default=False,
778
+ is_flag=True,
779
+ help="Share the app via Gradio share link",
780
+ )
781
+ @click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
782
+ def main(port, host, share, api):
783
+ global app
784
+ print(f"Starting app...")
785
+ app.queue(api_open=api).launch(
786
+ server_name=host, server_port=port, share=share, show_api=api
787
+ )
788
+
789
+
790
+ if __name__ == "__main__":
791
+ if not USING_SPACES:
792
+ main()
793
+ else:
794
+ app.queue().launch()
finetune-cli.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from model import CFM, UNetT, DiT, MMDiT, Trainer
3
+ from model.utils import get_tokenizer
4
+ from model.dataset import load_dataset
5
+ from cached_path import cached_path
6
+ import shutil,os
7
+ # -------------------------- Dataset Settings --------------------------- #
8
+ target_sample_rate = 24000
9
+ n_mel_channels = 100
10
+ hop_length = 256
11
+
12
+ tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
13
+ tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
14
+
15
+ # -------------------------- Argument Parsing --------------------------- #
16
+ def parse_args():
17
+ parser = argparse.ArgumentParser(description='Train CFM Model')
18
+
19
+ parser.add_argument('--exp_name', type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"],help='Experiment name')
20
+ parser.add_argument('--dataset_name', type=str, default="Emilia_ZH_EN", help='Name of the dataset to use')
21
+ parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate for training')
22
+ parser.add_argument('--batch_size_per_gpu', type=int, default=256, help='Batch size per GPU')
23
+ parser.add_argument('--batch_size_type', type=str, default="frame", choices=["frame", "sample"],help='Batch size type')
24
+ parser.add_argument('--max_samples', type=int, default=16, help='Max sequences per batch')
25
+ parser.add_argument('--grad_accumulation_steps', type=int, default=1,help='Gradient accumulation steps')
26
+ parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Max gradient norm for clipping')
27
+ parser.add_argument('--epochs', type=int, default=10, help='Number of training epochs')
28
+ parser.add_argument('--num_warmup_updates', type=int, default=5, help='Warmup steps')
29
+ parser.add_argument('--save_per_updates', type=int, default=10, help='Save checkpoint every X steps')
30
+ parser.add_argument('--last_per_steps', type=int, default=10, help='Save last checkpoint every X steps')
31
+ parser.add_argument('--finetune', type=bool, default=True, help='Use Finetune')
32
+
33
+ return parser.parse_args()
34
+
35
+ # -------------------------- Training Settings -------------------------- #
36
+
37
+ def main():
38
+ args = parse_args()
39
+
40
+
41
+ # Model parameters based on experiment name
42
+ if args.exp_name == "F5TTS_Base":
43
+ wandb_resume_id = None
44
+ model_cls = DiT
45
+ model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
46
+ if args.finetune:
47
+ ckpt_path = str(cached_path(f"hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
48
+ elif args.exp_name == "E2TTS_Base":
49
+ wandb_resume_id = None
50
+ model_cls = UNetT
51
+ model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
52
+ if args.finetune:
53
+ ckpt_path = str(cached_path(f"hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
54
+
55
+ if args.finetune:
56
+ path_ckpt = os.path.join("ckpts",args.dataset_name)
57
+ if os.path.isdir(path_ckpt)==False:
58
+ os.makedirs(path_ckpt,exist_ok=True)
59
+ shutil.copy2(ckpt_path,os.path.join(path_ckpt,os.path.basename(ckpt_path)))
60
+
61
+ checkpoint_path=os.path.join("ckpts",args.dataset_name)
62
+
63
+ # Use the dataset_name provided in the command line
64
+ tokenizer_path = args.dataset_name if tokenizer != "custom" else tokenizer_path
65
+ vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
66
+
67
+ mel_spec_kwargs = dict(
68
+ target_sample_rate=target_sample_rate,
69
+ n_mel_channels=n_mel_channels,
70
+ hop_length=hop_length,
71
+ )
72
+
73
+ e2tts = CFM(
74
+ transformer=model_cls(
75
+ **model_cfg,
76
+ text_num_embeds=vocab_size,
77
+ mel_dim=n_mel_channels
78
+ ),
79
+ mel_spec_kwargs=mel_spec_kwargs,
80
+ vocab_char_map=vocab_char_map,
81
+ )
82
+
83
+ trainer = Trainer(
84
+ e2tts,
85
+ args.epochs,
86
+ args.learning_rate,
87
+ num_warmup_updates=args.num_warmup_updates,
88
+ save_per_updates=args.save_per_updates,
89
+ checkpoint_path=checkpoint_path,
90
+ batch_size=args.batch_size_per_gpu,
91
+ batch_size_type=args.batch_size_type,
92
+ max_samples=args.max_samples,
93
+ grad_accumulation_steps=args.grad_accumulation_steps,
94
+ max_grad_norm=args.max_grad_norm,
95
+ wandb_project="CFM-TTS",
96
+ wandb_run_name=args.exp_name,
97
+ wandb_resume_id=wandb_resume_id,
98
+ last_per_steps=args.last_per_steps,
99
+ )
100
+
101
+ train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
102
+ trainer.train(train_dataset,
103
+ resumable_with_seed=666 # seed for shuffling dataset
104
+ )
105
+
106
+
107
+ if __name__ == '__main__':
108
+ main()
finetune_gradio.py ADDED
@@ -0,0 +1,734 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os,sys
2
+
3
+ from transformers import pipeline
4
+ import gradio as gr
5
+ import torch
6
+ import click
7
+ import torchaudio
8
+ from glob import glob
9
+ import librosa
10
+ import numpy as np
11
+ from scipy.io import wavfile
12
+ import shutil
13
+ import time
14
+
15
+ import json
16
+ from model.utils import convert_char_to_pinyin
17
+ import signal
18
+ import psutil
19
+ import platform
20
+ import subprocess
21
+ from datasets.arrow_writer import ArrowWriter
22
+
23
+ import json
24
+
25
+ training_process = None
26
+ system = platform.system()
27
+ python_executable = sys.executable or "python"
28
+
29
+ path_data="data"
30
+
31
+ device = (
32
+ "cuda"
33
+ if torch.cuda.is_available()
34
+ else "mps" if torch.backends.mps.is_available() else "cpu"
35
+ )
36
+
37
+ pipe = None
38
+
39
+ # Load metadata
40
+ def get_audio_duration(audio_path):
41
+ """Calculate the duration of an audio file."""
42
+ audio, sample_rate = torchaudio.load(audio_path)
43
+ num_channels = audio.shape[0]
44
+ return audio.shape[1] / (sample_rate * num_channels)
45
+
46
+ def clear_text(text):
47
+ """Clean and prepare text by lowering the case and stripping whitespace."""
48
+ return text.lower().strip()
49
+
50
+ def get_rms(y,frame_length=2048,hop_length=512,pad_mode="constant",): # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
51
+ padding = (int(frame_length // 2), int(frame_length // 2))
52
+ y = np.pad(y, padding, mode=pad_mode)
53
+
54
+ axis = -1
55
+ # put our new within-frame axis at the end for now
56
+ out_strides = y.strides + tuple([y.strides[axis]])
57
+ # Reduce the shape on the framing axis
58
+ x_shape_trimmed = list(y.shape)
59
+ x_shape_trimmed[axis] -= frame_length - 1
60
+ out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
61
+ xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
62
+ if axis < 0:
63
+ target_axis = axis - 1
64
+ else:
65
+ target_axis = axis + 1
66
+ xw = np.moveaxis(xw, -1, target_axis)
67
+ # Downsample along the target axis
68
+ slices = [slice(None)] * xw.ndim
69
+ slices[axis] = slice(0, None, hop_length)
70
+ x = xw[tuple(slices)]
71
+
72
+ # Calculate power
73
+ power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
74
+
75
+ return np.sqrt(power)
76
+
77
+ class Slicer: # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
78
+ def __init__(
79
+ self,
80
+ sr: int,
81
+ threshold: float = -40.0,
82
+ min_length: int = 2000,
83
+ min_interval: int = 300,
84
+ hop_size: int = 20,
85
+ max_sil_kept: int = 2000,
86
+ ):
87
+ if not min_length >= min_interval >= hop_size:
88
+ raise ValueError(
89
+ "The following condition must be satisfied: min_length >= min_interval >= hop_size"
90
+ )
91
+ if not max_sil_kept >= hop_size:
92
+ raise ValueError(
93
+ "The following condition must be satisfied: max_sil_kept >= hop_size"
94
+ )
95
+ min_interval = sr * min_interval / 1000
96
+ self.threshold = 10 ** (threshold / 20.0)
97
+ self.hop_size = round(sr * hop_size / 1000)
98
+ self.win_size = min(round(min_interval), 4 * self.hop_size)
99
+ self.min_length = round(sr * min_length / 1000 / self.hop_size)
100
+ self.min_interval = round(min_interval / self.hop_size)
101
+ self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
102
+
103
+ def _apply_slice(self, waveform, begin, end):
104
+ if len(waveform.shape) > 1:
105
+ return waveform[
106
+ :, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)
107
+ ]
108
+ else:
109
+ return waveform[
110
+ begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)
111
+ ]
112
+
113
+ # @timeit
114
+ def slice(self, waveform):
115
+ if len(waveform.shape) > 1:
116
+ samples = waveform.mean(axis=0)
117
+ else:
118
+ samples = waveform
119
+ if samples.shape[0] <= self.min_length:
120
+ return [waveform]
121
+ rms_list = get_rms(
122
+ y=samples, frame_length=self.win_size, hop_length=self.hop_size
123
+ ).squeeze(0)
124
+ sil_tags = []
125
+ silence_start = None
126
+ clip_start = 0
127
+ for i, rms in enumerate(rms_list):
128
+ # Keep looping while frame is silent.
129
+ if rms < self.threshold:
130
+ # Record start of silent frames.
131
+ if silence_start is None:
132
+ silence_start = i
133
+ continue
134
+ # Keep looping while frame is not silent and silence start has not been recorded.
135
+ if silence_start is None:
136
+ continue
137
+ # Clear recorded silence start if interval is not enough or clip is too short
138
+ is_leading_silence = silence_start == 0 and i > self.max_sil_kept
139
+ need_slice_middle = (
140
+ i - silence_start >= self.min_interval
141
+ and i - clip_start >= self.min_length
142
+ )
143
+ if not is_leading_silence and not need_slice_middle:
144
+ silence_start = None
145
+ continue
146
+ # Need slicing. Record the range of silent frames to be removed.
147
+ if i - silence_start <= self.max_sil_kept:
148
+ pos = rms_list[silence_start : i + 1].argmin() + silence_start
149
+ if silence_start == 0:
150
+ sil_tags.append((0, pos))
151
+ else:
152
+ sil_tags.append((pos, pos))
153
+ clip_start = pos
154
+ elif i - silence_start <= self.max_sil_kept * 2:
155
+ pos = rms_list[
156
+ i - self.max_sil_kept : silence_start + self.max_sil_kept + 1
157
+ ].argmin()
158
+ pos += i - self.max_sil_kept
159
+ pos_l = (
160
+ rms_list[
161
+ silence_start : silence_start + self.max_sil_kept + 1
162
+ ].argmin()
163
+ + silence_start
164
+ )
165
+ pos_r = (
166
+ rms_list[i - self.max_sil_kept : i + 1].argmin()
167
+ + i
168
+ - self.max_sil_kept
169
+ )
170
+ if silence_start == 0:
171
+ sil_tags.append((0, pos_r))
172
+ clip_start = pos_r
173
+ else:
174
+ sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
175
+ clip_start = max(pos_r, pos)
176
+ else:
177
+ pos_l = (
178
+ rms_list[
179
+ silence_start : silence_start + self.max_sil_kept + 1
180
+ ].argmin()
181
+ + silence_start
182
+ )
183
+ pos_r = (
184
+ rms_list[i - self.max_sil_kept : i + 1].argmin()
185
+ + i
186
+ - self.max_sil_kept
187
+ )
188
+ if silence_start == 0:
189
+ sil_tags.append((0, pos_r))
190
+ else:
191
+ sil_tags.append((pos_l, pos_r))
192
+ clip_start = pos_r
193
+ silence_start = None
194
+ # Deal with trailing silence.
195
+ total_frames = rms_list.shape[0]
196
+ if (
197
+ silence_start is not None
198
+ and total_frames - silence_start >= self.min_interval
199
+ ):
200
+ silence_end = min(total_frames, silence_start + self.max_sil_kept)
201
+ pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
202
+ sil_tags.append((pos, total_frames + 1))
203
+ # Apply and return slices.
204
+ ####音频+起始时间+终止时间
205
+ if len(sil_tags) == 0:
206
+ return [[waveform,0,int(total_frames*self.hop_size)]]
207
+ else:
208
+ chunks = []
209
+ if sil_tags[0][0] > 0:
210
+ chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]),0,int(sil_tags[0][0]*self.hop_size)])
211
+ for i in range(len(sil_tags) - 1):
212
+ chunks.append(
213
+ [self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]),int(sil_tags[i][1]*self.hop_size),int(sil_tags[i + 1][0]*self.hop_size)]
214
+ )
215
+ if sil_tags[-1][1] < total_frames:
216
+ chunks.append(
217
+ [self._apply_slice(waveform, sil_tags[-1][1], total_frames),int(sil_tags[-1][1]*self.hop_size),int(total_frames*self.hop_size)]
218
+ )
219
+ return chunks
220
+
221
+ #terminal
222
+ def terminate_process_tree(pid, including_parent=True):
223
+ try:
224
+ parent = psutil.Process(pid)
225
+ except psutil.NoSuchProcess:
226
+ # Process already terminated
227
+ return
228
+
229
+ children = parent.children(recursive=True)
230
+ for child in children:
231
+ try:
232
+ os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL
233
+ except OSError:
234
+ pass
235
+ if including_parent:
236
+ try:
237
+ os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL
238
+ except OSError:
239
+ pass
240
+
241
+ def terminate_process(pid):
242
+ if system == "Windows":
243
+ cmd = f"taskkill /t /f /pid {pid}"
244
+ os.system(cmd)
245
+ else:
246
+ terminate_process_tree(pid)
247
+
248
+ def start_training(dataset_name="",
249
+ exp_name="F5TTS_Base",
250
+ learning_rate=1e-4,
251
+ batch_size_per_gpu=400,
252
+ batch_size_type="frame",
253
+ max_samples=64,
254
+ grad_accumulation_steps=1,
255
+ max_grad_norm=1.0,
256
+ epochs=11,
257
+ num_warmup_updates=200,
258
+ save_per_updates=400,
259
+ last_per_steps=800,
260
+ finetune=True,
261
+ ):
262
+
263
+
264
+ global training_process
265
+
266
+ path_project = os.path.join(path_data, dataset_name + "_pinyin")
267
+
268
+ if os.path.isdir(path_project)==False:
269
+ yield f"There is not project with name {dataset_name}",gr.update(interactive=True),gr.update(interactive=False)
270
+ return
271
+
272
+ file_raw = os.path.join(path_project,"raw.arrow")
273
+ if os.path.isfile(file_raw)==False:
274
+ yield f"There is no file {file_raw}",gr.update(interactive=True),gr.update(interactive=False)
275
+ return
276
+
277
+ # Check if a training process is already running
278
+ if training_process is not None:
279
+ return "Train run already!",gr.update(interactive=False),gr.update(interactive=True)
280
+
281
+ yield "start train",gr.update(interactive=False),gr.update(interactive=False)
282
+
283
+ # Command to run the training script with the specified arguments
284
+ cmd = f"accelerate launch finetune-cli.py --exp_name {exp_name} " \
285
+ f"--learning_rate {learning_rate} " \
286
+ f"--batch_size_per_gpu {batch_size_per_gpu} " \
287
+ f"--batch_size_type {batch_size_type} " \
288
+ f"--max_samples {max_samples} " \
289
+ f"--grad_accumulation_steps {grad_accumulation_steps} " \
290
+ f"--max_grad_norm {max_grad_norm} " \
291
+ f"--epochs {epochs} " \
292
+ f"--num_warmup_updates {num_warmup_updates} " \
293
+ f"--save_per_updates {save_per_updates} " \
294
+ f"--last_per_steps {last_per_steps} " \
295
+ f"--dataset_name {dataset_name}"
296
+ if finetune:cmd += f" --finetune {finetune}"
297
+
298
+ print(cmd)
299
+
300
+ try:
301
+ # Start the training process
302
+ training_process = subprocess.Popen(cmd, shell=True)
303
+
304
+ time.sleep(5)
305
+ yield "check terminal for wandb",gr.update(interactive=False),gr.update(interactive=True)
306
+
307
+ # Wait for the training process to finish
308
+ training_process.wait()
309
+ time.sleep(1)
310
+
311
+ if training_process is None:
312
+ text_info = 'train stop'
313
+ else:
314
+ text_info = "train complete !"
315
+
316
+ except Exception as e: # Catch all exceptions
317
+ # Ensure that we reset the training process variable in case of an error
318
+ text_info=f"An error occurred: {str(e)}"
319
+
320
+ training_process=None
321
+
322
+ yield text_info,gr.update(interactive=True),gr.update(interactive=False)
323
+
324
+ def stop_training():
325
+ global training_process
326
+ if training_process is None:return f"Train not run !",gr.update(interactive=True),gr.update(interactive=False)
327
+ terminate_process_tree(training_process.pid)
328
+ training_process = None
329
+ return 'train stop',gr.update(interactive=True),gr.update(interactive=False)
330
+
331
+ def create_data_project(name):
332
+ name+="_pinyin"
333
+ os.makedirs(os.path.join(path_data,name),exist_ok=True)
334
+ os.makedirs(os.path.join(path_data,name,"dataset"),exist_ok=True)
335
+
336
+ def transcribe(file_audio,language="english"):
337
+ global pipe
338
+
339
+ if pipe is None:
340
+ pipe = pipeline("automatic-speech-recognition",model="openai/whisper-large-v3-turbo", torch_dtype=torch.float16,device=device)
341
+
342
+ text_transcribe = pipe(
343
+ file_audio,
344
+ chunk_length_s=30,
345
+ batch_size=128,
346
+ generate_kwargs={"task": "transcribe","language": language},
347
+ return_timestamps=False,
348
+ )["text"].strip()
349
+ return text_transcribe
350
+
351
+ def transcribe_all(name_project,audio_files,language,user=False,progress=gr.Progress()):
352
+ name_project+="_pinyin"
353
+ path_project= os.path.join(path_data,name_project)
354
+ path_dataset = os.path.join(path_project,"dataset")
355
+ path_project_wavs = os.path.join(path_project,"wavs")
356
+ file_metadata = os.path.join(path_project,"metadata.csv")
357
+
358
+ if audio_files is None:return "You need to load an audio file."
359
+
360
+ if os.path.isdir(path_project_wavs):
361
+ shutil.rmtree(path_project_wavs)
362
+
363
+ if os.path.isfile(file_metadata):
364
+ os.remove(file_metadata)
365
+
366
+ os.makedirs(path_project_wavs,exist_ok=True)
367
+
368
+ if user:
369
+ file_audios = [file for format in ('*.wav', '*.ogg', '*.opus', '*.mp3', '*.flac') for file in glob(os.path.join(path_dataset, format))]
370
+ if file_audios==[]:return "No audio file was found in the dataset."
371
+ else:
372
+ file_audios = audio_files
373
+
374
+
375
+ alpha = 0.5
376
+ _max = 1.0
377
+ slicer = Slicer(24000)
378
+
379
+ num = 0
380
+ error_num = 0
381
+ data=""
382
+ for file_audio in progress.tqdm(file_audios, desc="transcribe files",total=len((file_audios))):
383
+
384
+ audio, _ = librosa.load(file_audio, sr=24000, mono=True)
385
+
386
+ list_slicer=slicer.slice(audio)
387
+ for chunk, start, end in progress.tqdm(list_slicer,total=len(list_slicer), desc="slicer files"):
388
+
389
+ name_segment = os.path.join(f"segment_{num}")
390
+ file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav")
391
+
392
+ tmp_max = np.abs(chunk).max()
393
+ if(tmp_max>1):chunk/=tmp_max
394
+ chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk
395
+ wavfile.write(file_segment,24000, (chunk * 32767).astype(np.int16))
396
+
397
+ try:
398
+ text=transcribe(file_segment,language)
399
+ text = text.lower().strip().replace('"',"")
400
+
401
+ data+= f"{name_segment}|{text}\n"
402
+
403
+ num+=1
404
+ except:
405
+ error_num +=1
406
+
407
+ with open(file_metadata,"w",encoding="utf-8") as f:
408
+ f.write(data)
409
+
410
+ if error_num!=[]:
411
+ error_text=f"\nerror files : {error_num}"
412
+ else:
413
+ error_text=""
414
+
415
+ return f"transcribe complete samples : {num}\npath : {path_project_wavs}{error_text}"
416
+
417
+ def format_seconds_to_hms(seconds):
418
+ hours = int(seconds / 3600)
419
+ minutes = int((seconds % 3600) / 60)
420
+ seconds = seconds % 60
421
+ return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds))
422
+
423
+ def create_metadata(name_project,progress=gr.Progress()):
424
+ name_project+="_pinyin"
425
+ path_project= os.path.join(path_data,name_project)
426
+ path_project_wavs = os.path.join(path_project,"wavs")
427
+ file_metadata = os.path.join(path_project,"metadata.csv")
428
+ file_raw = os.path.join(path_project,"raw.arrow")
429
+ file_duration = os.path.join(path_project,"duration.json")
430
+ file_vocab = os.path.join(path_project,"vocab.txt")
431
+
432
+ if os.path.isfile(file_metadata)==False: return "The file was not found in " + file_metadata
433
+
434
+ with open(file_metadata,"r",encoding="utf-8") as f:
435
+ data=f.read()
436
+
437
+ audio_path_list=[]
438
+ text_list=[]
439
+ duration_list=[]
440
+
441
+ count=data.split("\n")
442
+ lenght=0
443
+ result=[]
444
+ error_files=[]
445
+ for line in progress.tqdm(data.split("\n"),total=count):
446
+ sp_line=line.split("|")
447
+ if len(sp_line)!=2:continue
448
+ name_audio,text = sp_line[:2]
449
+
450
+ file_audio = os.path.join(path_project_wavs, name_audio + ".wav")
451
+
452
+ if os.path.isfile(file_audio)==False:
453
+ error_files.append(file_audio)
454
+ continue
455
+
456
+ duraction = get_audio_duration(file_audio)
457
+ if duraction<2 and duraction>15:continue
458
+ if len(text)<4:continue
459
+
460
+ text = clear_text(text)
461
+ text = convert_char_to_pinyin([text], polyphone = True)[0]
462
+
463
+ audio_path_list.append(file_audio)
464
+ duration_list.append(duraction)
465
+ text_list.append(text)
466
+
467
+ result.append({"audio_path": file_audio, "text": text, "duration": duraction})
468
+
469
+ lenght+=duraction
470
+
471
+ if duration_list==[]:
472
+ error_files_text="\n".join(error_files)
473
+ return f"Error: No audio files found in the specified path : \n{error_files_text}"
474
+
475
+ min_second = round(min(duration_list),2)
476
+ max_second = round(max(duration_list),2)
477
+
478
+ with ArrowWriter(path=file_raw, writer_batch_size=1) as writer:
479
+ for line in progress.tqdm(result,total=len(result), desc=f"prepare data"):
480
+ writer.write(line)
481
+
482
+ with open(file_duration, 'w', encoding='utf-8') as f:
483
+ json.dump({"duration": duration_list}, f, ensure_ascii=False)
484
+
485
+ file_vocab_finetune = "data/Emilia_ZH_EN_pinyin/vocab.txt"
486
+ if os.path.isfile(file_vocab_finetune==False):return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!"
487
+ shutil.copy2(file_vocab_finetune, file_vocab)
488
+
489
+ if error_files!=[]:
490
+ error_text="error files\n" + "\n".join(error_files)
491
+ else:
492
+ error_text=""
493
+
494
+ return f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\n{error_text}"
495
+
496
+ def check_user(value):
497
+ return gr.update(visible=not value),gr.update(visible=value)
498
+
499
+ def calculate_train(name_project,batch_size_type,max_samples,learning_rate,num_warmup_updates,save_per_updates,last_per_steps,finetune):
500
+ name_project+="_pinyin"
501
+ path_project= os.path.join(path_data,name_project)
502
+ file_duraction = os.path.join(path_project,"duration.json")
503
+
504
+ with open(file_duraction, 'r') as file:
505
+ data = json.load(file)
506
+
507
+ duration_list = data['duration']
508
+
509
+ samples = len(duration_list)
510
+
511
+ if torch.cuda.is_available():
512
+ gpu_properties = torch.cuda.get_device_properties(0)
513
+ total_memory = gpu_properties.total_memory / (1024 ** 3)
514
+ elif torch.backends.mps.is_available():
515
+ total_memory = psutil.virtual_memory().available / (1024 ** 3)
516
+
517
+ if batch_size_type=="frame":
518
+ batch = int(total_memory * 0.5)
519
+ batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch)
520
+ batch_size_per_gpu = int(38400 / batch )
521
+ else:
522
+ batch_size_per_gpu = int(total_memory / 8)
523
+ batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu)
524
+ batch = batch_size_per_gpu
525
+
526
+ if batch_size_per_gpu<=0:batch_size_per_gpu=1
527
+
528
+ if samples<64:
529
+ max_samples = int(samples * 0.25)
530
+ else:
531
+ max_samples = 64
532
+
533
+ num_warmup_updates = int(samples * 0.10)
534
+ save_per_updates = int(samples * 0.25)
535
+ last_per_steps =int(save_per_updates * 5)
536
+
537
+ max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples)
538
+ num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates)
539
+ save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates)
540
+ last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps)
541
+
542
+ if finetune:learning_rate=1e-4
543
+ else:learning_rate=7.5e-5
544
+
545
+ return batch_size_per_gpu,max_samples,num_warmup_updates,save_per_updates,last_per_steps,samples,learning_rate
546
+
547
+ def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str) -> None:
548
+ try:
549
+ checkpoint = torch.load(checkpoint_path)
550
+ print("Original Checkpoint Keys:", checkpoint.keys())
551
+
552
+ ema_model_state_dict = checkpoint.get('ema_model_state_dict', None)
553
+
554
+ if ema_model_state_dict is not None:
555
+ new_checkpoint = {'ema_model_state_dict': ema_model_state_dict}
556
+ torch.save(new_checkpoint, new_checkpoint_path)
557
+ return f"New checkpoint saved at: {new_checkpoint_path}"
558
+ else:
559
+ return "No 'ema_model_state_dict' found in the checkpoint."
560
+
561
+ except Exception as e:
562
+ return f"An error occurred: {e}"
563
+
564
+ def vocab_check(project_name):
565
+ name_project = project_name + "_pinyin"
566
+ path_project = os.path.join(path_data, name_project)
567
+
568
+ file_metadata = os.path.join(path_project, "metadata.csv")
569
+
570
+ file_vocab="data/Emilia_ZH_EN_pinyin/vocab.txt"
571
+ if os.path.isfile(file_vocab)==False:
572
+ return f"the file {file_vocab} not found !"
573
+
574
+ with open(file_vocab,"r",encoding="utf-8") as f:
575
+ data=f.read()
576
+
577
+ vocab = data.split("\n")
578
+
579
+ if os.path.isfile(file_metadata)==False:
580
+ return f"the file {file_metadata} not found !"
581
+
582
+ with open(file_metadata,"r",encoding="utf-8") as f:
583
+ data=f.read()
584
+
585
+ miss_symbols=[]
586
+ miss_symbols_keep={}
587
+ for item in data.split("\n"):
588
+ sp=item.split("|")
589
+ if len(sp)!=2:continue
590
+ text=sp[1].lower().strip()
591
+
592
+ for t in text:
593
+ if (t in vocab)==False and (t in miss_symbols_keep)==False:
594
+ miss_symbols.append(t)
595
+ miss_symbols_keep[t]=t
596
+
597
+
598
+ if miss_symbols==[]:info ="You can train using your language !"
599
+ else:info = f"The following symbols are missing in your language : {len(miss_symbols)}\n\n" + "\n".join(miss_symbols)
600
+
601
+ return info
602
+
603
+
604
+
605
+ with gr.Blocks() as app:
606
+
607
+ with gr.Row():
608
+ project_name=gr.Textbox(label="project name",value="my_speak")
609
+ bt_create=gr.Button("create new project")
610
+
611
+ bt_create.click(fn=create_data_project,inputs=[project_name])
612
+
613
+ with gr.Tabs():
614
+
615
+
616
+ with gr.TabItem("transcribe Data"):
617
+
618
+
619
+ ch_manual = gr.Checkbox(label="user",value=False)
620
+
621
+ mark_info_transcribe=gr.Markdown(
622
+ """```plaintext
623
+ Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory.
624
+
625
+ my_speak/
626
+
627
+ └── dataset/
628
+ ├── audio1.wav
629
+ └── audio2.wav
630
+ ...
631
+ ```""",visible=False)
632
+
633
+ audio_speaker = gr.File(label="voice",type="filepath",file_count="multiple")
634
+ txt_lang = gr.Text(label="Language",value="english")
635
+ bt_transcribe=bt_create=gr.Button("transcribe")
636
+ txt_info_transcribe=gr.Text(label="info",value="")
637
+ bt_transcribe.click(fn=transcribe_all,inputs=[project_name,audio_speaker,txt_lang,ch_manual],outputs=[txt_info_transcribe])
638
+ ch_manual.change(fn=check_user,inputs=[ch_manual],outputs=[audio_speaker,mark_info_transcribe])
639
+
640
+ with gr.TabItem("prepare Data"):
641
+ gr.Markdown(
642
+ """```plaintext
643
+ place all your wavs folder and your metadata.csv file in {your name project}
644
+ my_speak/
645
+
646
+ ├── wavs/
647
+ │ ├── audio1.wav
648
+ │ └── audio2.wav
649
+ | ...
650
+
651
+ └── metadata.csv
652
+
653
+ file format metadata.csv
654
+
655
+ audio1|text1
656
+ audio2|text1
657
+ ...
658
+
659
+ ```""")
660
+
661
+ bt_prepare=bt_create=gr.Button("prepare")
662
+ txt_info_prepare=gr.Text(label="info",value="")
663
+ bt_prepare.click(fn=create_metadata,inputs=[project_name],outputs=[txt_info_prepare])
664
+
665
+ with gr.TabItem("train Data"):
666
+
667
+ with gr.Row():
668
+ bt_calculate=bt_create=gr.Button("Auto Settings")
669
+ ch_finetune=bt_create=gr.Checkbox(label="finetune",value=True)
670
+ lb_samples = gr.Label(label="samples")
671
+ batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame")
672
+
673
+ with gr.Row():
674
+ exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base")
675
+ learning_rate = gr.Number(label="Learning Rate", value=1e-4, step=1e-4)
676
+
677
+ with gr.Row():
678
+ batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000)
679
+ max_samples = gr.Number(label="Max Samples", value=16)
680
+
681
+ with gr.Row():
682
+ grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1)
683
+ max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0)
684
+
685
+ with gr.Row():
686
+ epochs = gr.Number(label="Epochs", value=10)
687
+ num_warmup_updates = gr.Number(label="Warmup Updates", value=5)
688
+
689
+ with gr.Row():
690
+ save_per_updates = gr.Number(label="Save per Updates", value=10)
691
+ last_per_steps = gr.Number(label="Last per Steps", value=50)
692
+
693
+ with gr.Row():
694
+ start_button = gr.Button("Start Training")
695
+ stop_button = gr.Button("Stop Training",interactive=False)
696
+
697
+ txt_info_train=gr.Text(label="info",value="")
698
+ start_button.click(fn=start_training,inputs=[project_name,exp_name,learning_rate,batch_size_per_gpu,batch_size_type,max_samples,grad_accumulation_steps,max_grad_norm,epochs,num_warmup_updates,save_per_updates,last_per_steps,ch_finetune],outputs=[txt_info_train,start_button,stop_button])
699
+ stop_button.click(fn=stop_training,outputs=[txt_info_train,start_button,stop_button])
700
+ bt_calculate.click(fn=calculate_train,inputs=[project_name,batch_size_type,max_samples,learning_rate,num_warmup_updates,save_per_updates,last_per_steps,ch_finetune],outputs=[batch_size_per_gpu,max_samples,num_warmup_updates,save_per_updates,last_per_steps,lb_samples,learning_rate])
701
+
702
+ with gr.TabItem("reduse checkpoint"):
703
+ txt_path_checkpoint = gr.Text(label="path checkpoint :")
704
+ txt_path_checkpoint_small = gr.Text(label="path output :")
705
+ txt_info_reduse = gr.Text(label="info",value="")
706
+ reduse_button = gr.Button("reduse")
707
+ reduse_button.click(fn=extract_and_save_ema_model,inputs=[txt_path_checkpoint,txt_path_checkpoint_small],outputs=[txt_info_reduse])
708
+
709
+ with gr.TabItem("vocab check experiment"):
710
+ check_button = gr.Button("check vocab")
711
+ txt_info_check=gr.Text(label="info",value="")
712
+ check_button.click(fn=vocab_check,inputs=[project_name],outputs=[txt_info_check])
713
+
714
+
715
+ @click.command()
716
+ @click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
717
+ @click.option("--host", "-H", default=None, help="Host to run the app on")
718
+ @click.option(
719
+ "--share",
720
+ "-s",
721
+ default=False,
722
+ is_flag=True,
723
+ help="Share the app via Gradio share link",
724
+ )
725
+ @click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
726
+ def main(port, host, share, api):
727
+ global app
728
+ print(f"Starting app...")
729
+ app.queue(api_open=api).launch(
730
+ server_name=host, server_port=port, share=share, show_api=api
731
+ )
732
+
733
+ if __name__ == "__main__":
734
+ main()
gradio_app.py ADDED
@@ -0,0 +1,824 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import torch
4
+ import torchaudio
5
+ import gradio as gr
6
+ import numpy as np
7
+ import tempfile
8
+ from einops import rearrange
9
+ from vocos import Vocos
10
+ from pydub import AudioSegment, silence
11
+ from model import CFM, UNetT, DiT, MMDiT
12
+ from cached_path import cached_path
13
+ from model.utils import (
14
+ load_checkpoint,
15
+ get_tokenizer,
16
+ convert_char_to_pinyin,
17
+ save_spectrogram,
18
+ )
19
+ from transformers import pipeline
20
+ import librosa
21
+ import click
22
+ import soundfile as sf
23
+
24
+ try:
25
+ import spaces
26
+ USING_SPACES = True
27
+ except ImportError:
28
+ USING_SPACES = False
29
+
30
+ def gpu_decorator(func):
31
+ if USING_SPACES:
32
+ return spaces.GPU(func)
33
+ else:
34
+ return func
35
+
36
+
37
+
38
+ SPLIT_WORDS = [
39
+ "but", "however", "nevertheless", "yet", "still",
40
+ "therefore", "thus", "hence", "consequently",
41
+ "moreover", "furthermore", "additionally",
42
+ "meanwhile", "alternatively", "otherwise",
43
+ "namely", "specifically", "for example", "such as",
44
+ "in fact", "indeed", "notably",
45
+ "in contrast", "on the other hand", "conversely",
46
+ "in conclusion", "to summarize", "finally"
47
+ ]
48
+
49
+ device = (
50
+ "cuda"
51
+ if torch.cuda.is_available()
52
+ else "mps" if torch.backends.mps.is_available() else "cpu"
53
+ )
54
+
55
+ print(f"Using {device} device")
56
+
57
+ pipe = pipeline(
58
+ "automatic-speech-recognition",
59
+ model="openai/whisper-large-v3-turbo",
60
+ torch_dtype=torch.float16,
61
+ device=device,
62
+ )
63
+ vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
64
+
65
+ # --------------------- Settings -------------------- #
66
+
67
+ target_sample_rate = 24000
68
+ n_mel_channels = 100
69
+ hop_length = 256
70
+ target_rms = 0.1
71
+ nfe_step = 32 # 16, 32
72
+ cfg_strength = 2.0
73
+ ode_method = "euler"
74
+ sway_sampling_coef = -1.0
75
+ speed = 1.0
76
+ # fix_duration = 27 # None or float (duration in seconds)
77
+ fix_duration = None
78
+
79
+
80
+ def load_model(repo_name, exp_name, model_cls, model_cfg, ckpt_step):
81
+ ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
82
+ # ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors
83
+ vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
84
+ model = CFM(
85
+ transformer=model_cls(
86
+ **model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
87
+ ),
88
+ mel_spec_kwargs=dict(
89
+ target_sample_rate=target_sample_rate,
90
+ n_mel_channels=n_mel_channels,
91
+ hop_length=hop_length,
92
+ ),
93
+ odeint_kwargs=dict(
94
+ method=ode_method,
95
+ ),
96
+ vocab_char_map=vocab_char_map,
97
+ ).to(device)
98
+
99
+ model = load_checkpoint(model, ckpt_path, device, use_ema = True)
100
+
101
+ return model
102
+
103
+
104
+ # load models
105
+ F5TTS_model_cfg = dict(
106
+ dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
107
+ )
108
+ E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
109
+
110
+ F5TTS_ema_model = load_model(
111
+ "F5-TTS", "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000
112
+ )
113
+ E2TTS_ema_model = load_model(
114
+ "E2-TTS", "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000
115
+ )
116
+
117
+ def split_text_into_batches(text, max_chars=200, split_words=SPLIT_WORDS):
118
+ if len(text.encode('utf-8')) <= max_chars:
119
+ return [text]
120
+ if text[-1] not in ['。', '.', '!', '!', '?', '?']:
121
+ text += '.'
122
+
123
+ sentences = re.split('([。.!?!?])', text)
124
+ sentences = [''.join(i) for i in zip(sentences[0::2], sentences[1::2])]
125
+
126
+ batches = []
127
+ current_batch = ""
128
+
129
+ def split_by_words(text):
130
+ words = text.split()
131
+ current_word_part = ""
132
+ word_batches = []
133
+ for word in words:
134
+ if len(current_word_part.encode('utf-8')) + len(word.encode('utf-8')) + 1 <= max_chars:
135
+ current_word_part += word + ' '
136
+ else:
137
+ if current_word_part:
138
+ # Try to find a suitable split word
139
+ for split_word in split_words:
140
+ split_index = current_word_part.rfind(' ' + split_word + ' ')
141
+ if split_index != -1:
142
+ word_batches.append(current_word_part[:split_index].strip())
143
+ current_word_part = current_word_part[split_index:].strip() + ' '
144
+ break
145
+ else:
146
+ # If no suitable split word found, just append the current part
147
+ word_batches.append(current_word_part.strip())
148
+ current_word_part = ""
149
+ current_word_part += word + ' '
150
+ if current_word_part:
151
+ word_batches.append(current_word_part.strip())
152
+ return word_batches
153
+
154
+ for sentence in sentences:
155
+ if len(current_batch.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
156
+ current_batch += sentence
157
+ else:
158
+ # If adding this sentence would exceed the limit
159
+ if current_batch:
160
+ batches.append(current_batch)
161
+ current_batch = ""
162
+
163
+ # If the sentence itself is longer than max_chars, split it
164
+ if len(sentence.encode('utf-8')) > max_chars:
165
+ # First, try to split by colon
166
+ colon_parts = sentence.split(':')
167
+ if len(colon_parts) > 1:
168
+ for part in colon_parts:
169
+ if len(part.encode('utf-8')) <= max_chars:
170
+ batches.append(part)
171
+ else:
172
+ # If colon part is still too long, split by comma
173
+ comma_parts = re.split('[,,]', part)
174
+ if len(comma_parts) > 1:
175
+ current_comma_part = ""
176
+ for comma_part in comma_parts:
177
+ if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
178
+ current_comma_part += comma_part + ','
179
+ else:
180
+ if current_comma_part:
181
+ batches.append(current_comma_part.rstrip(','))
182
+ current_comma_part = comma_part + ','
183
+ if current_comma_part:
184
+ batches.append(current_comma_part.rstrip(','))
185
+ else:
186
+ # If no comma, split by words
187
+ batches.extend(split_by_words(part))
188
+ else:
189
+ # If no colon, split by comma
190
+ comma_parts = re.split('[,,]', sentence)
191
+ if len(comma_parts) > 1:
192
+ current_comma_part = ""
193
+ for comma_part in comma_parts:
194
+ if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
195
+ current_comma_part += comma_part + ','
196
+ else:
197
+ if current_comma_part:
198
+ batches.append(current_comma_part.rstrip(','))
199
+ current_comma_part = comma_part + ','
200
+ if current_comma_part:
201
+ batches.append(current_comma_part.rstrip(','))
202
+ else:
203
+ # If no comma, split by words
204
+ batches.extend(split_by_words(sentence))
205
+ else:
206
+ current_batch = sentence
207
+
208
+ if current_batch:
209
+ batches.append(current_batch)
210
+
211
+ return batches
212
+
213
+ def infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence, progress=gr.Progress()):
214
+ if exp_name == "F5-TTS":
215
+ ema_model = F5TTS_ema_model
216
+ elif exp_name == "E2-TTS":
217
+ ema_model = E2TTS_ema_model
218
+
219
+ audio, sr = ref_audio
220
+ if audio.shape[0] > 1:
221
+ audio = torch.mean(audio, dim=0, keepdim=True)
222
+
223
+ rms = torch.sqrt(torch.mean(torch.square(audio)))
224
+ if rms < target_rms:
225
+ audio = audio * target_rms / rms
226
+ if sr != target_sample_rate:
227
+ resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
228
+ audio = resampler(audio)
229
+ audio = audio.to(device)
230
+
231
+ generated_waves = []
232
+ spectrograms = []
233
+
234
+ for i, gen_text in enumerate(progress.tqdm(gen_text_batches)):
235
+ # Prepare the text
236
+ if len(ref_text[-1].encode('utf-8')) == 1:
237
+ ref_text = ref_text + " "
238
+ text_list = [ref_text + gen_text]
239
+ final_text_list = convert_char_to_pinyin(text_list)
240
+
241
+ # Calculate duration
242
+ ref_audio_len = audio.shape[-1] // hop_length
243
+ zh_pause_punc = r"。,、;:?!"
244
+ ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text))
245
+ gen_text_len = len(gen_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
246
+ duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
247
+
248
+ # inference
249
+ with torch.inference_mode():
250
+ generated, _ = ema_model.sample(
251
+ cond=audio,
252
+ text=final_text_list,
253
+ duration=duration,
254
+ steps=nfe_step,
255
+ cfg_strength=cfg_strength,
256
+ sway_sampling_coef=sway_sampling_coef,
257
+ )
258
+
259
+ generated = generated[:, ref_audio_len:, :]
260
+ generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
261
+ generated_wave = vocos.decode(generated_mel_spec.cpu())
262
+ if rms < target_rms:
263
+ generated_wave = generated_wave * rms / target_rms
264
+
265
+ # wav -> numpy
266
+ generated_wave = generated_wave.squeeze().cpu().numpy()
267
+
268
+ generated_waves.append(generated_wave)
269
+ spectrograms.append(generated_mel_spec[0].cpu().numpy())
270
+
271
+ # Combine all generated waves
272
+ final_wave = np.concatenate(generated_waves)
273
+
274
+ # Remove silence
275
+ if remove_silence:
276
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
277
+ sf.write(f.name, final_wave, target_sample_rate)
278
+ aseg = AudioSegment.from_file(f.name)
279
+ non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
280
+ non_silent_wave = AudioSegment.silent(duration=0)
281
+ for non_silent_seg in non_silent_segs:
282
+ non_silent_wave += non_silent_seg
283
+ aseg = non_silent_wave
284
+ aseg.export(f.name, format="wav")
285
+ final_wave, _ = torchaudio.load(f.name)
286
+ final_wave = final_wave.squeeze().cpu().numpy()
287
+
288
+ # Create a combined spectrogram
289
+ combined_spectrogram = np.concatenate(spectrograms, axis=1)
290
+
291
+ with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
292
+ spectrogram_path = tmp_spectrogram.name
293
+ save_spectrogram(combined_spectrogram, spectrogram_path)
294
+
295
+ return (target_sample_rate, final_wave), spectrogram_path
296
+
297
+ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, custom_split_words=''):
298
+ if not custom_split_words.strip():
299
+ custom_words = [word.strip() for word in custom_split_words.split(',')]
300
+ global SPLIT_WORDS
301
+ SPLIT_WORDS = custom_words
302
+
303
+ print(gen_text)
304
+
305
+ gr.Info("Converting audio...")
306
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
307
+ aseg = AudioSegment.from_file(ref_audio_orig)
308
+
309
+ non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
310
+ non_silent_wave = AudioSegment.silent(duration=0)
311
+ for non_silent_seg in non_silent_segs:
312
+ non_silent_wave += non_silent_seg
313
+ aseg = non_silent_wave
314
+
315
+ audio_duration = len(aseg)
316
+ if audio_duration > 15000:
317
+ gr.Warning("Audio is over 15s, clipping to only first 15s.")
318
+ aseg = aseg[:15000]
319
+ aseg.export(f.name, format="wav")
320
+ ref_audio = f.name
321
+
322
+ if not ref_text.strip():
323
+ gr.Info("No reference text provided, transcribing reference audio...")
324
+ ref_text = pipe(
325
+ ref_audio,
326
+ chunk_length_s=30,
327
+ batch_size=128,
328
+ generate_kwargs={"task": "transcribe"},
329
+ return_timestamps=False,
330
+ )["text"].strip()
331
+ gr.Info("Finished transcription")
332
+ else:
333
+ gr.Info("Using custom reference text...")
334
+
335
+ # Split the input text into batches
336
+ audio, sr = torchaudio.load(ref_audio)
337
+ max_chars = int(len(ref_text.encode('utf-8')) / (audio.shape[-1] / sr) * (30 - audio.shape[-1] / sr))
338
+ gen_text_batches = split_text_into_batches(gen_text, max_chars=max_chars)
339
+ print('ref_text', ref_text)
340
+ for i, gen_text in enumerate(gen_text_batches):
341
+ print(f'gen_text {i}', gen_text)
342
+
343
+ gr.Info(f"Generating audio using {exp_name} in {len(gen_text_batches)} batches")
344
+ return infer_batch((audio, sr), ref_text, gen_text_batches, exp_name, remove_silence)
345
+
346
+ def generate_podcast(script, speaker1_name, ref_audio1, ref_text1, speaker2_name, ref_audio2, ref_text2, exp_name, remove_silence):
347
+ # Split the script into speaker blocks
348
+ speaker_pattern = re.compile(f"^({re.escape(speaker1_name)}|{re.escape(speaker2_name)}):", re.MULTILINE)
349
+ speaker_blocks = speaker_pattern.split(script)[1:] # Skip the first empty element
350
+
351
+ generated_audio_segments = []
352
+
353
+ for i in range(0, len(speaker_blocks), 2):
354
+ speaker = speaker_blocks[i]
355
+ text = speaker_blocks[i+1].strip()
356
+
357
+ # Determine which speaker is talking
358
+ if speaker == speaker1_name:
359
+ ref_audio = ref_audio1
360
+ ref_text = ref_text1
361
+ elif speaker == speaker2_name:
362
+ ref_audio = ref_audio2
363
+ ref_text = ref_text2
364
+ else:
365
+ continue # Skip if the speaker is neither speaker1 nor speaker2
366
+
367
+ # Generate audio for this block
368
+ audio, _ = infer(ref_audio, ref_text, text, exp_name, remove_silence)
369
+
370
+ # Convert the generated audio to a numpy array
371
+ sr, audio_data = audio
372
+
373
+ # Save the audio data as a WAV file
374
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
375
+ sf.write(temp_file.name, audio_data, sr)
376
+ audio_segment = AudioSegment.from_wav(temp_file.name)
377
+
378
+ generated_audio_segments.append(audio_segment)
379
+
380
+ # Add a short pause between speakers
381
+ pause = AudioSegment.silent(duration=500) # 500ms pause
382
+ generated_audio_segments.append(pause)
383
+
384
+ # Concatenate all audio segments
385
+ final_podcast = sum(generated_audio_segments)
386
+
387
+ # Export the final podcast
388
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
389
+ podcast_path = temp_file.name
390
+ final_podcast.export(podcast_path, format="wav")
391
+
392
+ return podcast_path
393
+
394
+ def parse_speechtypes_text(gen_text):
395
+ # Pattern to find (Emotion)
396
+ pattern = r'\((.*?)\)'
397
+
398
+ # Split the text by the pattern
399
+ tokens = re.split(pattern, gen_text)
400
+
401
+ segments = []
402
+
403
+ current_emotion = 'Regular'
404
+
405
+ for i in range(len(tokens)):
406
+ if i % 2 == 0:
407
+ # This is text
408
+ text = tokens[i].strip()
409
+ if text:
410
+ segments.append({'emotion': current_emotion, 'text': text})
411
+ else:
412
+ # This is emotion
413
+ emotion = tokens[i].strip()
414
+ current_emotion = emotion
415
+
416
+ return segments
417
+
418
+ def update_speed(new_speed):
419
+ global speed
420
+ speed = new_speed
421
+ return f"Speed set to: {speed}"
422
+
423
+ with gr.Blocks() as app_credits:
424
+ gr.Markdown("""
425
+ # Credits
426
+
427
+ * [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
428
+ * [RootingInLoad](https://github.com/RootingInLoad) for the podcast generation
429
+ """)
430
+ with gr.Blocks() as app_tts:
431
+ gr.Markdown("# Batched TTS")
432
+ ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
433
+ gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
434
+ model_choice = gr.Radio(
435
+ choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
436
+ )
437
+ generate_btn = gr.Button("Synthesize", variant="primary")
438
+ with gr.Accordion("Advanced Settings", open=False):
439
+ ref_text_input = gr.Textbox(
440
+ label="Reference Text",
441
+ info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
442
+ lines=2,
443
+ )
444
+ remove_silence = gr.Checkbox(
445
+ label="Remove Silences",
446
+ info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
447
+ value=True,
448
+ )
449
+ split_words_input = gr.Textbox(
450
+ label="Custom Split Words",
451
+ info="Enter custom words to split on, separated by commas. Leave blank to use default list.",
452
+ lines=2,
453
+ )
454
+ speed_slider = gr.Slider(
455
+ label="Speed",
456
+ minimum=0.3,
457
+ maximum=2.0,
458
+ value=speed,
459
+ step=0.1,
460
+ info="Adjust the speed of the audio.",
461
+ )
462
+ speed_slider.change(update_speed, inputs=speed_slider)
463
+
464
+ audio_output = gr.Audio(label="Synthesized Audio")
465
+ spectrogram_output = gr.Image(label="Spectrogram")
466
+
467
+ generate_btn.click(
468
+ infer,
469
+ inputs=[
470
+ ref_audio_input,
471
+ ref_text_input,
472
+ gen_text_input,
473
+ model_choice,
474
+ remove_silence,
475
+ split_words_input,
476
+ ],
477
+ outputs=[audio_output, spectrogram_output],
478
+ )
479
+
480
+ with gr.Blocks() as app_podcast:
481
+ gr.Markdown("# Podcast Generation")
482
+ speaker1_name = gr.Textbox(label="Speaker 1 Name")
483
+ ref_audio_input1 = gr.Audio(label="Reference Audio (Speaker 1)", type="filepath")
484
+ ref_text_input1 = gr.Textbox(label="Reference Text (Speaker 1)", lines=2)
485
+
486
+ speaker2_name = gr.Textbox(label="Speaker 2 Name")
487
+ ref_audio_input2 = gr.Audio(label="Reference Audio (Speaker 2)", type="filepath")
488
+ ref_text_input2 = gr.Textbox(label="Reference Text (Speaker 2)", lines=2)
489
+
490
+ script_input = gr.Textbox(label="Podcast Script", lines=10,
491
+ placeholder="Enter the script with speaker names at the start of each block, e.g.:\nSean: How did you start studying...\n\nMeghan: I came to my interest in technology...\nIt was a long journey...\n\nSean: That's fascinating. Can you elaborate...")
492
+
493
+ podcast_model_choice = gr.Radio(
494
+ choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
495
+ )
496
+ podcast_remove_silence = gr.Checkbox(
497
+ label="Remove Silences",
498
+ value=True,
499
+ )
500
+ generate_podcast_btn = gr.Button("Generate Podcast", variant="primary")
501
+ podcast_output = gr.Audio(label="Generated Podcast")
502
+
503
+ def podcast_generation(script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence):
504
+ return generate_podcast(script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence)
505
+
506
+ generate_podcast_btn.click(
507
+ podcast_generation,
508
+ inputs=[
509
+ script_input,
510
+ speaker1_name,
511
+ ref_audio_input1,
512
+ ref_text_input1,
513
+ speaker2_name,
514
+ ref_audio_input2,
515
+ ref_text_input2,
516
+ podcast_model_choice,
517
+ podcast_remove_silence,
518
+ ],
519
+ outputs=podcast_output,
520
+ )
521
+
522
+ def parse_emotional_text(gen_text):
523
+ # Pattern to find (Emotion)
524
+ pattern = r'\((.*?)\)'
525
+
526
+ # Split the text by the pattern
527
+ tokens = re.split(pattern, gen_text)
528
+
529
+ segments = []
530
+
531
+ current_emotion = 'Regular'
532
+
533
+ for i in range(len(tokens)):
534
+ if i % 2 == 0:
535
+ # This is text
536
+ text = tokens[i].strip()
537
+ if text:
538
+ segments.append({'emotion': current_emotion, 'text': text})
539
+ else:
540
+ # This is emotion
541
+ emotion = tokens[i].strip()
542
+ current_emotion = emotion
543
+
544
+ return segments
545
+
546
+ with gr.Blocks() as app_emotional:
547
+ # New section for emotional generation
548
+ gr.Markdown(
549
+ """
550
+ # Multiple Speech-Type Generation
551
+
552
+ This section allows you to upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the "Add Speech Type" button. Enter your text in the format shown below, and the system will generate speech using the appropriate emotions. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.
553
+
554
+ **Example Input:**
555
+
556
+ (Regular) Hello, I'd like to order a sandwich please. (Surprised) What do you mean you're out of bread? (Sad) I really wanted a sandwich though... (Angry) You know what, darn you and your little shop, you suck! (Whisper) I'll just go back home and cry now. (Shouting) Why me?!
557
+ """
558
+ )
559
+
560
+ gr.Markdown("Upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button.")
561
+
562
+ # Regular speech type (mandatory)
563
+ with gr.Row():
564
+ regular_name = gr.Textbox(value='Regular', label='Speech Type Name', interactive=False)
565
+ regular_audio = gr.Audio(label='Regular Reference Audio', type='filepath')
566
+ regular_ref_text = gr.Textbox(label='Reference Text (Regular)', lines=2)
567
+
568
+ # Additional speech types (up to 9 more)
569
+ max_speech_types = 10
570
+ speech_type_names = []
571
+ speech_type_audios = []
572
+ speech_type_ref_texts = []
573
+ speech_type_delete_btns = []
574
+
575
+ for i in range(max_speech_types - 1):
576
+ with gr.Row():
577
+ name_input = gr.Textbox(label='Speech Type Name', visible=False)
578
+ audio_input = gr.Audio(label='Reference Audio', type='filepath', visible=False)
579
+ ref_text_input = gr.Textbox(label='Reference Text', lines=2, visible=False)
580
+ delete_btn = gr.Button("Delete", variant="secondary", visible=False)
581
+ speech_type_names.append(name_input)
582
+ speech_type_audios.append(audio_input)
583
+ speech_type_ref_texts.append(ref_text_input)
584
+ speech_type_delete_btns.append(delete_btn)
585
+
586
+ # Button to add speech type
587
+ add_speech_type_btn = gr.Button("Add Speech Type")
588
+
589
+ # Keep track of current number of speech types
590
+ speech_type_count = gr.State(value=0)
591
+
592
+ # Function to add a speech type
593
+ def add_speech_type_fn(speech_type_count):
594
+ if speech_type_count < max_speech_types - 1:
595
+ speech_type_count += 1
596
+ # Prepare updates for the components
597
+ name_updates = []
598
+ audio_updates = []
599
+ ref_text_updates = []
600
+ delete_btn_updates = []
601
+ for i in range(max_speech_types - 1):
602
+ if i < speech_type_count:
603
+ name_updates.append(gr.update(visible=True))
604
+ audio_updates.append(gr.update(visible=True))
605
+ ref_text_updates.append(gr.update(visible=True))
606
+ delete_btn_updates.append(gr.update(visible=True))
607
+ else:
608
+ name_updates.append(gr.update())
609
+ audio_updates.append(gr.update())
610
+ ref_text_updates.append(gr.update())
611
+ delete_btn_updates.append(gr.update())
612
+ else:
613
+ # Optionally, show a warning
614
+ # gr.Warning("Maximum number of speech types reached.")
615
+ name_updates = [gr.update() for _ in range(max_speech_types - 1)]
616
+ audio_updates = [gr.update() for _ in range(max_speech_types - 1)]
617
+ ref_text_updates = [gr.update() for _ in range(max_speech_types - 1)]
618
+ delete_btn_updates = [gr.update() for _ in range(max_speech_types - 1)]
619
+ return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates
620
+
621
+ add_speech_type_btn.click(
622
+ add_speech_type_fn,
623
+ inputs=speech_type_count,
624
+ outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns
625
+ )
626
+
627
+ # Function to delete a speech type
628
+ def make_delete_speech_type_fn(index):
629
+ def delete_speech_type_fn(speech_type_count):
630
+ # Prepare updates
631
+ name_updates = []
632
+ audio_updates = []
633
+ ref_text_updates = []
634
+ delete_btn_updates = []
635
+
636
+ for i in range(max_speech_types - 1):
637
+ if i == index:
638
+ name_updates.append(gr.update(visible=False, value=''))
639
+ audio_updates.append(gr.update(visible=False, value=None))
640
+ ref_text_updates.append(gr.update(visible=False, value=''))
641
+ delete_btn_updates.append(gr.update(visible=False))
642
+ else:
643
+ name_updates.append(gr.update())
644
+ audio_updates.append(gr.update())
645
+ ref_text_updates.append(gr.update())
646
+ delete_btn_updates.append(gr.update())
647
+
648
+ speech_type_count = max(0, speech_type_count - 1)
649
+
650
+ return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates
651
+
652
+ return delete_speech_type_fn
653
+
654
+ for i, delete_btn in enumerate(speech_type_delete_btns):
655
+ delete_fn = make_delete_speech_type_fn(i)
656
+ delete_btn.click(
657
+ delete_fn,
658
+ inputs=speech_type_count,
659
+ outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns
660
+ )
661
+
662
+ # Text input for the prompt
663
+ gen_text_input_emotional = gr.Textbox(label="Text to Generate", lines=10)
664
+
665
+ # Model choice
666
+ model_choice_emotional = gr.Radio(
667
+ choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
668
+ )
669
+
670
+ with gr.Accordion("Advanced Settings", open=False):
671
+ remove_silence_emotional = gr.Checkbox(
672
+ label="Remove Silences",
673
+ value=True,
674
+ )
675
+
676
+ # Generate button
677
+ generate_emotional_btn = gr.Button("Generate Emotional Speech", variant="primary")
678
+
679
+ # Output audio
680
+ audio_output_emotional = gr.Audio(label="Synthesized Audio")
681
+
682
+ def generate_emotional_speech(
683
+ regular_audio,
684
+ regular_ref_text,
685
+ gen_text,
686
+ *args,
687
+ ):
688
+ num_additional_speech_types = max_speech_types - 1
689
+ speech_type_names_list = args[:num_additional_speech_types]
690
+ speech_type_audios_list = args[num_additional_speech_types:2 * num_additional_speech_types]
691
+ speech_type_ref_texts_list = args[2 * num_additional_speech_types:3 * num_additional_speech_types]
692
+ model_choice = args[3 * num_additional_speech_types]
693
+ remove_silence = args[3 * num_additional_speech_types + 1]
694
+
695
+ # Collect the speech types and their audios into a dict
696
+ speech_types = {'Regular': {'audio': regular_audio, 'ref_text': regular_ref_text}}
697
+
698
+ for name_input, audio_input, ref_text_input in zip(speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list):
699
+ if name_input and audio_input:
700
+ speech_types[name_input] = {'audio': audio_input, 'ref_text': ref_text_input}
701
+
702
+ # Parse the gen_text into segments
703
+ segments = parse_speechtypes_text(gen_text)
704
+
705
+ # For each segment, generate speech
706
+ generated_audio_segments = []
707
+ current_emotion = 'Regular'
708
+
709
+ for segment in segments:
710
+ emotion = segment['emotion']
711
+ text = segment['text']
712
+
713
+ if emotion in speech_types:
714
+ current_emotion = emotion
715
+ else:
716
+ # If emotion not available, default to Regular
717
+ current_emotion = 'Regular'
718
+
719
+ ref_audio = speech_types[current_emotion]['audio']
720
+ ref_text = speech_types[current_emotion].get('ref_text', '')
721
+
722
+ # Generate speech for this segment
723
+ audio, _ = infer(ref_audio, ref_text, text, model_choice, remove_silence, "")
724
+ sr, audio_data = audio
725
+
726
+ generated_audio_segments.append(audio_data)
727
+
728
+ # Concatenate all audio segments
729
+ if generated_audio_segments:
730
+ final_audio_data = np.concatenate(generated_audio_segments)
731
+ return (sr, final_audio_data)
732
+ else:
733
+ gr.Warning("No audio generated.")
734
+ return None
735
+
736
+ generate_emotional_btn.click(
737
+ generate_emotional_speech,
738
+ inputs=[
739
+ regular_audio,
740
+ regular_ref_text,
741
+ gen_text_input_emotional,
742
+ ] + speech_type_names + speech_type_audios + speech_type_ref_texts + [
743
+ model_choice_emotional,
744
+ remove_silence_emotional,
745
+ ],
746
+ outputs=audio_output_emotional,
747
+ )
748
+
749
+ # Validation function to disable Generate button if speech types are missing
750
+ def validate_speech_types(
751
+ gen_text,
752
+ regular_name,
753
+ *args
754
+ ):
755
+ num_additional_speech_types = max_speech_types - 1
756
+ speech_type_names_list = args[:num_additional_speech_types]
757
+
758
+ # Collect the speech types names
759
+ speech_types_available = set()
760
+ if regular_name:
761
+ speech_types_available.add(regular_name)
762
+ for name_input in speech_type_names_list:
763
+ if name_input:
764
+ speech_types_available.add(name_input)
765
+
766
+ # Parse the gen_text to get the speech types used
767
+ segments = parse_emotional_text(gen_text)
768
+ speech_types_in_text = set(segment['emotion'] for segment in segments)
769
+
770
+ # Check if all speech types in text are available
771
+ missing_speech_types = speech_types_in_text - speech_types_available
772
+
773
+ if missing_speech_types:
774
+ # Disable the generate button
775
+ return gr.update(interactive=False)
776
+ else:
777
+ # Enable the generate button
778
+ return gr.update(interactive=True)
779
+
780
+ gen_text_input_emotional.change(
781
+ validate_speech_types,
782
+ inputs=[gen_text_input_emotional, regular_name] + speech_type_names,
783
+ outputs=generate_emotional_btn
784
+ )
785
+ with gr.Blocks() as app:
786
+ gr.Markdown(
787
+ """
788
+ # E2/F5 TTS
789
+
790
+ This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:
791
+
792
+ * [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
793
+ * [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
794
+
795
+ The checkpoints support English and Chinese.
796
+
797
+ If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
798
+
799
+ **NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
800
+ """
801
+ )
802
+ gr.TabbedInterface([app_tts, app_podcast, app_emotional, app_credits], ["TTS", "Podcast", "Multi-Style", "Credits"])
803
+
804
+ @click.command()
805
+ @click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
806
+ @click.option("--host", "-H", default=None, help="Host to run the app on")
807
+ @click.option(
808
+ "--share",
809
+ "-s",
810
+ default=False,
811
+ is_flag=True,
812
+ help="Share the app via Gradio share link",
813
+ )
814
+ @click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
815
+ def main(port, host, share, api):
816
+ global app
817
+ print(f"Starting app...")
818
+ app.queue(api_open=api).launch(
819
+ server_name=host, server_port=port, share=share, show_api=api
820
+ )
821
+
822
+
823
+ if __name__ == "__main__":
824
+ main()
inference-cli.py ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import codecs
3
+ import re
4
+ import tempfile
5
+ from pathlib import Path
6
+
7
+ import numpy as np
8
+ import soundfile as sf
9
+ import tomli
10
+ import torch
11
+ import torchaudio
12
+ import tqdm
13
+ from cached_path import cached_path
14
+ from einops import rearrange
15
+ from pydub import AudioSegment, silence
16
+ from transformers import pipeline
17
+ from vocos import Vocos
18
+
19
+ from model import CFM, DiT, MMDiT, UNetT
20
+ from model.utils import (convert_char_to_pinyin, get_tokenizer,
21
+ load_checkpoint, save_spectrogram)
22
+
23
+ parser = argparse.ArgumentParser(
24
+ prog="python3 inference-cli.py",
25
+ description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
26
+ epilog="Specify options above to override one or more settings from config.",
27
+ )
28
+ parser.add_argument(
29
+ "-c",
30
+ "--config",
31
+ help="Configuration file. Default=cli-config.toml",
32
+ default="inference-cli.toml",
33
+ )
34
+ parser.add_argument(
35
+ "-m",
36
+ "--model",
37
+ help="F5-TTS | E2-TTS",
38
+ )
39
+ parser.add_argument(
40
+ "-p",
41
+ "--ckpt_file",
42
+ help="The Checkpoint .pt",
43
+ )
44
+ parser.add_argument(
45
+ "-v",
46
+ "--vocab_file",
47
+ help="The vocab .txt",
48
+ )
49
+ parser.add_argument(
50
+ "-r",
51
+ "--ref_audio",
52
+ type=str,
53
+ help="Reference audio file < 15 seconds."
54
+ )
55
+ parser.add_argument(
56
+ "-s",
57
+ "--ref_text",
58
+ type=str,
59
+ default="666",
60
+ help="Subtitle for the reference audio."
61
+ )
62
+ parser.add_argument(
63
+ "-t",
64
+ "--gen_text",
65
+ type=str,
66
+ help="Text to generate.",
67
+ )
68
+ parser.add_argument(
69
+ "-f",
70
+ "--gen_file",
71
+ type=str,
72
+ help="File with text to generate. Ignores --text",
73
+ )
74
+ parser.add_argument(
75
+ "-o",
76
+ "--output_dir",
77
+ type=str,
78
+ help="Path to output folder..",
79
+ )
80
+ parser.add_argument(
81
+ "--remove_silence",
82
+ help="Remove silence.",
83
+ )
84
+ parser.add_argument(
85
+ "--load_vocoder_from_local",
86
+ action="store_true",
87
+ help="load vocoder from local. Default: ../checkpoints/charactr/vocos-mel-24khz",
88
+ )
89
+ args = parser.parse_args()
90
+
91
+ config = tomli.load(open(args.config, "rb"))
92
+
93
+ ref_audio = args.ref_audio if args.ref_audio else config["ref_audio"]
94
+ ref_text = args.ref_text if args.ref_text != "666" else config["ref_text"]
95
+ gen_text = args.gen_text if args.gen_text else config["gen_text"]
96
+ gen_file = args.gen_file if args.gen_file else config["gen_file"]
97
+ if gen_file:
98
+ gen_text = codecs.open(gen_file, "r", "utf-8").read()
99
+ output_dir = args.output_dir if args.output_dir else config["output_dir"]
100
+ model = args.model if args.model else config["model"]
101
+ ckpt_file = args.ckpt_file if args.ckpt_file else ""
102
+ vocab_file = args.vocab_file if args.vocab_file else ""
103
+ remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"]
104
+ wave_path = Path(output_dir)/"out.wav"
105
+ spectrogram_path = Path(output_dir)/"out.png"
106
+ vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
107
+
108
+ device = (
109
+ "cuda"
110
+ if torch.cuda.is_available()
111
+ else "mps" if torch.backends.mps.is_available() else "cpu"
112
+ )
113
+
114
+ if args.load_vocoder_from_local:
115
+ print(f"Load vocos from local path {vocos_local_path}")
116
+ vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
117
+ state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", map_location=device)
118
+ vocos.load_state_dict(state_dict)
119
+ vocos.eval()
120
+ else:
121
+ print("Donwload Vocos from huggingface charactr/vocos-mel-24khz")
122
+ vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
123
+
124
+ print(f"Using {device} device")
125
+
126
+ # --------------------- Settings -------------------- #
127
+
128
+ target_sample_rate = 24000
129
+ n_mel_channels = 100
130
+ hop_length = 256
131
+ target_rms = 0.1
132
+ nfe_step = 32 # 16, 32
133
+ cfg_strength = 2.0
134
+ ode_method = "euler"
135
+ sway_sampling_coef = -1.0
136
+ speed = 1.0
137
+ # fix_duration = 27 # None or float (duration in seconds)
138
+ fix_duration = None
139
+
140
+ def load_model(model_cls, model_cfg, ckpt_path,file_vocab):
141
+
142
+ if file_vocab=="":
143
+ file_vocab="Emilia_ZH_EN"
144
+ tokenizer="pinyin"
145
+ else:
146
+ tokenizer="custom"
147
+
148
+ print("\nvocab : ",vocab_file,tokenizer)
149
+ print("tokenizer : ",tokenizer)
150
+ print("model : ",ckpt_path,"\n")
151
+
152
+ vocab_char_map, vocab_size = get_tokenizer(file_vocab, tokenizer)
153
+ model = CFM(
154
+ transformer=model_cls(
155
+ **model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
156
+ ),
157
+ mel_spec_kwargs=dict(
158
+ target_sample_rate=target_sample_rate,
159
+ n_mel_channels=n_mel_channels,
160
+ hop_length=hop_length,
161
+ ),
162
+ odeint_kwargs=dict(
163
+ method=ode_method,
164
+ ),
165
+ vocab_char_map=vocab_char_map,
166
+ ).to(device)
167
+
168
+ model = load_checkpoint(model, ckpt_path, device, use_ema = True)
169
+
170
+ return model
171
+
172
+ # load models
173
+ F5TTS_model_cfg = dict(
174
+ dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
175
+ )
176
+ E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
177
+
178
+ def chunk_text(text, max_chars=135):
179
+ """
180
+ Splits the input text into chunks, each with a maximum number of characters.
181
+ Args:
182
+ text (str): The text to be split.
183
+ max_chars (int): The maximum number of characters per chunk.
184
+ Returns:
185
+ List[str]: A list of text chunks.
186
+ """
187
+ chunks = []
188
+ current_chunk = ""
189
+ # Split the text into sentences based on punctuation followed by whitespace
190
+ sentences = re.split(r'(?<=[;:,.!?])\s+|(?<=[;:,。!?])', text)
191
+
192
+ for sentence in sentences:
193
+ if len(current_chunk.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
194
+ current_chunk += sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
195
+ else:
196
+ if current_chunk:
197
+ chunks.append(current_chunk.strip())
198
+ current_chunk = sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
199
+
200
+ if current_chunk:
201
+ chunks.append(current_chunk.strip())
202
+
203
+ return chunks
204
+
205
+ #ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors
206
+ #if not Path(ckpt_path).exists():
207
+ #ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
208
+
209
+ def infer_batch(ref_audio, ref_text, gen_text_batches, model,ckpt_file,file_vocab, remove_silence, cross_fade_duration=0.15):
210
+ if model == "F5-TTS":
211
+
212
+ if ckpt_file == "":
213
+ repo_name= "F5-TTS"
214
+ exp_name = "F5TTS_Base"
215
+ ckpt_step= 1200000
216
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
217
+
218
+ ema_model = load_model(DiT, F5TTS_model_cfg, ckpt_file,file_vocab)
219
+
220
+ elif model == "E2-TTS":
221
+ if ckpt_file == "":
222
+ repo_name= "E2-TTS"
223
+ exp_name = "E2TTS_Base"
224
+ ckpt_step= 1200000
225
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
226
+
227
+ ema_model = load_model(UNetT, E2TTS_model_cfg, ckpt_file,file_vocab)
228
+
229
+ audio, sr = ref_audio
230
+ if audio.shape[0] > 1:
231
+ audio = torch.mean(audio, dim=0, keepdim=True)
232
+
233
+ rms = torch.sqrt(torch.mean(torch.square(audio)))
234
+ if rms < target_rms:
235
+ audio = audio * target_rms / rms
236
+ if sr != target_sample_rate:
237
+ resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
238
+ audio = resampler(audio)
239
+ audio = audio.to(device)
240
+
241
+ generated_waves = []
242
+ spectrograms = []
243
+
244
+ if len(ref_text[-1].encode('utf-8')) == 1:
245
+ ref_text = ref_text + " "
246
+ for i, gen_text in enumerate(tqdm.tqdm(gen_text_batches)):
247
+ # Prepare the text
248
+ text_list = [ref_text + gen_text]
249
+ final_text_list = convert_char_to_pinyin(text_list)
250
+
251
+ # Calculate duration
252
+ ref_audio_len = audio.shape[-1] // hop_length
253
+ zh_pause_punc = r"。,、;:?!"
254
+ ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text))
255
+ gen_text_len = len(gen_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
256
+ duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
257
+
258
+ # inference
259
+ with torch.inference_mode():
260
+ generated, _ = ema_model.sample(
261
+ cond=audio,
262
+ text=final_text_list,
263
+ duration=duration,
264
+ steps=nfe_step,
265
+ cfg_strength=cfg_strength,
266
+ sway_sampling_coef=sway_sampling_coef,
267
+ )
268
+
269
+ generated = generated[:, ref_audio_len:, :]
270
+ generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
271
+ generated_wave = vocos.decode(generated_mel_spec.cpu())
272
+ if rms < target_rms:
273
+ generated_wave = generated_wave * rms / target_rms
274
+
275
+ # wav -> numpy
276
+ generated_wave = generated_wave.squeeze().cpu().numpy()
277
+
278
+ generated_waves.append(generated_wave)
279
+ spectrograms.append(generated_mel_spec[0].cpu().numpy())
280
+
281
+ # Combine all generated waves with cross-fading
282
+ if cross_fade_duration <= 0:
283
+ # Simply concatenate
284
+ final_wave = np.concatenate(generated_waves)
285
+ else:
286
+ final_wave = generated_waves[0]
287
+ for i in range(1, len(generated_waves)):
288
+ prev_wave = final_wave
289
+ next_wave = generated_waves[i]
290
+
291
+ # Calculate cross-fade samples, ensuring it does not exceed wave lengths
292
+ cross_fade_samples = int(cross_fade_duration * target_sample_rate)
293
+ cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
294
+
295
+ if cross_fade_samples <= 0:
296
+ # No overlap possible, concatenate
297
+ final_wave = np.concatenate([prev_wave, next_wave])
298
+ continue
299
+
300
+ # Overlapping parts
301
+ prev_overlap = prev_wave[-cross_fade_samples:]
302
+ next_overlap = next_wave[:cross_fade_samples]
303
+
304
+ # Fade out and fade in
305
+ fade_out = np.linspace(1, 0, cross_fade_samples)
306
+ fade_in = np.linspace(0, 1, cross_fade_samples)
307
+
308
+ # Cross-faded overlap
309
+ cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
310
+
311
+ # Combine
312
+ new_wave = np.concatenate([
313
+ prev_wave[:-cross_fade_samples],
314
+ cross_faded_overlap,
315
+ next_wave[cross_fade_samples:]
316
+ ])
317
+
318
+ final_wave = new_wave
319
+
320
+ # Create a combined spectrogram
321
+ combined_spectrogram = np.concatenate(spectrograms, axis=1)
322
+
323
+ return final_wave, combined_spectrogram
324
+
325
+ def process_voice(ref_audio_orig, ref_text):
326
+ print("Converting audio...")
327
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
328
+ aseg = AudioSegment.from_file(ref_audio_orig)
329
+
330
+ non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000)
331
+ non_silent_wave = AudioSegment.silent(duration=0)
332
+ for non_silent_seg in non_silent_segs:
333
+ non_silent_wave += non_silent_seg
334
+ aseg = non_silent_wave
335
+
336
+ audio_duration = len(aseg)
337
+ if audio_duration > 15000:
338
+ print("Audio is over 15s, clipping to only first 15s.")
339
+ aseg = aseg[:15000]
340
+ aseg.export(f.name, format="wav")
341
+ ref_audio = f.name
342
+
343
+ if not ref_text.strip():
344
+ print("No reference text provided, transcribing reference audio...")
345
+ pipe = pipeline(
346
+ "automatic-speech-recognition",
347
+ model="openai/whisper-large-v3-turbo",
348
+ torch_dtype=torch.float16,
349
+ device=device,
350
+ )
351
+ ref_text = pipe(
352
+ ref_audio,
353
+ chunk_length_s=30,
354
+ batch_size=128,
355
+ generate_kwargs={"task": "transcribe"},
356
+ return_timestamps=False,
357
+ )["text"].strip()
358
+ print("Finished transcription")
359
+ else:
360
+ print("Using custom reference text...")
361
+ return ref_audio, ref_text
362
+
363
+ def infer(ref_audio, ref_text, gen_text, model,ckpt_file,file_vocab, remove_silence, cross_fade_duration=0.15):
364
+ print(gen_text)
365
+ # Add the functionality to ensure it ends with ". "
366
+ if not ref_text.endswith(". ") and not ref_text.endswith("。"):
367
+ if ref_text.endswith("."):
368
+ ref_text += " "
369
+ else:
370
+ ref_text += ". "
371
+
372
+ # Split the input text into batches
373
+ audio, sr = torchaudio.load(ref_audio)
374
+ max_chars = int(len(ref_text.encode('utf-8')) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
375
+ gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
376
+ print('ref_text', ref_text)
377
+ for i, gen_text in enumerate(gen_text_batches):
378
+ print(f'gen_text {i}', gen_text)
379
+
380
+ print(f"Generating audio using {model} in {len(gen_text_batches)} batches, loading models...")
381
+ return infer_batch((audio, sr), ref_text, gen_text_batches, model,ckpt_file,file_vocab, remove_silence, cross_fade_duration)
382
+
383
+
384
+ def process(ref_audio, ref_text, text_gen, model,ckpt_file,file_vocab, remove_silence):
385
+ main_voice = {"ref_audio":ref_audio, "ref_text":ref_text}
386
+ if "voices" not in config:
387
+ voices = {"main": main_voice}
388
+ else:
389
+ voices = config["voices"]
390
+ voices["main"] = main_voice
391
+ for voice in voices:
392
+ voices[voice]['ref_audio'], voices[voice]['ref_text'] = process_voice(voices[voice]['ref_audio'], voices[voice]['ref_text'])
393
+
394
+ generated_audio_segments = []
395
+ reg1 = r'(?=\[\w+\])'
396
+ chunks = re.split(reg1, text_gen)
397
+ reg2 = r'\[(\w+)\]'
398
+ for text in chunks:
399
+ match = re.match(reg2, text)
400
+ if not match or voice not in voices:
401
+ voice = "main"
402
+ else:
403
+ voice = match[1]
404
+ text = re.sub(reg2, "", text)
405
+ gen_text = text.strip()
406
+ ref_audio = voices[voice]['ref_audio']
407
+ ref_text = voices[voice]['ref_text']
408
+ print(f"Voice: {voice}")
409
+ audio, spectragram = infer(ref_audio, ref_text, gen_text, model,ckpt_file,file_vocab, remove_silence)
410
+ generated_audio_segments.append(audio)
411
+
412
+ if generated_audio_segments:
413
+ final_wave = np.concatenate(generated_audio_segments)
414
+ with open(wave_path, "wb") as f:
415
+ sf.write(f.name, final_wave, target_sample_rate)
416
+ # Remove silence
417
+ if remove_silence:
418
+ aseg = AudioSegment.from_file(f.name)
419
+ non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
420
+ non_silent_wave = AudioSegment.silent(duration=0)
421
+ for non_silent_seg in non_silent_segs:
422
+ non_silent_wave += non_silent_seg
423
+ aseg = non_silent_wave
424
+ aseg.export(f.name, format="wav")
425
+ print(f.name)
426
+
427
+
428
+ process(ref_audio, ref_text, gen_text, model,ckpt_file,vocab_file, remove_silence)
inference-cli.toml ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # F5-TTS | E2-TTS
2
+ model = "F5-TTS"
3
+ ref_audio = "tests/ref_audio/test_en_1_ref_short.wav"
4
+ # If an empty "", transcribes the reference audio automatically.
5
+ ref_text = "Some call me nature, others call me mother nature."
6
+ gen_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences."
7
+ # File with text to generate. Ignores the text above.
8
+ gen_file = ""
9
+ remove_silence = false
10
+ output_dir = "tests"
requirements.txt ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accelerate>=0.33.0
2
+ cached_path
3
+ click
4
+ datasets
5
+ einops>=0.8.0
6
+ einx>=0.3.0
7
+ ema_pytorch>=0.5.2
8
+ gradio
9
+ jieba
10
+ librosa
11
+ matplotlib
12
+ numpy<=1.26.4
13
+ pydub
14
+ pypinyin
15
+ safetensors
16
+ soundfile
17
+ tomli
18
+ torchdiffeq
19
+ tqdm>=4.65.0
20
+ transformers
21
+ vocos
22
+ wandb
23
+ x_transformers>=1.31.14
requirements_eval.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ faster_whisper
2
+ funasr
3
+ jiwer
4
+ zhconv
5
+ zhon
speech_edit.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ import torchaudio
6
+ from einops import rearrange
7
+ from vocos import Vocos
8
+
9
+ from model import CFM, UNetT, DiT, MMDiT
10
+ from model.utils import (
11
+ load_checkpoint,
12
+ get_tokenizer,
13
+ convert_char_to_pinyin,
14
+ save_spectrogram,
15
+ )
16
+
17
+ device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
18
+
19
+
20
+ # --------------------- Dataset Settings -------------------- #
21
+
22
+ target_sample_rate = 24000
23
+ n_mel_channels = 100
24
+ hop_length = 256
25
+ target_rms = 0.1
26
+
27
+ tokenizer = "pinyin"
28
+ dataset_name = "Emilia_ZH_EN"
29
+
30
+
31
+ # ---------------------- infer setting ---------------------- #
32
+
33
+ seed = None # int | None
34
+
35
+ exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
36
+ ckpt_step = 1200000
37
+
38
+ nfe_step = 32 # 16, 32
39
+ cfg_strength = 2.
40
+ ode_method = 'euler' # euler | midpoint
41
+ sway_sampling_coef = -1.
42
+ speed = 1.
43
+
44
+ if exp_name == "F5TTS_Base":
45
+ model_cls = DiT
46
+ model_cfg = dict(dim = 1024, depth = 22, heads = 16, ff_mult = 2, text_dim = 512, conv_layers = 4)
47
+
48
+ elif exp_name == "E2TTS_Base":
49
+ model_cls = UNetT
50
+ model_cfg = dict(dim = 1024, depth = 24, heads = 16, ff_mult = 4)
51
+
52
+ ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt"
53
+ output_dir = "tests"
54
+
55
+ # [leverage https://github.com/MahmoudAshraf97/ctc-forced-aligner to get char level alignment]
56
+ # pip install git+https://github.com/MahmoudAshraf97/ctc-forced-aligner.git
57
+ # [write the origin_text into a file, e.g. tests/test_edit.txt]
58
+ # ctc-forced-aligner --audio_path "tests/ref_audio/test_en_1_ref_short.wav" --text_path "tests/test_edit.txt" --language "zho" --romanize --split_size "char"
59
+ # [result will be saved at same path of audio file]
60
+ # [--language "zho" for Chinese, "eng" for English]
61
+ # [if local ckpt, set --alignment_model "../checkpoints/mms-300m-1130-forced-aligner"]
62
+
63
+ audio_to_edit = "tests/ref_audio/test_en_1_ref_short.wav"
64
+ origin_text = "Some call me nature, others call me mother nature."
65
+ target_text = "Some call me optimist, others call me realist."
66
+ parts_to_edit = [[1.42, 2.44], [4.04, 4.9], ] # stard_ends of "nature" & "mother nature", in seconds
67
+ fix_duration = [1.2, 1, ] # fix duration for "optimist" & "realist", in seconds
68
+
69
+ # audio_to_edit = "tests/ref_audio/test_zh_1_ref_short.wav"
70
+ # origin_text = "对,这就是我,万人敬仰的太乙真人。"
71
+ # target_text = "对,那就是你,万人敬仰的太白金星。"
72
+ # parts_to_edit = [[0.84, 1.4], [1.92, 2.4], [4.26, 6.26], ]
73
+ # fix_duration = None # use origin text duration
74
+
75
+
76
+ # -------------------------------------------------#
77
+
78
+ use_ema = True
79
+
80
+ if not os.path.exists(output_dir):
81
+ os.makedirs(output_dir)
82
+
83
+ # Vocoder model
84
+ local = False
85
+ if local:
86
+ vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
87
+ vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
88
+ state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", weights_only=True, map_location=device)
89
+ vocos.load_state_dict(state_dict)
90
+
91
+ vocos.eval()
92
+ else:
93
+ vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
94
+
95
+ # Tokenizer
96
+ vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
97
+
98
+ # Model
99
+ model = CFM(
100
+ transformer = model_cls(
101
+ **model_cfg,
102
+ text_num_embeds = vocab_size,
103
+ mel_dim = n_mel_channels
104
+ ),
105
+ mel_spec_kwargs = dict(
106
+ target_sample_rate = target_sample_rate,
107
+ n_mel_channels = n_mel_channels,
108
+ hop_length = hop_length,
109
+ ),
110
+ odeint_kwargs = dict(
111
+ method = ode_method,
112
+ ),
113
+ vocab_char_map = vocab_char_map,
114
+ ).to(device)
115
+
116
+ model = load_checkpoint(model, ckpt_path, device, use_ema = use_ema)
117
+
118
+ # Audio
119
+ audio, sr = torchaudio.load(audio_to_edit)
120
+ if audio.shape[0] > 1:
121
+ audio = torch.mean(audio, dim=0, keepdim=True)
122
+ rms = torch.sqrt(torch.mean(torch.square(audio)))
123
+ if rms < target_rms:
124
+ audio = audio * target_rms / rms
125
+ if sr != target_sample_rate:
126
+ resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
127
+ audio = resampler(audio)
128
+ offset = 0
129
+ audio_ = torch.zeros(1, 0)
130
+ edit_mask = torch.zeros(1, 0, dtype=torch.bool)
131
+ for part in parts_to_edit:
132
+ start, end = part
133
+ part_dur = end - start if fix_duration is None else fix_duration.pop(0)
134
+ part_dur = part_dur * target_sample_rate
135
+ start = start * target_sample_rate
136
+ audio_ = torch.cat((audio_, audio[:, round(offset):round(start)], torch.zeros(1, round(part_dur))), dim = -1)
137
+ edit_mask = torch.cat((edit_mask,
138
+ torch.ones(1, round((start - offset) / hop_length), dtype = torch.bool),
139
+ torch.zeros(1, round(part_dur / hop_length), dtype = torch.bool)
140
+ ), dim = -1)
141
+ offset = end * target_sample_rate
142
+ # audio = torch.cat((audio_, audio[:, round(offset):]), dim = -1)
143
+ edit_mask = F.pad(edit_mask, (0, audio.shape[-1] // hop_length - edit_mask.shape[-1] + 1), value = True)
144
+ audio = audio.to(device)
145
+ edit_mask = edit_mask.to(device)
146
+
147
+ # Text
148
+ text_list = [target_text]
149
+ if tokenizer == "pinyin":
150
+ final_text_list = convert_char_to_pinyin(text_list)
151
+ else:
152
+ final_text_list = [text_list]
153
+ print(f"text : {text_list}")
154
+ print(f"pinyin: {final_text_list}")
155
+
156
+ # Duration
157
+ ref_audio_len = 0
158
+ duration = audio.shape[-1] // hop_length
159
+
160
+ # Inference
161
+ with torch.inference_mode():
162
+ generated, trajectory = model.sample(
163
+ cond = audio,
164
+ text = final_text_list,
165
+ duration = duration,
166
+ steps = nfe_step,
167
+ cfg_strength = cfg_strength,
168
+ sway_sampling_coef = sway_sampling_coef,
169
+ seed = seed,
170
+ edit_mask = edit_mask,
171
+ )
172
+ print(f"Generated mel: {generated.shape}")
173
+
174
+ # Final result
175
+ generated = generated[:, ref_audio_len:, :]
176
+ generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
177
+ generated_wave = vocos.decode(generated_mel_spec.cpu())
178
+ if rms < target_rms:
179
+ generated_wave = generated_wave * rms / target_rms
180
+
181
+ save_spectrogram(generated_mel_spec[0].cpu().numpy(), f"{output_dir}/test_single_edit.png")
182
+ torchaudio.save(f"{output_dir}/test_single_edit.wav", generated_wave, target_sample_rate)
183
+ print(f"Generated wav: {generated_wave.shape}")
train.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from model import CFM, UNetT, DiT, MMDiT, Trainer
2
+ from model.utils import get_tokenizer
3
+ from model.dataset import load_dataset
4
+
5
+
6
+ # -------------------------- Dataset Settings --------------------------- #
7
+
8
+ target_sample_rate = 24000
9
+ n_mel_channels = 100
10
+ hop_length = 256
11
+
12
+ tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
13
+ tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
14
+ dataset_name = "Emilia_ZH_EN"
15
+
16
+ # -------------------------- Training Settings -------------------------- #
17
+
18
+ exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
19
+
20
+ learning_rate = 7.5e-5
21
+
22
+ batch_size_per_gpu = 38400 # 8 GPUs, 8 * 38400 = 307200
23
+ batch_size_type = "frame" # "frame" or "sample"
24
+ max_samples = 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
25
+ grad_accumulation_steps = 1 # note: updates = steps / grad_accumulation_steps
26
+ max_grad_norm = 1.
27
+
28
+ epochs = 11 # use linear decay, thus epochs control the slope
29
+ num_warmup_updates = 20000 # warmup steps
30
+ save_per_updates = 50000 # save checkpoint per steps
31
+ last_per_steps = 5000 # save last checkpoint per steps
32
+
33
+ # model params
34
+ if exp_name == "F5TTS_Base":
35
+ wandb_resume_id = None
36
+ model_cls = DiT
37
+ model_cfg = dict(dim = 1024, depth = 22, heads = 16, ff_mult = 2, text_dim = 512, conv_layers = 4)
38
+ elif exp_name == "E2TTS_Base":
39
+ wandb_resume_id = None
40
+ model_cls = UNetT
41
+ model_cfg = dict(dim = 1024, depth = 24, heads = 16, ff_mult = 4)
42
+
43
+
44
+ # ----------------------------------------------------------------------- #
45
+
46
+ def main():
47
+ if tokenizer == "custom":
48
+ tokenizer_path = tokenizer_path
49
+ else:
50
+ tokenizer_path = dataset_name
51
+ vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
52
+
53
+ mel_spec_kwargs = dict(
54
+ target_sample_rate = target_sample_rate,
55
+ n_mel_channels = n_mel_channels,
56
+ hop_length = hop_length,
57
+ )
58
+
59
+ e2tts = CFM(
60
+ transformer = model_cls(
61
+ **model_cfg,
62
+ text_num_embeds = vocab_size,
63
+ mel_dim = n_mel_channels
64
+ ),
65
+ mel_spec_kwargs = mel_spec_kwargs,
66
+ vocab_char_map = vocab_char_map,
67
+ )
68
+
69
+ trainer = Trainer(
70
+ e2tts,
71
+ epochs,
72
+ learning_rate,
73
+ num_warmup_updates = num_warmup_updates,
74
+ save_per_updates = save_per_updates,
75
+ checkpoint_path = f'ckpts/{exp_name}',
76
+ batch_size = batch_size_per_gpu,
77
+ batch_size_type = batch_size_type,
78
+ max_samples = max_samples,
79
+ grad_accumulation_steps = grad_accumulation_steps,
80
+ max_grad_norm = max_grad_norm,
81
+ wandb_project = "CFM-TTS",
82
+ wandb_run_name = exp_name,
83
+ wandb_resume_id = wandb_resume_id,
84
+ last_per_steps = last_per_steps,
85
+ )
86
+
87
+ train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
88
+ trainer.train(train_dataset,
89
+ resumable_with_seed = 666 # seed for shuffling dataset
90
+ )
91
+
92
+
93
+ if __name__ == '__main__':
94
+ main()