File size: 26,422 Bytes
208214b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 |
from pathlib import Path
from typing import Optional, List, Tuple
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import cv2 as cv2
import warnings
import torch
from torch import Tensor
from torch.nn import functional as F
import open_clip
from open_clip import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
from open_clip.transformer import _expand_token
from timm.layers import resample_abs_pos_embed
################################################################################
# Hooks utils #
################################################################################
# ------------ Hooked Multi-Head Attention ------------
# from https://github.com/mlfoundations/open_clip/blob/73fa7f03a33da53653f61841eb6d69aef161e521/src/open_clip/transformer.py#L129
def hooked_attention_forward(
self,
x,
x_k,
x_v,
attn_mask: Optional[torch.Tensor] = None,
need_weights: bool = False,
):
L, N, C = x.shape
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
head_dim = q.shape[-1]
scale = float(head_dim) ** -0.5
q = q * scale
attn = torch.bmm(q, k.transpose(-1, -2))
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
attn_mask = new_attn_mask
attn += attn_mask
attn = attn.softmax(dim=-1)
# Hook for attention maps
self.attention_map = attn
x = torch.bmm(attn, v)
x = x.transpose(0, 1).reshape(L, N, C)
x = self.out_proj(x)
return x
def hooked_attention_timm_forward(self, x, attn_mask=None):
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, self.head_dim)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
# Hook to save attention map for explainability
self.attention_map = attn
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
# ------------ Hooked Residual Transformer Block ------------
# from https://github.com/mlfoundations/open_clip/blob/73fa7f03a33da53653f61841eb6d69aef161e521/src/open_clip/transformer.py#L231
def hooked_resblock_forward(self, q_x, k_x=None, v_x=None, attn_mask=None):
assert k_x is None and v_x is None, "k_x and v_x must be None"
# Modify this line to include the necessary arguments for hooked_attention_forward
x = q_x + self.ls1(
self.attn(
self.norm1(q_x),
k_x=k_x,
v_x=v_x,
attn_mask=attn_mask,
)
)
# Hook for intermediate features post Attn
self.feat_post_attn = x
x = x + self.ls2(self.mlp(self.norm2(x)))
# Hook for intermediate features post MLP
self.feat_post_mlp = x
return x
# ------------ Hooked PyTorch's Multi-Head AttentionResidual ------------
# modified from PyTorch Library
# https://github.com/pytorch/pytorch/blob/8c8e4e31f2ddd8e59de18ac733c0c205c23d14ad/torch/nn/functional.py#L5178
def hooked_torch_multi_head_attention_forward(
self, query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None
):
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. When given a binary mask and a value is True,
the corresponding value on the attention layer will be ignored. When given
a byte mask and a value is non-zero, the corresponding value on the attention
layer will be ignored
need_weights: output attn_output_weights.
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
Shape:
- Inputs:
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
If a ByteTensor is provided, the non-zero positions will be ignored while the position
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
- Outputs:
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
L is the target sequence length, S is the source sequence length.
"""
if not self._qkv_same_embed_dim:
out, _attn_maps = hooked_torch_func_multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight,
self.in_proj_bias,
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout,
self.out_proj.weight,
self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask,
need_weights=True,
attn_mask=attn_mask,
use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight,
k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight,
)
# Hook for attention maps
self.attention_maps = _attn_maps
return out, _attn_maps
else:
out, _attn_maps = hooked_torch_func_multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight,
self.in_proj_bias,
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout,
self.out_proj.weight,
self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask,
need_weights=True,
attn_mask=attn_mask,
)
# Hook for attention maps
self.attention_maps = _attn_maps
return out, _attn_maps
def hooked_torch_func_multi_head_attention_forward(
query: Tensor,
key: Tensor,
value: Tensor,
embed_dim_to_check: int,
num_heads: int,
in_proj_weight: Tensor,
in_proj_bias: Tensor,
bias_k: Optional[Tensor],
bias_v: Optional[Tensor],
add_zero_attn: bool,
dropout_p: float,
out_proj_weight: Tensor,
out_proj_bias: Tensor,
training: bool = True,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
use_separate_proj_weight: bool = False,
q_proj_weight: Optional[Tensor] = None,
k_proj_weight: Optional[Tensor] = None,
v_proj_weight: Optional[Tensor] = None,
static_k: Optional[Tensor] = None,
static_v: Optional[Tensor] = None,
) -> Tuple[Tensor, Optional[Tensor]]:
if not torch.jit.is_scripting():
tens_ops = (
query,
key,
value,
in_proj_weight,
in_proj_bias,
bias_k,
bias_v,
out_proj_weight,
out_proj_bias,
)
if any([type(t) is not Tensor for t in tens_ops]) and F.has_torch_function(
tens_ops
):
return F.handle_torch_function(
multi_head_attention_forward,
tens_ops,
query,
key,
value,
embed_dim_to_check,
num_heads,
in_proj_weight,
in_proj_bias,
bias_k,
bias_v,
add_zero_attn,
dropout_p,
out_proj_weight,
out_proj_bias,
training=training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
use_separate_proj_weight=use_separate_proj_weight,
q_proj_weight=q_proj_weight,
k_proj_weight=k_proj_weight,
v_proj_weight=v_proj_weight,
static_k=static_k,
static_v=static_v,
)
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == embed_dim_to_check
# allow MHA to have different sizes for the feature dimension
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
head_dim = embed_dim // num_heads
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
scaling = float(head_dim) ** -0.5
if not use_separate_proj_weight:
if torch.equal(query, key) and torch.equal(key, value):
# self-attention
q, k, v = F.linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)
elif torch.equal(key, value):
# encoder-decoder attention
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = 0
_end = embed_dim
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = F.linear(query, _w, _b)
if key is None:
assert value is None
k = None
v = None
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
_end = None
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
k, v = F.linear(key, _w, _b).chunk(2, dim=-1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = 0
_end = embed_dim
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = F.linear(query, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
_end = embed_dim * 2
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
k = F.linear(key, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim * 2
_end = None
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
v = F.linear(value, _w, _b)
else:
q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
len1, len2 = q_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == query.size(-1)
k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
len1, len2 = k_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == key.size(-1)
v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
len1, len2 = v_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == value.size(-1)
if in_proj_bias is not None:
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim])
k = F.linear(
key, k_proj_weight_non_opt, in_proj_bias[embed_dim : (embed_dim * 2)]
)
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2) :])
else:
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias)
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias)
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias)
q = q * scaling
if attn_mask is not None:
assert (
attn_mask.dtype == torch.float32
or attn_mask.dtype == torch.float64
or attn_mask.dtype == torch.float16
or attn_mask.dtype == torch.uint8
or attn_mask.dtype == torch.bool
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
attn_mask.dtype
)
if attn_mask.dtype == torch.uint8:
warnings.warn(
"Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead."
)
attn_mask = attn_mask.to(torch.bool)
if attn_mask.dim() == 2:
attn_mask = attn_mask.unsqueeze(0)
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
raise RuntimeError("The size of the 2D attn_mask is not correct.")
elif attn_mask.dim() == 3:
if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]:
raise RuntimeError("The size of the 3D attn_mask is not correct.")
else:
raise RuntimeError(
"attn_mask's dimension {} is not supported".format(attn_mask.dim())
)
# attn_mask's dim is 3 now.
# convert ByteTensor key_padding_mask to bool
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
warnings.warn(
"Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead."
)
key_padding_mask = key_padding_mask.to(torch.bool)
if bias_k is not None and bias_v is not None:
if static_k is None and static_v is None:
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = pad(attn_mask, (0, 1))
if key_padding_mask is not None:
key_padding_mask = pad(key_padding_mask, (0, 1))
else:
assert static_k is None, "bias cannot be added to static key."
assert static_v is None, "bias cannot be added to static value."
else:
assert bias_k is None
assert bias_v is None
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if static_k is not None:
assert static_k.size(0) == bsz * num_heads
assert static_k.size(2) == head_dim
k = static_k
if static_v is not None:
assert static_v.size(0) == bsz * num_heads
assert static_v.size(2) == head_dim
v = static_v
src_len = k.size(1)
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if add_zero_attn:
src_len += 1
k = torch.cat(
[
k,
torch.zeros(
(k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device
),
],
dim=1,
)
v = torch.cat(
[
v,
torch.zeros(
(v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device
),
],
dim=1,
)
if attn_mask is not None:
attn_mask = pad(attn_mask, (0, 1))
if key_padding_mask is not None:
key_padding_mask = pad(key_padding_mask, (0, 1))
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
else:
attn_output_weights += attn_mask
if key_padding_mask is not None:
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
attn_output_weights = attn_output_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
float("-inf"),
)
attn_output_weights = attn_output_weights.view(
bsz * num_heads, tgt_len, src_len
)
attn_output_weights = F.softmax(attn_output_weights, dim=-1)
attn_output_weights = F.dropout(attn_output_weights, p=dropout_p, training=training)
# # use hooks for the attention weights if necessary
# self.attention_map = attn_output_weights
# # if attention_probs_forward_hook is not None and attention_probs_backwards_hook is not None:
# if attention_probs_forward_hook is not None:
# attention_probs_forward_hook(attn_output_weights)
# # attn_output_weights.register_hook(attention_probs_backwards_hook)
attn_output = torch.bmm(attn_output_weights, v)
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = F.linear(attn_output, out_proj_weight, out_proj_bias)
if need_weights:
# --- Fix: removed the unnecessary average over heads, Why?
# average attention weights over heads
# attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
# return attn_output, attn_output_weights.sum(dim=1) / num_heads
return attn_output, attn_output_weights
else:
return attn_output, None
# ------------ Hooked TimmModel's Residual Transformer Block ------------
def hooked_resblock_timm_forward(self, x: torch.Tensor) -> torch.Tensor:
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
self.feat_post_attn = x
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
self.feat_post_mlp = x
return x
# ------------ Hooked TimmModel's Attentional Pooler ------------
def hooked_attentional_pooler_timm_forward(self, x):
B, N, C = x.shape
if self.pos_embed is not None:
# FIXME interpolate
x = x + self.pos_embed.unsqueeze(0).to(x.dtype)
q_latent = self.latent.expand(B, -1, -1)
q = (
self.q(q_latent)
.reshape(B, self.latent_len, self.num_heads, self.head_dim)
.transpose(1, 2)
)
kv = (
self.kv(x)
.reshape(B, N, 2, self.num_heads, self.head_dim)
.permute(2, 0, 3, 1, 4)
)
k, v = kv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
x = attn @ v
# Hook to save attention map for explainability
self.attn_probs = attn
x = x.transpose(1, 2).reshape(B, self.latent_len, C)
x = self.proj(x)
x = self.proj_drop(x)
x = x + self.mlp(self.norm(x))
# optional pool if latent seq_len > 1 and pooled output is desired
if self.pool == "token":
x = x[:, 0]
elif self.pool == "avg":
x = x.mean(1)
return x
# ------------ OpenCLIP ViT forward with dynamic size ------------
def vit_dynamic_size_forward(self, x: torch.Tensor):
x = self.conv1(x) # shape = [*, width, grid, grid]
grid_h, grid_w = x.shape[2:]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
# class embeddings and positional embeddings
x = torch.cat(
[_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1
)
# shape = [*, grid ** 2 + 1, width]
if x.shape[1] != self.positional_embedding.shape[1]:
self.positional_embedding.data = resample_abs_pos_embed(
self.positional_embedding.unsqueeze(0),
new_size=[grid_h, grid_w],
# old_size=list(self.grid_size),
num_prefix_tokens=1,
interpolation="bicubic",
antialias=True,
)
x = x + self.positional_embedding.to(x.dtype)
x = self.patch_dropout(x)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
if self.attn_pool is not None:
if self.attn_pool_contrastive is not None:
# This is untested, WIP pooling that should match paper
x = self.ln_post(x) # TBD LN first or separate one after each pool?
tokens = self.attn_pool(x)
if self.attn_pool_type == "parallel":
pooled = self.attn_pool_contrastive(x)
else:
assert self.attn_pool_type == "cascade"
pooled = self.attn_pool_contrastive(tokens)
else:
# this is the original OpenCLIP CoCa setup, does not match paper
x = self.attn_pool(x)
x = self.ln_post(x)
pooled, tokens = self._global_pool(x)
elif self.final_ln_after_pool:
pooled, tokens = self._global_pool(x)
pooled = self.ln_post(pooled)
else:
x = self.ln_post(x)
pooled, tokens = self._global_pool(x)
if self.proj is not None:
pooled = pooled @ self.proj
if self.output_tokens:
return pooled, tokens
return pooled
################################################################################
# Visualization utils #
################################################################################
def min_max(logits):
B, num_prompt = logits.shape[:2]
logits_min = (
logits.reshape(B, num_prompt, -1).min(dim=-1, keepdim=True)[0].unsqueeze(-1)
)
logits_max = (
logits.reshape(B, num_prompt, -1).max(dim=-1, keepdim=True)[0].unsqueeze(-1)
)
logits = (logits - logits_min) / (logits_max - logits_min)
return logits
def visualize(image, heatmaps, alpha=0.6, save_path: Path = None):
# heatmaps of shape (N, 1, W, H)
W, H = heatmaps.shape[-2:]
if isinstance(image, Image.Image):
image = image.resize((W, H))
elif isinstance(image, torch.Tensor):
if image.ndim > 3:
image = image.squeeze(0)
# undo the normalization
image_unormed = (
image.detach().cpu() * torch.Tensor(OPENAI_DATASET_STD)[:, None, None]
) + torch.Tensor(OPENAI_DATASET_MEAN)[:, None, None]
# convert to PIL
image = Image.fromarray(
(image_unormed.permute(1, 2, 0).numpy() * 255).astype("uint8")
)
else:
raise f"image should be either of type PIL.Image.Image or torch.Tensor but found {type(image)}"
# plot image
plt.imshow(image)
plt.axis("off")
plt.tight_layout()
plt.show()
if heatmaps.ndim > 3:
heatmaps = heatmaps.squeeze(0)
heatmaps = heatmaps.detach().cpu().numpy()
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
heatmaps = (heatmaps * 255).astype("uint8")
heat_maps = [cv2.applyColorMap(logit, cv2.COLORMAP_JET) for logit in heatmaps]
vizs = [(1 - alpha) * img_cv + alpha * heat_map for heat_map in heat_maps]
for i, viz in enumerate(vizs):
viz = cv2.cvtColor(viz.astype("uint8"), cv2.COLOR_BGR2RGB)
plt.imshow(viz)
plt.axis("off")
plt.tight_layout()
# remove the margin
plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
plt.show()
if save_path is not None:
plt.savefig(save_path, bbox_inches="tight", pad_inches=0)
print(f"Saved visualization at {save_path}")
def list_pretrained():
openclip_list_ = open_clip.list_pretrained()
filtered_list = [
(model_name, pretrained)
for (model_name, pretrained) in openclip_list_
if model_name
]
unsupported_models = [
"RN",
"convnext",
] # legrad doesn't support CNN-based VLMs (for the moment)
_str = (
": ".join(["model_name" + " " * (25 - len("model_name")), "pretrained"]) + "\n"
) # for nice display
for model_name, pretrained in openclip_list_:
for unsup_model in unsupported_models:
if unsup_model in model_name:
skip = True
break
else:
skip = False
if not skip:
filtered_list.append((model_name, pretrained))
_str += (
": ".join([model_name + " " * (25 - len(model_name)), pretrained])
+ "\n"
) # for nice display
print(_str)
return filtered_list
if __name__ == "__main__":
list_pretrained()
|