File size: 18,268 Bytes
208214b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import math
import types
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms import Compose, Resize, InterpolationMode
import open_clip
from open_clip.transformer import VisionTransformer
from open_clip.timm_model import TimmModel
from einops import rearrange
from .utils import (
hooked_attention_timm_forward,
hooked_resblock_forward,
hooked_attention_forward,
hooked_resblock_timm_forward,
hooked_attentional_pooler_timm_forward,
vit_dynamic_size_forward,
min_max,
hooked_torch_multi_head_attention_forward,
)
class LeWrapper(nn.Module):
"""
Wrapper around OpenCLIP to add LeGrad to OpenCLIP's model while keep all the functionalities of the original model.
"""
def __init__(self, model, layer_index=-2):
super(LeWrapper, self).__init__()
# ------------ copy of model's attributes and methods ------------
for attr in dir(model):
if not attr.startswith("__"):
setattr(self, attr, getattr(model, attr))
# ------------ activate hooks & gradient ------------
self._activate_hooks(layer_index=layer_index)
def _activate_hooks(self, layer_index):
# ------------ identify model's type ------------
print("Activating necessary hooks and gradients ....")
if isinstance(self.visual, VisionTransformer):
# --- Activate dynamic image size ---
self.visual.forward = types.MethodType(
vit_dynamic_size_forward, self.visual
)
# Get patch size
self.patch_size = self.visual.patch_size[0]
# Get starting depth (in case of negative layer_index)
self.starting_depth = (
layer_index
if layer_index >= 0
else len(self.visual.transformer.resblocks) + layer_index
)
if self.visual.attn_pool is None:
self.model_type = "clip"
self._activate_self_attention_hooks()
else:
self.model_type = "coca"
self._activate_att_pool_hooks(layer_index=layer_index)
elif isinstance(self.visual, TimmModel):
# --- Activate dynamic image size ---
self.visual.trunk.dynamic_img_size = True
self.visual.trunk.patch_embed.dynamic_img_size = True
self.visual.trunk.patch_embed.strict_img_size = False
self.visual.trunk.patch_embed.flatten = False
self.visual.trunk.patch_embed.output_fmt = "NHWC"
self.model_type = "timm_siglip"
# --- Get patch size ---
self.patch_size = self.visual.trunk.patch_embed.patch_size[0]
# --- Get starting depth (in case of negative layer_index) ---
self.starting_depth = (
layer_index
if layer_index >= 0
else len(self.visual.trunk.blocks) + layer_index
)
if (
hasattr(self.visual.trunk, "attn_pool")
and self.visual.trunk.attn_pool is not None
):
self._activate_timm_attn_pool_hooks(layer_index=layer_index)
else:
self._activate_timm_self_attention_hooks()
else:
raise ValueError(
"Model currently not supported, see legrad.list_pretrained() for a list of available models"
)
print("Hooks and gradients activated!")
def _activate_self_attention_hooks(self):
# Adjusting to use the correct structure
if isinstance(self.visual, VisionTransformer):
blocks = self.visual.transformer.resblocks
elif isinstance(self.visual, TimmModel):
blocks = self.visual.trunk.blocks
else:
raise ValueError("Unsupported model type for self-attention hooks")
# ---------- Apply Hooks + Activate/Deactivate gradients ----------
# Necessary steps to get intermediate representations
for name, param in self.named_parameters():
param.requires_grad = False
if name.startswith("visual.trunk.blocks"):
depth = int(name.split("visual.trunk.blocks.")[-1].split(".")[0])
if depth >= self.starting_depth:
param.requires_grad = True
# --- Activate the hooks for the specific layers ---
for layer in range(self.starting_depth, len(blocks)):
blocks[layer].attn.forward = types.MethodType(
hooked_attention_forward, blocks[layer].attn
)
blocks[layer].forward = types.MethodType(
hooked_resblock_forward, blocks[layer]
)
def _activate_timm_self_attention_hooks(self):
# Adjusting to use the correct structure
blocks = self.visual.trunk.blocks
# ---------- Apply Hooks + Activate/Deactivate gradients ----------
# Necessary steps to get intermediate representations
for name, param in self.named_parameters():
param.requires_grad = False
if name.startswith("visual.trunk.blocks"):
depth = int(name.split("visual.trunk.blocks.")[-1].split(".")[0])
if depth >= self.starting_depth:
param.requires_grad = True
# --- Activate the hooks for the specific layers ---
for layer in range(self.starting_depth, len(blocks)):
blocks[layer].attn.forward = types.MethodType(
hooked_attention_timm_forward, blocks[layer].attn
)
blocks[layer].forward = types.MethodType(
hooked_resblock_timm_forward, blocks[layer]
)
def _activate_att_pool_hooks(self, layer_index):
# ---------- Apply Hooks + Activate/Deactivate gradients ----------
# Necessary steps to get intermediate representations
for name, param in self.named_parameters():
param.requires_grad = False
if name.startswith("visual.transformer.resblocks"):
# get the depth
depth = int(
name.split("visual.transformer.resblocks.")[-1].split(".")[0]
)
if depth >= self.starting_depth:
param.requires_grad = True
# --- Activate the hooks for the specific layers ---
for layer in range(self.starting_depth, len(self.visual.transformer.resblocks)):
self.visual.transformer.resblocks[layer].forward = types.MethodType(
hooked_resblock_forward, self.visual.transformer.resblocks[layer]
)
# --- Apply hook on the attentional pooler ---
self.visual.attn_pool.attn.forward = types.MethodType(
hooked_torch_multi_head_attention_forward, self.visual.attn_pool.attn
)
def _activate_timm_attn_pool_hooks(self, layer_index):
# Ensure all components are present before attaching hooks
if (
not hasattr(self.visual.trunk, "attn_pool")
or self.visual.trunk.attn_pool is None
):
raise ValueError("Attentional pooling not found in TimmModel")
self.visual.trunk.attn_pool.forward = types.MethodType(
hooked_attentional_pooler_timm_forward, self.visual.trunk.attn_pool
)
for block in self.visual.trunk.blocks:
if hasattr(block, "attn"):
block.attn.forward = types.MethodType(
hooked_attention_forward, block.attn
)
# --- Deactivate gradient for module that don't need it ---
for name, param in self.named_parameters():
param.requires_grad = False
if name.startswith("visual.trunk.attn_pool"):
param.requires_grad = True
if name.startswith("visual.trunk.blocks"):
# get the depth
depth = int(name.split("visual.trunk.blocks.")[-1].split(".")[0])
if depth >= self.starting_depth:
param.requires_grad = True
# --- Activate the hooks for the specific layers by modifying the block's forward ---
for layer in range(self.starting_depth, len(self.visual.trunk.blocks)):
self.visual.trunk.blocks[layer].forward = types.MethodType(
hooked_resblock_timm_forward, self.visual.trunk.blocks[layer]
)
self.visual.trunk.attn_pool.forward = types.MethodType(
hooked_attentional_pooler_timm_forward, self.visual.trunk.attn_pool
)
def compute_legrad(self, text_embedding, image=None, apply_correction=True):
if "clip" in self.model_type:
return self.compute_legrad_clip(text_embedding, image)
elif "siglip" in self.model_type:
return self.compute_legrad_siglip(
text_embedding, image, apply_correction=apply_correction
)
elif "coca" in self.model_type:
return self.compute_legrad_coca(text_embedding, image)
def compute_legrad_clip(self, text_embedding, image=None):
num_prompts = text_embedding.shape[0]
if image is not None:
# Ensure the image is passed through the model to get the intermediate features
_ = self.encode_image(image)
blocks_list = list(dict(self.visual.trunk.blocks.named_children()).values())
image_features_list = []
for layer in range(self.starting_depth, len(self.visual.trunk.blocks)):
# [num_patch, batch, dim]
intermediate_feat = blocks_list[layer].feat_post_mlp
# Mean over the patch tokens
intermediate_feat = intermediate_feat.mean(dim=1)
intermediate_feat = self.visual.head(
self.visual.trunk.norm(intermediate_feat)
)
intermediate_feat = F.normalize(intermediate_feat, dim=-1)
image_features_list.append(intermediate_feat)
num_tokens = blocks_list[-1].feat_post_mlp.shape[1] - 1
w = h = int(math.sqrt(num_tokens))
# ----- Get explainability map
accum_expl_map = 0
for layer, (blk, img_feat) in enumerate(
zip(blocks_list[self.starting_depth :], image_features_list)
):
self.visual.zero_grad()
sim = text_embedding @ img_feat.transpose(-1, -2) # [1, 1]
one_hot = (
F.one_hot(torch.arange(0, num_prompts))
.float()
.requires_grad_(True)
.to(text_embedding.device)
)
one_hot = torch.sum(one_hot * sim)
# [b, num_heads, N, N]
attn_map = blocks_list[self.starting_depth + layer].attn.attention_map
# -------- Get explainability map --------
# [batch_size * num_heads, N, N]
grad = torch.autograd.grad(
one_hot, [attn_map], retain_graph=True, create_graph=True
)[0]
# grad = rearrange(grad, '(b h) n m -> b h n m', b=num_prompts) # separate batch and attn heads
grad = torch.clamp(grad, min=0.0)
# average attn over [CLS] + patch tokens
image_relevance = grad.mean(dim=1).mean(dim=1)[:, 1:]
expl_map = rearrange(image_relevance, "b (w h) -> 1 b w h", w=w, h=h)
# [B, 1, H, W]
expl_map = F.interpolate(
expl_map, scale_factor=self.patch_size, mode="bilinear"
)
accum_expl_map += expl_map
# Min-Max Norm
accum_expl_map = min_max(accum_expl_map)
return accum_expl_map
def compute_legrad_coca(self, text_embedding, image=None):
if image is not None:
_ = self.encode_image(image)
blocks_list = list(
dict(self.visual.transformer.resblocks.named_children()).values()
)
image_features_list = []
for layer in range(self.starting_depth, len(self.visual.transformer.resblocks)):
intermediate_feat = self.visual.transformer.resblocks[
layer
].feat_post_mlp # [num_patch, batch, dim]
intermediate_feat = intermediate_feat.permute(
1, 0, 2
) # [batch, num_patch, dim]
image_features_list.append(intermediate_feat)
num_tokens = blocks_list[-1].feat_post_mlp.shape[0] - 1
w = h = int(math.sqrt(num_tokens))
# ----- Get explainability map
accum_expl_map = 0
for layer, (blk, img_feat) in enumerate(
zip(blocks_list[self.starting_depth :], image_features_list)
):
self.visual.zero_grad()
# --- Apply attn_pool ---
image_embedding = self.visual.attn_pool(img_feat)[
:, 0
] # we keep only the first pooled token as it is only this one trained with the contrastive loss
image_embedding = image_embedding @ self.visual.proj
sim = text_embedding @ image_embedding.transpose(-1, -2) # [1, 1]
one_hot = torch.sum(sim)
attn_map = (
self.visual.attn_pool.attn.attention_maps
) # [num_heads, num_latent, num_patch]
# -------- Get explainability map --------
grad = torch.autograd.grad(
one_hot, [attn_map], retain_graph=True, create_graph=True
)[
0
] # [num_heads, num_latent, num_patch]
grad = torch.clamp(grad, min=0.0)
image_relevance = grad.mean(dim=0)[
0, 1:
] # average attn over heads + select first latent
expl_map = rearrange(image_relevance, "(w h) -> 1 1 w h", w=w, h=h)
expl_map = F.interpolate(
expl_map, scale_factor=self.patch_size, mode="bilinear"
) # [B, 1, H, W]
accum_expl_map += expl_map
# Min-Max Norm
accum_expl_map = (accum_expl_map - accum_expl_map.min()) / (
accum_expl_map.max() - accum_expl_map.min()
)
return accum_expl_map
def _init_empty_embedding(self):
if not hasattr(self, "empty_embedding"):
# For the moment only SigLIP is supported & they all have the same tokenizer
_tok = open_clip.get_tokenizer(model_name="ViT-B-16-SigLIP")
empty_text = _tok(["a photo of a"]).to(self.logit_scale.data.device)
empty_embedding = self.encode_text(empty_text)
empty_embedding = F.normalize(empty_embedding, dim=-1)
self.empty_embedding = empty_embedding.t()
def compute_legrad_siglip(
self,
text_embedding,
image=None,
apply_correction=True,
correction_threshold=0.8,
):
# --- Forward CLIP ---
blocks_list = list(dict(self.visual.trunk.blocks.named_children()).values())
if image is not None:
_ = self.encode_image(image) # [bs, num_patch, dim] bs=num_masks
image_features_list = []
for blk in blocks_list[self.starting_depth :]:
intermediate_feat = blk.feat_post_mlp
image_features_list.append(intermediate_feat)
num_tokens = blocks_list[-1].feat_post_mlp.shape[1]
w = h = int(math.sqrt(num_tokens))
if apply_correction:
self._init_empty_embedding()
accum_expl_map_empty = 0
accum_expl_map = 0
for layer, (blk, img_feat) in enumerate(
zip(blocks_list[self.starting_depth :], image_features_list)
):
self.zero_grad()
pooled_feat = self.visual.trunk.attn_pool(img_feat)
pooled_feat = F.normalize(pooled_feat, dim=-1)
# -------- Get explainability map --------
sim = text_embedding @ pooled_feat.transpose(-1, -2) # [num_mask, num_mask]
one_hot = torch.sum(sim)
grad = torch.autograd.grad(
one_hot,
[self.visual.trunk.attn_pool.attn_probs],
retain_graph=True,
create_graph=True,
)[0]
grad = torch.clamp(grad, min=0.0)
image_relevance = grad.mean(dim=1)[
:, 0
] # average attn over [CLS] + patch tokens
expl_map = rearrange(image_relevance, "b (w h) -> b 1 w h", w=w, h=h)
accum_expl_map += expl_map
if apply_correction:
# -------- Get empty explainability map --------
sim_empty = pooled_feat @ self.empty_embedding
one_hot_empty = torch.sum(sim_empty)
grad_empty = torch.autograd.grad(
one_hot_empty,
[self.visual.trunk.attn_pool.attn_probs],
retain_graph=True,
create_graph=True,
)[0]
grad_empty = torch.clamp(grad_empty, min=0.0)
image_relevance_empty = grad_empty.mean(dim=1)[
:, 0
] # average attn over heads + select query's row
expl_map_empty = rearrange(
image_relevance_empty, "b (w h) -> b 1 w h", w=w, h=h
)
accum_expl_map_empty += expl_map_empty
if apply_correction:
heatmap_empty = min_max(accum_expl_map_empty)
accum_expl_map[heatmap_empty > correction_threshold] = 0
Res = min_max(accum_expl_map)
Res = F.interpolate(
Res, scale_factor=self.patch_size, mode="bilinear"
) # [B, 1, H, W]
return Res
class LePreprocess(nn.Module):
"""
Modify OpenCLIP preprocessing to accept arbitrary image size.
"""
def __init__(self, preprocess, image_size):
super(LePreprocess, self).__init__()
self.transform = Compose(
[
Resize(
(image_size, image_size), interpolation=InterpolationMode.BICUBIC
),
preprocess.transforms[-3],
preprocess.transforms[-2],
preprocess.transforms[-1],
]
)
def forward(self, image):
return self.transform(image)
|