Spaces:
Sleeping
Sleeping
File size: 1,094 Bytes
0370b13 6bfd727 32a5890 8504d0e 0370b13 7983ea4 8504d0e 6bfd727 8504d0e 6bfd727 0370b13 b4dee7e 7983ea4 0370b13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
from fastapi import FastAPI, UploadFile
from transformers import pipeline
from fastai.vision.all import *
# NOTE - we configure docs_url to serve the interactive Docs at the root path
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
app = FastAPI(docs_url="/")
pipe = pipeline("text2text-generation", model="google/flan-t5-small")
categories = ('Heart', 'Oblong', 'Oval', 'Round', 'Square')
learn = load_learner('model.pkl')
@app.get("/generate")
def generate(text: str):
"""
Using the text2text-generation pipeline from `transformers`, generate text
from the given input text. The model used is `google/flan-t5-small`, which
can be found [here](https://huggingface.co/google/flan-t5-small).
"""
output = pipe(text)
return {"output": output[0]["generated_text"]}
@app.post("/uploadfile/")
async def create_upload_file(file: UploadFile):
pred, idx, probs = learn.predict(img)
return dict(zip(categories, map(float, probs)))
# pred, idx, probs = learn.predict(img)
# return dict(zip(categories, map(float, probs))) |