File size: 1,094 Bytes
0370b13
6bfd727
32a5890
8504d0e
 
 
 
 
 
0370b13
7983ea4
8504d0e
6bfd727
 
 
 
 
8504d0e
6bfd727
 
0370b13
 
b4dee7e
 
7983ea4
 
0370b13
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from fastapi import FastAPI, UploadFile
from transformers import pipeline
from fastai.vision.all import *

# NOTE - we configure docs_url to serve the interactive Docs at the root path
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
app = FastAPI(docs_url="/")

pipe = pipeline("text2text-generation", model="google/flan-t5-small")
categories = ('Heart', 'Oblong', 'Oval', 'Round', 'Square')
learn = load_learner('model.pkl')

@app.get("/generate")
def generate(text: str):
    """
    Using the text2text-generation pipeline from `transformers`, generate text
    from the given input text. The model used is `google/flan-t5-small`, which
    can be found [here](https://huggingface.co/google/flan-t5-small).
    """
    output = pipe(text)
    return {"output": output[0]["generated_text"]}

@app.post("/uploadfile/")
async def create_upload_file(file: UploadFile):
    pred, idx, probs = learn.predict(img)
    return dict(zip(categories, map(float, probs)))
#    pred, idx, probs = learn.predict(img)
#    return dict(zip(categories, map(float, probs)))