Spaces:
Sleeping
Sleeping
added /frame-details (#1)
Browse files- added /frame-details (8119b22648e35787a42fb20aaefe7ead6d118342)
Co-authored-by: Funke <[email protected]>
app.py
CHANGED
@@ -49,4 +49,55 @@ async def face_analyse(file: UploadFile = File(...)):
|
|
49 |
return {"error": "Failed to make predictions."}
|
50 |
|
51 |
# Assuming categories is a list of category labels
|
52 |
-
return dict(zip(categories, map(float, probs)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
return {"error": "Failed to make predictions."}
|
50 |
|
51 |
# Assuming categories is a list of category labels
|
52 |
+
return dict(zip(categories, map(float, probs)))
|
53 |
+
|
54 |
+
# Initialize the Meta-Llama-3-70B-Instruct pipeline
|
55 |
+
llama_model_id = "meta-llama/Meta-Llama-3-70B-Instruct"
|
56 |
+
llama_pipeline = pipeline(
|
57 |
+
"text-generation",
|
58 |
+
model=llama_model_id,
|
59 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
60 |
+
device_map="auto",
|
61 |
+
)
|
62 |
+
|
63 |
+
@app.post("/frame-details")
|
64 |
+
def frame_details(text: str):
|
65 |
+
"""
|
66 |
+
Extract structured information from a given text about frames using the
|
67 |
+
Meta-Llama-3-70B-Instruct model. The model will output details like price, color, etc.
|
68 |
+
"""
|
69 |
+
messages = [
|
70 |
+
{"role": "system", "content": "You are an api chatbot for frames and glasses who always responds with only a json. Extract the infomation given into a structured json for frame details"},
|
71 |
+
{"role": "user", "content": text},
|
72 |
+
]
|
73 |
+
|
74 |
+
terminators = [
|
75 |
+
llama_pipeline.tokenizer.eos_token_id,
|
76 |
+
llama_pipeline.tokenizer.convert_tokens_to_ids("")
|
77 |
+
]
|
78 |
+
|
79 |
+
outputs = llama_pipeline(
|
80 |
+
messages,
|
81 |
+
max_new_tokens=256,
|
82 |
+
eos_token_id=terminators,
|
83 |
+
do_sample=True,
|
84 |
+
temperature=0.6,
|
85 |
+
top_p=0.9,
|
86 |
+
)
|
87 |
+
|
88 |
+
# Extract the last generated text from the output
|
89 |
+
generated_text = outputs[0]["generated_text"]
|
90 |
+
|
91 |
+
# Parse the generated text to extract structured information (this is an example and should be customized)
|
92 |
+
# Here, you would add your own logic to parse the generated text
|
93 |
+
# For now, we'll assume the generated text is in JSON format
|
94 |
+
try:
|
95 |
+
extracted_info = eval(generated_text) # It's recommended to use `json.loads` in a real application
|
96 |
+
except Exception as e:
|
97 |
+
return {"error": "Failed to parse the generated text."}
|
98 |
+
|
99 |
+
return extracted_info
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
import uvicorn
|
103 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|