Stefano5699 commited on
Commit
d0c9299
·
verified ·
1 Parent(s): 9bff8e5

Llama deleted

Browse files
Files changed (1) hide show
  1. app.py +0 -48
app.py CHANGED
@@ -53,51 +53,3 @@ async def face_analyse(file: UploadFile = File(...)):
53
  # Assuming categories is a list of category labels
54
  return dict(zip(categories, map(float, probs)))
55
 
56
- # Initialize the Meta-Llama-3-8B-Instruct pipeline
57
- llama_model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
58
- llama_pipeline = pipeline(
59
- "text-generation",
60
- model=llama_model_id,
61
- model_kwargs={"torch_dtype": torch.bfloat16},
62
- device_map="auto",
63
- auth_token=access_token
64
- )
65
-
66
-
67
- @app.post("/frame-details")
68
- def frame_details(text: str):
69
-
70
- # Extract structured information from a given text about frames using the Meta-Llama-3-8B-Instruct model. The model will output details like price, color, etc.
71
-
72
- messages = [
73
- {"role": "system", "content": "You are an api chatbot for frames and glasses who always responds with only a json. Extract the infomation given into a structured json for frame details"},
74
- {"role": "user", "content": text},
75
- ]
76
-
77
- terminators = [
78
- llama_pipeline.tokenizer.eos_token_id,
79
- llama_pipeline.tokenizer.convert_tokens_to_ids("")
80
- ]
81
-
82
- outputs = llama_pipeline(
83
- messages,
84
- max_new_tokens=256,
85
- eos_token_id=terminators,
86
- do_sample=True,
87
- temperature=0.6,
88
- top_p=0.9,
89
- )
90
-
91
- # Extract the last generated text from the output
92
- generated_text = outputs[0]["generated_text"]
93
-
94
- # Parse the generated text to extract structured information (this is an example and should be customized)
95
- # Here, you would add your own logic to parse the generated text
96
- # For now, we'll assume the generated text is in JSON format
97
- try:
98
- extracted_info = eval(generated_text) # It's recommended to use `json.loads` in a real application
99
- except Exception as e:
100
- return {"error": "Failed to parse the generated text."}
101
-
102
- return extracted_info
103
-
 
53
  # Assuming categories is a list of category labels
54
  return dict(zip(categories, map(float, probs)))
55