Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Importation
|
2 |
+
|
3 |
+
%matplotlib inline
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from sklearn import metrics
|
8 |
+
import torch
|
9 |
+
from torch.utils.data import Dataset, DataLoader
|
10 |
+
from transformers import AutoModel, AutoTokenizer
|
11 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
12 |
+
|
13 |
+
import gradio as gr
|
14 |
+
from gradio.components import Label
|
15 |
+
|
16 |
+
path = "./weights"
|
17 |
+
model = AutoModel.from_pretrained(path, trust_remote_code=True)
|
18 |
+
class CamembertClass(torch.nn.Module):
|
19 |
+
def __init__(self):
|
20 |
+
super(CamembertClass, self).__init__()
|
21 |
+
self.l1 = model
|
22 |
+
self.dropout = torch.nn.Dropout(0.1)
|
23 |
+
self.pre_classifier = torch.nn.Linear(1024, 1024)
|
24 |
+
self.classifier = torch.nn.Linear(1024, 3)
|
25 |
+
|
26 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
27 |
+
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
28 |
+
hidden_state = output_1[0]
|
29 |
+
pooler = hidden_state[:, 0]
|
30 |
+
pooler = self.pre_classifier(pooler)
|
31 |
+
pooler = torch.nn.ReLU()(pooler)
|
32 |
+
pooler = self.dropout(pooler)
|
33 |
+
output = self.classifier(pooler)
|
34 |
+
return output
|
35 |
+
|
36 |
+
#model_gradio = CamembertClass()
|
37 |
+
path = "./pytorch_model.bin"
|
38 |
+
model = torch.load(path, map_location="cpu")
|
39 |
+
path_tokenizer = "./"
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(path_tokenizer)
|
41 |
+
|
42 |
+
model.eval() # Mettez votre modèle en mode évaluation
|
43 |
+
|
44 |
+
# Fonction d'inférence pour Gradio
|
45 |
+
def predict(text):
|
46 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
47 |
+
|
48 |
+
# Extract necessary inputs for the model
|
49 |
+
input_ids = inputs['input_ids']
|
50 |
+
attention_mask = inputs['attention_mask']
|
51 |
+
token_type_ids = inputs.get('token_type_ids', None) # Some models do not use segment IDs
|
52 |
+
|
53 |
+
# Make prediction
|
54 |
+
with torch.no_grad():
|
55 |
+
# Directly use outputs if your model returns logits directly
|
56 |
+
logits = model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
57 |
+
|
58 |
+
|
59 |
+
# Convert logits to probabilities
|
60 |
+
probabilities = torch.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
61 |
+
# Replace the following with your actual classes
|
62 |
+
classes = ['Negative Sentiment', 'Positive Sentiment']
|
63 |
+
return {classes[i]: float(probabilities[i]) for i in range(len(classes))}
|
64 |
+
|
65 |
+
# Création de l'interface Gradio
|
66 |
+
iface = gr.Interface(fn=predict,
|
67 |
+
inputs=gr.components.Textbox(placeholder="Enter your text here..."),
|
68 |
+
outputs=gr.components.Label(num_top_classes=2))
|
69 |
+
iface.launch(share=True)
|