Steph974 commited on
Commit
4aa6561
·
verified ·
1 Parent(s): da28fbe

Upload 5 files

Browse files
Files changed (5) hide show
  1. config.json +31 -0
  2. gradio.ipynb +306 -0
  3. merges.txt +0 -0
  4. pytorch_model.bin +3 -0
  5. vocab.json +0 -0
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "roberta-large",
3
+ "architectures": [
4
+ "RobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "pad_token_id": 1,
21
+ "type_vocab_size": 1,
22
+ "vocab_size": 50265,
23
+ "id2label": {
24
+ "0": "NEGATIVE",
25
+ "1": "POSITIVE"
26
+ },
27
+ "label2id": {
28
+ "NEGATIVE": 0,
29
+ "POSITIVE": 1
30
+ }
31
+ }
gradio.ipynb ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "<center>\n",
8
+ "\n",
9
+ "## [S. Mussard](https://sites.google.com/view/cv-stphane-mussard/accueil \"Homepage\")\n",
10
+ "\n",
11
+ "# UM6P\n",
12
+ "\n",
13
+ "# Natural Language Processing: LOGIT\n",
14
+ "\n",
15
+ "\n",
16
+ "<center> <a href=\"https://www.fgses-um6p.ma/\"><img src=\"UM6P.png\",style=\"float: left; max-width: 500px; width: 20\" />\n",
17
+ "\n",
18
+ "\n",
19
+ "\n",
20
+ "<div align=\"center\"> \n",
21
+ "<a href=\"https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html\"><img src=\"http://scikit-learn.org/stable/_static/scikit-learn-logo-small.png\" style=\"max-width: 180px; display: inline\" alt=\"Scikit-Learn\"/></a>\n",
22
+ "</div>\n",
23
+ "<div align=\"center\"> <a href=\"https://www.python.org/\"><img src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Python_logo_and_wordmark.svg/390px-Python_logo_and_wordmark.svg.png\" style=\"max-width: 150px; display: inline\" alt=\"Python\"/></a> \n",
24
+ "</div>\n",
25
+ " \n"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "markdown",
30
+ "metadata": {},
31
+ "source": [
32
+ "<div align=\"center\">\n",
33
+ "\n",
34
+ "## Sentiment Analysis"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": 1,
40
+ "metadata": {},
41
+ "outputs": [
42
+ {
43
+ "name": "stderr",
44
+ "output_type": "stream",
45
+ "text": [
46
+ "C:\\Users\\smussa01\\AppData\\Roaming\\Python\\Python37\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
47
+ " from .autonotebook import tqdm as notebook_tqdm\n"
48
+ ]
49
+ }
50
+ ],
51
+ "source": [
52
+ "# Importation \n",
53
+ "\n",
54
+ "%matplotlib inline \n",
55
+ "import numpy as np\n",
56
+ "import pandas as pd\n",
57
+ "import matplotlib.pyplot as plt\n",
58
+ "from sklearn import metrics\n",
59
+ "import torch\n",
60
+ "from torch.utils.data import Dataset, DataLoader\n",
61
+ "from transformers import AutoModel, AutoTokenizer\n",
62
+ "from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
63
+ "\n",
64
+ "import gradio as gr\n",
65
+ "from gradio.components import Label"
66
+ ]
67
+ },
68
+ {
69
+ "cell_type": "code",
70
+ "execution_count": 2,
71
+ "metadata": {},
72
+ "outputs": [
73
+ {
74
+ "name": "stderr",
75
+ "output_type": "stream",
76
+ "text": [
77
+ "Some weights of the model checkpoint at S:\\Mes Documents\\Cours\\Cours-NLP\\PFE kenza\\poids were not used when initializing RobertaModel: ['classifier.out_proj.bias', 'classifier.dense.weight', 'classifier.out_proj.weight', 'classifier.dense.bias']\n",
78
+ "- This IS expected if you are initializing RobertaModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
79
+ "- This IS NOT expected if you are initializing RobertaModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
80
+ "Some weights of RobertaModel were not initialized from the model checkpoint at S:\\Mes Documents\\Cours\\Cours-NLP\\PFE kenza\\poids and are newly initialized: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']\n",
81
+ "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
82
+ ]
83
+ }
84
+ ],
85
+ "source": [
86
+ "path = \".\\poids\"\n",
87
+ "model = AutoModel.from_pretrained(path, trust_remote_code=True)\n",
88
+ "class CamembertClass(torch.nn.Module):\n",
89
+ " def __init__(self):\n",
90
+ " super(CamembertClass, self).__init__()\n",
91
+ " self.l1 = model\n",
92
+ " self.dropout = torch.nn.Dropout(0.1)\n",
93
+ " self.pre_classifier = torch.nn.Linear(1024, 1024)\n",
94
+ " self.classifier = torch.nn.Linear(1024, 3)\n",
95
+ "\n",
96
+ " def forward(self, input_ids, attention_mask, token_type_ids):\n",
97
+ " output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)\n",
98
+ " hidden_state = output_1[0]\n",
99
+ " pooler = hidden_state[:, 0]\n",
100
+ " pooler = self.pre_classifier(pooler)\n",
101
+ " pooler = torch.nn.ReLU()(pooler)\n",
102
+ " pooler = self.dropout(pooler)\n",
103
+ " output = self.classifier(pooler)\n",
104
+ " return output"
105
+ ]
106
+ },
107
+ {
108
+ "cell_type": "code",
109
+ "execution_count": 3,
110
+ "metadata": {},
111
+ "outputs": [],
112
+ "source": [
113
+ "#model_gradio = CamembertClass()\n",
114
+ "path = \"S:\\Mes Documents\\Cours\\Cours-NLP\\PFE kenza\\pytorch_model.bin\"\n",
115
+ "model = torch.load(path, map_location=\"cpu\")\n",
116
+ "path_tokenizer = \"S:\\Mes Documents\\Cours\\Cours-NLP\\PFE kenza\"\n",
117
+ "tokenizer = AutoTokenizer.from_pretrained(path_tokenizer)\n"
118
+ ]
119
+ },
120
+ {
121
+ "cell_type": "code",
122
+ "execution_count": 4,
123
+ "metadata": {},
124
+ "outputs": [],
125
+ "source": [
126
+ "#pip install pydantic==1.10.7"
127
+ ]
128
+ },
129
+ {
130
+ "cell_type": "code",
131
+ "execution_count": 6,
132
+ "metadata": {},
133
+ "outputs": [
134
+ {
135
+ "name": "stdout",
136
+ "output_type": "stream",
137
+ "text": [
138
+ "Running on local URL: http://127.0.0.1:7861\n",
139
+ "Running on public URL: https://c6de28517ce6caf32f.gradio.live\n",
140
+ "\n",
141
+ "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
142
+ ]
143
+ },
144
+ {
145
+ "data": {
146
+ "text/html": [
147
+ "<div><iframe src=\"https://c6de28517ce6caf32f.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
148
+ ],
149
+ "text/plain": [
150
+ "<IPython.core.display.HTML object>"
151
+ ]
152
+ },
153
+ "metadata": {},
154
+ "output_type": "display_data"
155
+ },
156
+ {
157
+ "data": {
158
+ "text/plain": []
159
+ },
160
+ "execution_count": 6,
161
+ "metadata": {},
162
+ "output_type": "execute_result"
163
+ }
164
+ ],
165
+ "source": [
166
+ "model.eval() # Mettez votre modèle en mode évaluation\n",
167
+ "\n",
168
+ "# Fonction d'inférence pour Gradio\n",
169
+ "def predict(text):\n",
170
+ " inputs = tokenizer(text, return_tensors=\"pt\", padding=True, truncation=True, max_length=512)\n",
171
+ " \n",
172
+ " # Extract necessary inputs for the model\n",
173
+ " input_ids = inputs['input_ids']\n",
174
+ " attention_mask = inputs['attention_mask']\n",
175
+ " token_type_ids = inputs.get('token_type_ids', None) # Some models do not use segment IDs\n",
176
+ " \n",
177
+ " # Make prediction\n",
178
+ " with torch.no_grad():\n",
179
+ " # Directly use outputs if your model returns logits directly\n",
180
+ " logits = model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)\n",
181
+ "\n",
182
+ " \n",
183
+ " # Convert logits to probabilities\n",
184
+ " probabilities = torch.softmax(logits, dim=1).detach().cpu().numpy()[0]\n",
185
+ " # Replace the following with your actual classes\n",
186
+ " classes = ['Negative Sentiment', 'Positive Sentiment']\n",
187
+ " return {classes[i]: float(probabilities[i]) for i in range(len(classes))}\n",
188
+ "\n",
189
+ "# Création de l'interface Gradio\n",
190
+ "iface = gr.Interface(fn=predict,\n",
191
+ " inputs=gr.components.Textbox(placeholder=\"Enter your text here...\"),\n",
192
+ " outputs=gr.components.Label(num_top_classes=2))\n",
193
+ "iface.launch(share=True)\n"
194
+ ]
195
+ },
196
+ {
197
+ "cell_type": "markdown",
198
+ "metadata": {},
199
+ "source": [
200
+ "### <span style=\"color:blue\">Dataset importation : absences.csv</span>"
201
+ ]
202
+ },
203
+ {
204
+ "cell_type": "code",
205
+ "execution_count": 5,
206
+ "metadata": {},
207
+ "outputs": [
208
+ {
209
+ "data": {
210
+ "text/plain": [
211
+ "{'Negative Sentiment': 0.8629835844039917,\n",
212
+ " 'Positive Sentiment': 0.1370164006948471}"
213
+ ]
214
+ },
215
+ "execution_count": 5,
216
+ "metadata": {},
217
+ "output_type": "execute_result"
218
+ }
219
+ ],
220
+ "source": [
221
+ "predict(\"Marrakech is a poop\")"
222
+ ]
223
+ },
224
+ {
225
+ "cell_type": "code",
226
+ "execution_count": 30,
227
+ "metadata": {},
228
+ "outputs": [
229
+ {
230
+ "name": "stdout",
231
+ "output_type": "stream",
232
+ "text": [
233
+ "Running on local URL: http://127.0.0.1:7868\n",
234
+ "\n",
235
+ "To create a public link, set `share=True` in `launch()`.\n"
236
+ ]
237
+ },
238
+ {
239
+ "data": {
240
+ "text/html": [
241
+ "<div><iframe src=\"http://127.0.0.1:7868/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
242
+ ],
243
+ "text/plain": [
244
+ "<IPython.core.display.HTML object>"
245
+ ]
246
+ },
247
+ "metadata": {},
248
+ "output_type": "display_data"
249
+ },
250
+ {
251
+ "data": {
252
+ "text/plain": []
253
+ },
254
+ "execution_count": 30,
255
+ "metadata": {},
256
+ "output_type": "execute_result"
257
+ }
258
+ ],
259
+ "source": [
260
+ "def image_clf(inp):\n",
261
+ " return {'cat': 0.3 , 'dog': 0.7}\n",
262
+ "demo = gr.Interface(fn=image_clf, inputs=\"image\", outputs=\"label\")\n",
263
+ "demo.launch()\n",
264
+ " "
265
+ ]
266
+ }
267
+ ],
268
+ "metadata": {
269
+ "hide_input": false,
270
+ "kernelspec": {
271
+ "display_name": "Python 3",
272
+ "language": "python",
273
+ "name": "python3"
274
+ },
275
+ "language_info": {
276
+ "codemirror_mode": {
277
+ "name": "ipython",
278
+ "version": 3
279
+ },
280
+ "file_extension": ".py",
281
+ "mimetype": "text/x-python",
282
+ "name": "python",
283
+ "nbconvert_exporter": "python",
284
+ "pygments_lexer": "ipython3",
285
+ "version": "3.7.8"
286
+ },
287
+ "toc": {
288
+ "base_numbering": 1,
289
+ "nav_menu": {
290
+ "height": "244px",
291
+ "width": "252px"
292
+ },
293
+ "number_sections": true,
294
+ "sideBar": true,
295
+ "skip_h1_title": false,
296
+ "title_cell": "Table of Contents",
297
+ "title_sidebar": "Contents",
298
+ "toc_cell": false,
299
+ "toc_position": {},
300
+ "toc_section_display": "block",
301
+ "toc_window_display": false
302
+ }
303
+ },
304
+ "nbformat": 4,
305
+ "nbformat_minor": 1
306
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b89cef2de03b23b80a2163335e82b692af1e92a8ff30d318dfd17e017f1fa63
3
+ size 1425885920
vocab.json ADDED
The diff for this file is too large to render. See raw diff