import numpy as np import cv2 def kmeans(image, k=3, alpha=0.5): image = np.array(image) pixel_vals = image.reshape((-1,3)) pixel_vals = np.float32(pixel_vals) criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.85) retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) centers = np.uint8(centers) # Attribuer des couleurs données à nos clusters cluster_colors = np.random.randint(0, 255, size=(k, 3), dtype=np.uint8) segmented_data = cluster_colors[labels.flatten()] segmented_image = segmented_data.reshape((image.shape)) return segmented_image def mean_shift(image, spatial_radius=5, color_radius=60, max_iter=4): image = np.array(image) mean_shift_result = cv2.pyrMeanShiftFiltering(image, sp=spatial_radius, sr=color_radius, maxLevel=max_iter) flat_image = mean_shift_result.reshape((-1, 3)) unique_colors, labels = np.unique(flat_image, axis=0, return_inverse=True) cluster_colors = np.random.randint(0, 255, size=(len(unique_colors), 3), dtype=np.uint8) segmented_image = cluster_colors[labels].reshape(image.shape) return segmented_image