SteveZerb commited on
Commit
e53d6c4
·
verified ·
1 Parent(s): eae8900

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -534
app.py DELETED
@@ -1,534 +0,0 @@
1
- import spaces
2
- import random
3
- import argparse
4
- import glob
5
- import json
6
- import os
7
- import time
8
- from concurrent.futures import ThreadPoolExecutor
9
-
10
- import gradio as gr
11
- import numpy as np
12
- import torch
13
- import torch.nn.functional as F
14
- import tqdm
15
- from huggingface_hub import hf_hub_download
16
- from transformers import DynamicCache
17
-
18
- import MIDI
19
- from midi_model import MIDIModel, MIDIModelConfig
20
- from midi_synthesizer import MidiSynthesizer
21
-
22
- MAX_SEED = np.iinfo(np.int32).max
23
- in_space = os.getenv("SYSTEM") == "spaces"
24
-
25
-
26
- @torch.inference_mode()
27
- def generate(model: MIDIModel, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20,
28
- disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None):
29
- tokenizer = model.tokenizer
30
- if disable_channels is not None:
31
- disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
32
- else:
33
- disable_channels = []
34
- max_token_seq = tokenizer.max_token_seq
35
- if prompt is None:
36
- input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=model.device)
37
- input_tensor[0, 0] = tokenizer.bos_id # bos
38
- input_tensor = input_tensor.unsqueeze(0)
39
- input_tensor = torch.cat([input_tensor] * batch_size, dim=0)
40
- else:
41
- if len(prompt.shape) == 2:
42
- prompt = prompt[None, :]
43
- prompt = np.repeat(prompt, repeats=batch_size, axis=0)
44
- elif prompt.shape[0] == 1:
45
- prompt = np.repeat(prompt, repeats=batch_size, axis=0)
46
- elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size:
47
- raise ValueError(f"invalid shape for prompt, {prompt.shape}")
48
- prompt = prompt[..., :max_token_seq]
49
- if prompt.shape[-1] < max_token_seq:
50
- prompt = np.pad(prompt, ((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])),
51
- mode="constant", constant_values=tokenizer.pad_id)
52
- input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=model.device)
53
- cur_len = input_tensor.shape[1]
54
- bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space)
55
- cache1 = DynamicCache()
56
- past_len = 0
57
- with bar:
58
- while cur_len < max_len:
59
- end = [False] * batch_size
60
- hidden = model.forward(input_tensor[:, past_len:], cache=cache1)[:, -1]
61
- next_token_seq = None
62
- event_names = [""] * batch_size
63
- cache2 = DynamicCache()
64
- for i in range(max_token_seq):
65
- mask = torch.zeros((batch_size, tokenizer.vocab_size), dtype=torch.int64, device=model.device)
66
- for b in range(batch_size):
67
- if end[b]:
68
- mask[b, tokenizer.pad_id] = 1
69
- continue
70
- if i == 0:
71
- mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
72
- if disable_patch_change:
73
- mask_ids.remove(tokenizer.event_ids["patch_change"])
74
- if disable_control_change:
75
- mask_ids.remove(tokenizer.event_ids["control_change"])
76
- mask[b, mask_ids] = 1
77
- else:
78
- param_names = tokenizer.events[event_names[b]]
79
- if i > len(param_names):
80
- mask[b, tokenizer.pad_id] = 1
81
- continue
82
- param_name = param_names[i - 1]
83
- mask_ids = tokenizer.parameter_ids[param_name]
84
- if param_name == "channel":
85
- mask_ids = [i for i in mask_ids if i not in disable_channels]
86
- mask[b, mask_ids] = 1
87
- mask = mask.unsqueeze(1)
88
- x = next_token_seq
89
- if i != 0:
90
- hidden = None
91
- x = x[:, -1:]
92
- logits = model.forward_token(hidden, x, cache=cache2)[:, -1:]
93
- scores = torch.softmax(logits / temp, dim=-1) * mask
94
- samples = model.sample_top_p_k(scores, top_p, top_k, generator=generator)
95
- if i == 0:
96
- next_token_seq = samples
97
- for b in range(batch_size):
98
- if end[b]:
99
- continue
100
- eid = samples[b].item()
101
- if eid == tokenizer.eos_id:
102
- end[b] = True
103
- else:
104
- event_names[b] = tokenizer.id_events[eid]
105
- else:
106
- next_token_seq = torch.cat([next_token_seq, samples], dim=1)
107
- if all([len(tokenizer.events[event_names[b]]) == i for b in range(batch_size) if not end[b]]):
108
- break
109
- if next_token_seq.shape[1] < max_token_seq:
110
- next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]),
111
- "constant", value=tokenizer.pad_id)
112
- next_token_seq = next_token_seq.unsqueeze(1)
113
- input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
114
- past_len = cur_len
115
- cur_len += 1
116
- bar.update(1)
117
- yield next_token_seq[:, 0].cpu().numpy()
118
- if all(end):
119
- break
120
-
121
-
122
- def create_msg(name, data):
123
- return {"name": name, "data": data}
124
-
125
-
126
- def send_msgs(msgs):
127
- return json.dumps(msgs)
128
-
129
-
130
- def get_duration(model_name, tab, mid_seq, continuation_state, continuation_select, instruments, drum_kit, bpm,
131
- time_sig, key_sig, mid, midi_events, reduce_cc_st, remap_track_channel, add_default_instr,
132
- remove_empty_channels, seed, seed_rand, gen_events, temp, top_p, top_k, allow_cc):
133
- t = gen_events // 23
134
- if "large" in model_name:
135
- t = gen_events // 14
136
- return t + 5
137
-
138
-
139
- @spaces.GPU(duration=get_duration)
140
- def run(model_name, tab, mid_seq, continuation_state, continuation_select, instruments, drum_kit, bpm, time_sig,
141
- key_sig, mid, midi_events, reduce_cc_st, remap_track_channel, add_default_instr, remove_empty_channels,
142
- seed, seed_rand, gen_events, temp, top_p, top_k, allow_cc):
143
- model = models[model_name]
144
- model.to(device=opt.device)
145
- tokenizer = model.tokenizer
146
- bpm = int(bpm)
147
- if time_sig == "auto":
148
- time_sig = None
149
- time_sig_nn = 4
150
- time_sig_dd = 2
151
- else:
152
- time_sig_nn, time_sig_dd = time_sig.split('/')
153
- time_sig_nn = int(time_sig_nn)
154
- time_sig_dd = {2: 1, 4: 2, 8: 3}[int(time_sig_dd)]
155
- if key_sig == 0:
156
- key_sig = None
157
- key_sig_sf = 0
158
- key_sig_mi = 0
159
- else:
160
- key_sig = (key_sig - 1)
161
- key_sig_sf = key_sig // 2 - 7
162
- key_sig_mi = key_sig % 2
163
- gen_events = int(gen_events)
164
- max_len = gen_events
165
- if seed_rand:
166
- seed = random.randint(0, MAX_SEED)
167
- generator = torch.Generator(opt.device).manual_seed(seed)
168
- disable_patch_change = False
169
- disable_channels = None
170
- if tab == 0:
171
- i = 0
172
- mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
173
- if tokenizer.version == "v2":
174
- if time_sig is not None:
175
- mid.append(tokenizer.event2tokens(["time_signature", 0, 0, 0, time_sig_nn - 1, time_sig_dd - 1]))
176
- if key_sig is not None:
177
- mid.append(tokenizer.event2tokens(["key_signature", 0, 0, 0, key_sig_sf + 7, key_sig_mi]))
178
- if bpm != 0:
179
- mid.append(tokenizer.event2tokens(["set_tempo", 0, 0, 0, bpm]))
180
- patches = {}
181
- if instruments is None:
182
- instruments = []
183
- for instr in instruments:
184
- patches[i] = patch2number[instr]
185
- i = (i + 1) if i != 8 else 10
186
- if drum_kit != "None":
187
- patches[9] = drum_kits2number[drum_kit]
188
- for i, (c, p) in enumerate(patches.items()):
189
- mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i + 1, c, p]))
190
- mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64)
191
- mid_seq = mid.tolist()
192
- if len(instruments) > 0:
193
- disable_patch_change = True
194
- disable_channels = [i for i in range(16) if i not in patches]
195
- elif tab == 1 and mid is not None:
196
- eps = 4 if reduce_cc_st else 0
197
- mid = tokenizer.tokenize(MIDI.midi2score(mid), cc_eps=eps, tempo_eps=eps,
198
- remap_track_channel=remap_track_channel,
199
- add_default_instr=add_default_instr,
200
- remove_empty_channels=remove_empty_channels)
201
- mid = mid[:int(midi_events)]
202
- mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64)
203
- mid_seq = mid.tolist()
204
- elif tab == 2 and mid_seq is not None:
205
- mid = np.asarray(mid_seq, dtype=np.int64)
206
- if continuation_select > 0:
207
- continuation_state.append(mid_seq)
208
- mid = np.repeat(mid[continuation_select - 1:continuation_select], repeats=OUTPUT_BATCH_SIZE, axis=0)
209
- mid_seq = mid.tolist()
210
- else:
211
- continuation_state.append(mid.shape[1])
212
- else:
213
- continuation_state = [0]
214
- mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
215
- mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64)
216
- mid_seq = mid.tolist()
217
-
218
- if mid is not None:
219
- max_len += mid.shape[1]
220
-
221
- init_msgs = [create_msg("progress", [0, gen_events])]
222
- if not (tab == 2 and continuation_select == 0):
223
- for i in range(OUTPUT_BATCH_SIZE):
224
- events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
225
- init_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]),
226
- create_msg("visualizer_append", [i, events])]
227
- yield mid_seq, continuation_state, seed, send_msgs(init_msgs)
228
- midi_generator = generate(model, mid, batch_size=OUTPUT_BATCH_SIZE, max_len=max_len, temp=temp,
229
- top_p=top_p, top_k=top_k, disable_patch_change=disable_patch_change,
230
- disable_control_change=not allow_cc, disable_channels=disable_channels,
231
- generator=generator)
232
- events = [list() for i in range(OUTPUT_BATCH_SIZE)]
233
- t = time.time() + 1
234
- for i, token_seqs in enumerate(midi_generator):
235
- token_seqs = token_seqs.tolist()
236
- for j in range(OUTPUT_BATCH_SIZE):
237
- token_seq = token_seqs[j]
238
- mid_seq[j].append(token_seq)
239
- events[j].append(tokenizer.tokens2event(token_seq))
240
- if time.time() - t > 0.5:
241
- msgs = [create_msg("progress", [i + 1, gen_events])]
242
- for j in range(OUTPUT_BATCH_SIZE):
243
- msgs += [create_msg("visualizer_append", [j, events[j]])]
244
- events[j] = list()
245
- yield mid_seq, continuation_state, seed, send_msgs(msgs)
246
- t = time.time()
247
- yield mid_seq, continuation_state, seed, send_msgs([])
248
-
249
-
250
- def finish_run(model_name, mid_seq):
251
- if mid_seq is None:
252
- outputs = [None] * OUTPUT_BATCH_SIZE
253
- return *outputs, []
254
- tokenizer = models[model_name].tokenizer
255
- outputs = []
256
- end_msgs = [create_msg("progress", [0, 0])]
257
- if not os.path.exists("outputs"):
258
- os.mkdir("outputs")
259
- for i in range(OUTPUT_BATCH_SIZE):
260
- events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
261
- mid = tokenizer.detokenize(mid_seq[i])
262
- with open(f"outputs/output{i + 1}.mid", 'wb') as f:
263
- f.write(MIDI.score2midi(mid))
264
- outputs.append(f"outputs/output{i + 1}.mid")
265
- end_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]),
266
- create_msg("visualizer_append", [i, events]),
267
- create_msg("visualizer_end", i)]
268
- return *outputs, send_msgs(end_msgs)
269
-
270
-
271
- def synthesis_task(mid):
272
- return synthesizer.synthesis(MIDI.score2opus(mid))
273
-
274
- def render_audio(model_name, mid_seq, should_render_audio):
275
- if (not should_render_audio) or mid_seq is None:
276
- outputs = [None] * OUTPUT_BATCH_SIZE
277
- return tuple(outputs)
278
- tokenizer = models[model_name].tokenizer
279
- outputs = []
280
- if not os.path.exists("outputs"):
281
- os.mkdir("outputs")
282
- audio_futures = []
283
- for i in range(OUTPUT_BATCH_SIZE):
284
- mid = tokenizer.detokenize(mid_seq[i])
285
- audio_future = thread_pool.submit(synthesis_task, mid)
286
- audio_futures.append(audio_future)
287
- for future in audio_futures:
288
- outputs.append((44100, future.result()))
289
- if OUTPUT_BATCH_SIZE == 1:
290
- return outputs[0]
291
- return tuple(outputs)
292
-
293
-
294
- def undo_continuation(model_name, mid_seq, continuation_state):
295
- if mid_seq is None or len(continuation_state) < 2:
296
- return mid_seq, continuation_state, send_msgs([])
297
- tokenizer = models[model_name].tokenizer
298
- if isinstance(continuation_state[-1], list):
299
- mid_seq = continuation_state[-1]
300
- else:
301
- mid_seq = [ms[:continuation_state[-1]] for ms in mid_seq]
302
- continuation_state = continuation_state[:-1]
303
- end_msgs = [create_msg("progress", [0, 0])]
304
- for i in range(OUTPUT_BATCH_SIZE):
305
- events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
306
- end_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]),
307
- create_msg("visualizer_append", [i, events]),
308
- create_msg("visualizer_end", i)]
309
- return mid_seq, continuation_state, send_msgs(end_msgs)
310
-
311
-
312
- def load_javascript(dir="javascript"):
313
- scripts_list = glob.glob(f"{dir}/*.js")
314
- javascript = ""
315
- for path in scripts_list:
316
- with open(path, "r", encoding="utf8") as jsfile:
317
- js_content = jsfile.read()
318
- js_content = js_content.replace("const MIDI_OUTPUT_BATCH_SIZE=4;",
319
- f"const MIDI_OUTPUT_BATCH_SIZE={OUTPUT_BATCH_SIZE};")
320
- javascript += f"\n<!-- {path} --><script>{js_content}</script>"
321
- template_response_ori = gr.routes.templates.TemplateResponse
322
-
323
- def template_response(*args, **kwargs):
324
- res = template_response_ori(*args, **kwargs)
325
- res.body = res.body.replace(
326
- b'</head>', f'{javascript}</head>'.encode("utf8"))
327
- res.init_headers()
328
- return res
329
-
330
- gr.routes.templates.TemplateResponse = template_response
331
-
332
-
333
- def hf_hub_download_retry(repo_id, filename):
334
- print(f"downloading {repo_id} {filename}")
335
- retry = 0
336
- err = None
337
- while retry < 30:
338
- try:
339
- return hf_hub_download(repo_id=repo_id, filename=filename)
340
- except Exception as e:
341
- err = e
342
- retry += 1
343
- if err:
344
- raise err
345
-
346
-
347
- number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz",
348
- 40: "Blush", 48: "Orchestra"}
349
- patch2number = {v: k for k, v in MIDI.Number2patch.items()}
350
- drum_kits2number = {v: k for k, v in number2drum_kits.items()}
351
- key_signatures = ['C♭', 'A♭m', 'G♭', 'E♭m', 'D♭', 'B♭m', 'A♭', 'Fm', 'E♭', 'Cm', 'B♭', 'Gm', 'F', 'Dm',
352
- 'C', 'Am', 'G', 'Em', 'D', 'Bm', 'A', 'F♯m', 'E', 'C♯m', 'B', 'G♯m', 'F♯', 'D♯m', 'C♯', 'A♯m']
353
-
354
- if __name__ == "__main__":
355
- parser = argparse.ArgumentParser()
356
- parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
357
- parser.add_argument("--port", type=int, default=7860, help="gradio server port")
358
- parser.add_argument("--device", type=str, default="cuda", help="device to run model")
359
- parser.add_argument("--batch", type=int, default=8, help="batch size")
360
- parser.add_argument("--max-gen", type=int, default=1024, help="max")
361
- opt = parser.parse_args()
362
- OUTPUT_BATCH_SIZE = opt.batch
363
- soundfont_path = hf_hub_download_retry(repo_id="skytnt/midi-model", filename="soundfont.sf2")
364
- thread_pool = ThreadPoolExecutor(max_workers=OUTPUT_BATCH_SIZE)
365
- synthesizer = MidiSynthesizer(soundfont_path)
366
- models_info = {
367
- "generic pretrain model (tv2o-medium) by skytnt": [
368
- "skytnt/midi-model-tv2o-medium", {
369
- "jpop": "skytnt/midi-model-tv2om-jpop-lora",
370
- "touhou": "skytnt/midi-model-tv2om-touhou-lora"
371
- }
372
- ],
373
- "generic pretrain model (tv2o-large) by asigalov61": [
374
- "asigalov61/Music-Llama", {}
375
- ],
376
- "generic pretrain model (tv2o-medium) by asigalov61": [
377
- "asigalov61/Music-Llama-Medium", {}
378
- ],
379
- "generic pretrain model (tv1-medium) by skytnt": [
380
- "skytnt/midi-model", {}
381
- ],
382
- "custom model test": [
383
- "skytnt/midi-model", {}
384
- ]
385
- }
386
- models = {}
387
- if opt.device == "cuda":
388
- torch.backends.cudnn.deterministic = True
389
- torch.backends.cudnn.benchmark = False
390
- torch.backends.cuda.matmul.allow_tf32 = True
391
- torch.backends.cudnn.allow_tf32 = True
392
- torch.backends.cuda.enable_mem_efficient_sdp(True)
393
- torch.backends.cuda.enable_flash_sdp(True)
394
- for name, (repo_id, loras) in models_info.items():
395
- model = MIDIModel.from_pretrained(repo_id)
396
- model.to(device="cpu", dtype=torch.float32)
397
- models[name] = model
398
- for lora_name, lora_repo in loras.items():
399
- model = MIDIModel.from_pretrained(repo_id)
400
- print(f"loading lora {lora_repo} for {name}")
401
- model = model.load_merge_lora(lora_repo)
402
- model.to(device="cpu", dtype=torch.float32)
403
- models[f"{name} with {lora_name} lora"] = model
404
-
405
- load_javascript()
406
- app = gr.Blocks(theme=gr.themes.Soft())
407
- with app:
408
- gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Midi Composer</h1>")
409
- gr.Markdown(
410
- "A modified version of the Midi-Generator for the IAT-360 Course by Ethan Lum\n\n"
411
- "Demo for [SkyTNT/midi-model](https://github.com/SkyTNT/midi-model)\n\n"
412
- "[Open In Colab]"
413
- "(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)"
414
- " or [download windows app](https://github.com/SkyTNT/midi-model/releases)"
415
- " for unlimited generation\n\n"
416
- )
417
- js_msg = gr.Textbox(elem_id="msg_receiver", visible=False)
418
- js_msg.change(None, [js_msg], [], js="""
419
- (msg_json) =>{
420
- let msgs = JSON.parse(msg_json);
421
- executeCallbacks(msgReceiveCallbacks, msgs);
422
- return [];
423
- }
424
- """)
425
- input_model = gr.Dropdown(label="select model", choices=list(models.keys()),
426
- type="value", value=list(models.keys())[0])
427
- tab_select = gr.State(value=0)
428
- with gr.Tabs():
429
- with gr.TabItem("custom prompt") as tab1:
430
- input_instruments = gr.Dropdown(label="🪗instruments (auto if empty)", choices=list(patch2number.keys()),
431
- multiselect=True, max_choices=15, type="value")
432
- input_drum_kit = gr.Dropdown(label="🥁drum kit", choices=list(drum_kits2number.keys()), type="value",
433
- value="None")
434
- input_bpm = gr.Slider(label="BPM (beats per minute, auto if 0)", minimum=0, maximum=255,
435
- step=1,
436
- value=0)
437
- input_time_sig = gr.Radio(label="time signature (only for tv2 models)",
438
- value="auto",
439
- choices=["auto", "4/4", "2/4", "3/4", "6/4", "7/4",
440
- "2/2", "3/2", "4/2", "3/8", "5/8", "6/8", "7/8", "9/8", "12/8"]
441
- )
442
- input_key_sig = gr.Radio(label="key signature (only for tv2 models)",
443
- value="auto",
444
- choices=["auto"] + key_signatures,
445
- type="index"
446
- )
447
- example1 = gr.Examples([
448
- [[], "None"],
449
- [["Acoustic Grand"], "None"],
450
- [['Acoustic Grand', 'SynthStrings 2', 'SynthStrings 1', 'Pizzicato Strings',
451
- 'Pad 2 (warm)', 'Tremolo Strings', 'String Ensemble 1'], "Orchestra"],
452
- [['Trumpet', 'Oboe', 'Trombone', 'String Ensemble 1', 'Clarinet',
453
- 'French Horn', 'Pad 4 (choir)', 'Bassoon', 'Flute'], "None"],
454
- [['Flute', 'French Horn', 'Clarinet', 'String Ensemble 2', 'English Horn', 'Bassoon',
455
- 'Oboe', 'Pizzicato Strings'], "Orchestra"],
456
- [['Electric Piano 2', 'Lead 5 (charang)', 'Electric Bass(pick)', 'Lead 2 (sawtooth)',
457
- 'Pad 1 (new age)', 'Orchestra Hit', 'Cello', 'Electric Guitar(clean)'], "Standard"],
458
- [["Electric Guitar(clean)", "Electric Guitar(muted)", "Overdriven Guitar", "Distortion Guitar",
459
- "Electric Bass(finger)"], "Standard"]
460
- ], [input_instruments, input_drum_kit])
461
- with gr.TabItem("midi prompt") as tab2:
462
- input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary")
463
- input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512,
464
- step=1,
465
- value=128)
466
- input_reduce_cc_st = gr.Checkbox(label="reduce control_change and set_tempo events", value=True)
467
- input_remap_track_channel = gr.Checkbox(
468
- label="remap tracks and channels so each track has only one channel and in order", value=True)
469
- input_add_default_instr = gr.Checkbox(
470
- label="add a default instrument to channels that don't have an instrument", value=True)
471
- input_remove_empty_channels = gr.Checkbox(label="remove channels without notes", value=False)
472
- example2 = gr.Examples([[file, 128] for file in glob.glob("example/*.mid")],
473
- [input_midi, input_midi_events])
474
- with gr.TabItem("last output prompt") as tab3:
475
- gr.Markdown("Continue generating on the last output.")
476
- input_continuation_select = gr.Radio(label="select output to continue generating", value="all",
477
- choices=["all"] + [f"output{i + 1}" for i in
478
- range(OUTPUT_BATCH_SIZE)],
479
- type="index"
480
- )
481
- undo_btn = gr.Button("undo the last continuation")
482
-
483
- tab1.select(lambda: 0, None, tab_select, queue=False)
484
- tab2.select(lambda: 1, None, tab_select, queue=False)
485
- tab3.select(lambda: 2, None, tab_select, queue=False)
486
- input_seed = gr.Slider(label="seed", minimum=0, maximum=2 ** 31 - 1,
487
- step=1, value=0)
488
- input_seed_rand = gr.Checkbox(label="random seed", value=True)
489
- input_gen_events = gr.Slider(label="generate max n midi events", minimum=1, maximum=opt.max_gen,
490
- step=1, value=opt.max_gen // 2)
491
- with gr.Accordion("options", open=False):
492
- input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1)
493
- input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.95)
494
- input_top_k = gr.Slider(label="top k", minimum=1, maximum=128, step=1, value=20)
495
- input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True)
496
- input_render_audio = gr.Checkbox(label="render audio after generation", value=True)
497
- example3 = gr.Examples([[1, 0.94, 128], [1, 0.98, 20], [1, 0.98, 12]],
498
- [input_temp, input_top_p, input_top_k])
499
- run_btn = gr.Button("generate", variant="primary")
500
- # stop_btn = gr.Button("stop and output")
501
- output_midi_seq = gr.State()
502
- output_continuation_state = gr.State([0])
503
- midi_outputs = []
504
- audio_outputs = []
505
- with gr.Tabs(elem_id="output_tabs"):
506
- for i in range(OUTPUT_BATCH_SIZE):
507
- with gr.TabItem(f"output {i + 1}") as tab1:
508
- output_midi_visualizer = gr.HTML(elem_id=f"midi_visualizer_container_{i}")
509
- output_audio = gr.Audio(label="output audio", format="mp3", elem_id=f"midi_audio_{i}")
510
- output_midi = gr.File(label="output midi", file_types=[".mid"])
511
- midi_outputs.append(output_midi)
512
- audio_outputs.append(output_audio)
513
- run_event = run_btn.click(run, [input_model, tab_select, output_midi_seq, output_continuation_state,
514
- input_continuation_select, input_instruments, input_drum_kit, input_bpm,
515
- input_time_sig, input_key_sig, input_midi, input_midi_events,
516
- input_reduce_cc_st, input_remap_track_channel,
517
- input_add_default_instr, input_remove_empty_channels,
518
- input_seed, input_seed_rand, input_gen_events, input_temp, input_top_p,
519
- input_top_k, input_allow_cc],
520
- [output_midi_seq, output_continuation_state, input_seed, js_msg], queue=True)
521
- finish_run_event = run_event.then(fn=finish_run,
522
- inputs=[input_model, output_midi_seq],
523
- outputs=midi_outputs + [js_msg],
524
- queue=False)
525
- finish_run_event.then(fn=render_audio,
526
- inputs=[input_model, output_midi_seq, input_render_audio],
527
- outputs=audio_outputs,
528
- queue=False)
529
- # stop_btn.click(None, [], [], cancels=run_event,
530
- # queue=False)
531
- undo_btn.click(undo_continuation, [input_model, output_midi_seq, output_continuation_state],
532
- [output_midi_seq, output_continuation_state, js_msg], queue=False)
533
- app.queue().launch(server_port=opt.port, share=opt.share, inbrowser=True, ssr_mode=False)
534
- thread_pool.shutdown()