Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,8 @@ from twilio.rest import Client
|
|
6 |
import os
|
7 |
import torch
|
8 |
import librosa
|
|
|
|
|
9 |
|
10 |
pipe = transformers.pipeline(
|
11 |
model="reach-vb/smolvox-smollm2-whisper-turbo",
|
@@ -21,7 +23,9 @@ auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
|
|
21 |
|
22 |
if account_sid and auth_token:
|
23 |
client = Client(account_sid, auth_token)
|
|
|
24 |
token = client.tokens.create()
|
|
|
25 |
rtc_configuration = {
|
26 |
"iceServers": token.ice_servers,
|
27 |
"iceTransportPolicy": "relay",
|
@@ -29,8 +33,12 @@ if account_sid and auth_token:
|
|
29 |
else:
|
30 |
rtc_configuration = None
|
31 |
|
32 |
-
|
33 |
-
def transcribe(
|
|
|
|
|
|
|
|
|
34 |
original_sr = audio[0]
|
35 |
target_sr = 16000
|
36 |
|
@@ -40,7 +48,7 @@ def transcribe(audio: tuple[int, np.ndarray], transformers_chat: list[dict], con
|
|
40 |
|
41 |
tf_input = [d for d in transformers_chat]
|
42 |
|
43 |
-
# Generate
|
44 |
output = pipe(
|
45 |
{"audio": audio_sr, "turns": tf_input, "sampling_rate": target_sr},
|
46 |
max_new_tokens=512,
|
@@ -56,16 +64,22 @@ def transcribe(audio: tuple[int, np.ndarray], transformers_chat: list[dict], con
|
|
56 |
|
57 |
yield AdditionalOutputs(transformers_chat, conversation)
|
58 |
|
59 |
-
|
60 |
-
def respond_text(
|
|
|
|
|
|
|
|
|
61 |
if not user_text.strip():
|
|
|
62 |
return transformers_chat, conversation
|
63 |
|
64 |
# Append the user message from the textbox
|
65 |
conversation.append({"role": "user", "content": user_text})
|
66 |
transformers_chat.append({"role": "user", "content": user_text})
|
67 |
|
68 |
-
# Generate a response using the pipeline.
|
|
|
69 |
output = pipe({"text": user_text, "turns": transformers_chat}, max_new_tokens=512)
|
70 |
|
71 |
conversation.append({"role": "assistant", "content": output})
|
@@ -88,7 +102,6 @@ with gr.Blocks() as demo:
|
|
88 |
</p>
|
89 |
"""
|
90 |
)
|
91 |
-
|
92 |
# Shared conversation state
|
93 |
transformers_chat = gr.State(
|
94 |
value=[
|
@@ -99,15 +112,13 @@ with gr.Blocks() as demo:
|
|
99 |
]
|
100 |
)
|
101 |
|
102 |
-
# Chat transcript at the top
|
103 |
-
transcript = gr.Chatbot(label="Transcript", type="messages")
|
104 |
-
|
105 |
-
# Lower row: text input and audio input side by side
|
106 |
with gr.Row():
|
107 |
with gr.Column(scale=1):
|
|
|
108 |
text_input = gr.Textbox(
|
109 |
-
placeholder="Type your message here
|
110 |
)
|
|
|
111 |
with gr.Column(scale=1):
|
112 |
audio = WebRTC(
|
113 |
rtc_configuration=rtc_configuration,
|
@@ -116,7 +127,7 @@ with gr.Blocks() as demo:
|
|
116 |
modality="audio",
|
117 |
)
|
118 |
|
119 |
-
# Audio stream:
|
120 |
audio.stream(
|
121 |
ReplyOnPause(transcribe),
|
122 |
inputs=[audio, transformers_chat, transcript],
|
@@ -130,14 +141,14 @@ with gr.Blocks() as demo:
|
|
130 |
show_progress="hidden",
|
131 |
)
|
132 |
|
133 |
-
# Text input:
|
134 |
-
|
135 |
respond_text,
|
136 |
inputs=[text_input, transformers_chat, transcript],
|
137 |
outputs=[transformers_chat, transcript],
|
138 |
)
|
139 |
-
#
|
140 |
-
|
141 |
|
142 |
if __name__ == "__main__":
|
143 |
demo.launch()
|
|
|
6 |
import os
|
7 |
import torch
|
8 |
import librosa
|
9 |
+
import spaces
|
10 |
+
|
11 |
|
12 |
pipe = transformers.pipeline(
|
13 |
model="reach-vb/smolvox-smollm2-whisper-turbo",
|
|
|
23 |
|
24 |
if account_sid and auth_token:
|
25 |
client = Client(account_sid, auth_token)
|
26 |
+
|
27 |
token = client.tokens.create()
|
28 |
+
|
29 |
rtc_configuration = {
|
30 |
"iceServers": token.ice_servers,
|
31 |
"iceTransportPolicy": "relay",
|
|
|
33 |
else:
|
34 |
rtc_configuration = None
|
35 |
|
36 |
+
@spaces.GPU(duration=90)
|
37 |
+
def transcribe(
|
38 |
+
audio: tuple[int, np.ndarray],
|
39 |
+
transformers_chat: list[dict],
|
40 |
+
conversation: list[dict],
|
41 |
+
):
|
42 |
original_sr = audio[0]
|
43 |
target_sr = 16000
|
44 |
|
|
|
48 |
|
49 |
tf_input = [d for d in transformers_chat]
|
50 |
|
51 |
+
# Generate response from the pipeline using the audio input
|
52 |
output = pipe(
|
53 |
{"audio": audio_sr, "turns": tf_input, "sampling_rate": target_sr},
|
54 |
max_new_tokens=512,
|
|
|
64 |
|
65 |
yield AdditionalOutputs(transformers_chat, conversation)
|
66 |
|
67 |
+
@spaces.GPU(duration=90)
|
68 |
+
def respond_text(
|
69 |
+
user_text: str,
|
70 |
+
transformers_chat: list[dict],
|
71 |
+
conversation: list[dict],
|
72 |
+
):
|
73 |
if not user_text.strip():
|
74 |
+
# Do nothing if the textbox is empty
|
75 |
return transformers_chat, conversation
|
76 |
|
77 |
# Append the user message from the textbox
|
78 |
conversation.append({"role": "user", "content": user_text})
|
79 |
transformers_chat.append({"role": "user", "content": user_text})
|
80 |
|
81 |
+
# Generate a response using the pipeline.
|
82 |
+
# Here we assume the pipeline can also process text input via the "text" key.
|
83 |
output = pipe({"text": user_text, "turns": transformers_chat}, max_new_tokens=512)
|
84 |
|
85 |
conversation.append({"role": "assistant", "content": output})
|
|
|
102 |
</p>
|
103 |
"""
|
104 |
)
|
|
|
105 |
# Shared conversation state
|
106 |
transformers_chat = gr.State(
|
107 |
value=[
|
|
|
112 |
]
|
113 |
)
|
114 |
|
|
|
|
|
|
|
|
|
115 |
with gr.Row():
|
116 |
with gr.Column(scale=1):
|
117 |
+
transcript = gr.Chatbot(label="Transcript", type="messages")
|
118 |
text_input = gr.Textbox(
|
119 |
+
placeholder="Type your message here...", label="Your Message"
|
120 |
)
|
121 |
+
send_button = gr.Button("Send")
|
122 |
with gr.Column(scale=1):
|
123 |
audio = WebRTC(
|
124 |
rtc_configuration=rtc_configuration,
|
|
|
127 |
modality="audio",
|
128 |
)
|
129 |
|
130 |
+
# Audio stream: when you stop speaking, process the audio input.
|
131 |
audio.stream(
|
132 |
ReplyOnPause(transcribe),
|
133 |
inputs=[audio, transformers_chat, transcript],
|
|
|
141 |
show_progress="hidden",
|
142 |
)
|
143 |
|
144 |
+
# Text input: when you click "Send", process the typed message.
|
145 |
+
send_button.click(
|
146 |
respond_text,
|
147 |
inputs=[text_input, transformers_chat, transcript],
|
148 |
outputs=[transformers_chat, transcript],
|
149 |
)
|
150 |
+
# Optionally clear the text box after sending:
|
151 |
+
send_button.click(lambda: "", inputs=[], outputs=[text_input])
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
demo.launch()
|