File size: 6,821 Bytes
61b850a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#include "common.cuh"
#include "cross-entropy-loss.cuh"
#include "sum.cuh"

#include <cmath>
#include <cstdint>

template <bool use_shared>
static __global__ void cross_entropy_loss_f32(
        const float * __restrict__ logits, const float * __restrict__ labels, float * __restrict__ dst, const int nclasses, const int k) {
    extern __shared__ float tmp[];

    logits += int64_t(blockIdx.x)*nclasses;
    labels += int64_t(blockIdx.x)*nclasses;

    // Find maximum for softmax:
    float max_logit = -INFINITY;
    for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
        const float val = logits[i];
        max_logit = fmaxf(max_logit, val);

        if (use_shared) {
            tmp[i] = val;
        }
    }
    max_logit = warp_reduce_max(max_logit);

    // Calculate log(softmax(logits)) which is just logits - max:
    float sum = 0.0f;
    for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
        const float logit_i = use_shared ? tmp[i] : logits[i];
        sum += expf(logit_i - max_logit);
    }
    sum = warp_reduce_sum(sum);
    sum = logf(sum);

    // log(exp(logits - max) / sum) = (logits - max) - log(sum)
    float loss = 0.0f;
    for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
        const float logit_i = use_shared ? tmp[i] : logits[i];
        loss += (logit_i - max_logit - sum) * labels[i];
    }
    loss = -warp_reduce_sum(loss) / (float)k;

    if (threadIdx.x != 0) {
        return;
    }

    dst[blockIdx.x] = loss;
}

template <bool use_shared>
static __global__ void cross_entropy_loss_back_f32(
        const float * __restrict__ grad, const float * __restrict__ logits, const float * __restrict__ labels,
        float * __restrict__ dst, const int nclasses) {
    extern __shared__ float tmp[];

    logits += int64_t(blockIdx.x)*nclasses;
    labels += int64_t(blockIdx.x)*nclasses;
    dst    += int64_t(blockIdx.x)*nclasses;

    float maxval = -INFINITY;
    for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
        const float val = logits[i];
        maxval = fmaxf(maxval, val);

        if (use_shared) {
            tmp[i] = val;
        }
    }
    maxval = warp_reduce_max(maxval);

    float sum = 0.0f;
    for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
        const float val = expf((use_shared ? tmp[i] : logits[i]) - maxval);
        sum += val;

        if (use_shared) {
            tmp[i] = val;
        } else {
            dst[i] = val;
        }
    }
    sum = warp_reduce_sum(sum);
    const float sm_scale = 1.0f/sum;

    const float d_by_nrows = *grad/gridDim.x;
    for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
        const float val = use_shared ? tmp[i] : dst[i];
        dst[i] = (val*sm_scale - labels[i])*d_by_nrows;
    }
}

void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const ggml_tensor * src1 = dst->src[1];

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    GGML_ASSERT(ggml_is_contiguous(src0));
    GGML_ASSERT(ggml_is_contiguous(src1));
    GGML_ASSERT(ggml_is_contiguous(dst));

    const int64_t ne00  = src0->ne[0];
    const int64_t nrows = ggml_nrows(src0);

    const float * src0_d = (const float *) src0->data;
    const float * src1_d = (const float *) src1->data;
    float       * dst_d  = (float       *) dst->data;

    ggml_cuda_pool & pool = ctx.pool();
    cudaStream_t stream = ctx.stream();

    const dim3 blocks_dim(WARP_SIZE, 1, 1);
    const dim3 blocks_num(nrows, 1, 1);
    const size_t nbytes_shared = ne00*sizeof(float);

    const int    id    = ggml_cuda_get_device();
    const size_t smpbo = ggml_cuda_info().devices[id].smpbo;

    ggml_cuda_pool_alloc<float> dst_tmp(pool, blocks_num.x);

    if (nbytes_shared <= smpbo) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
        static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
        if (!shared_memory_limit_raised[id]) {
            CUDA_CHECK(cudaFuncSetAttribute(cross_entropy_loss_back_f32<true>, cudaFuncAttributeMaxDynamicSharedMemorySize, smpbo));
            shared_memory_limit_raised[id] = true;
        }
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
        cross_entropy_loss_f32<true><<<blocks_num, blocks_dim, nbytes_shared, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
    } else {
        cross_entropy_loss_f32<false><<<blocks_num, blocks_dim, 0, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
    }
    CUDA_CHECK(cudaGetLastError());

    // Combine results from individual blocks:
    sum_f32_cuda(pool, dst_tmp.ptr, dst_d, blocks_num.x, stream);
}

void ggml_cuda_cross_entropy_loss_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * grad  = dst->src[0];
    const ggml_tensor * src0f = dst->src[1];
    const ggml_tensor * src1f = dst->src[2];

    GGML_ASSERT(src0f->type == GGML_TYPE_F32);
    GGML_ASSERT(src1f->type == GGML_TYPE_F32);
    GGML_ASSERT( grad->type == GGML_TYPE_F32);
    GGML_ASSERT(  dst->type == GGML_TYPE_F32);

    GGML_ASSERT(ggml_is_scalar(grad));
    GGML_ASSERT(ggml_is_contiguous(src0f));
    GGML_ASSERT(ggml_is_contiguous(src1f));
    GGML_ASSERT(ggml_is_contiguous(dst));
    GGML_ASSERT(ggml_are_same_shape(src0f, src1f));
    GGML_ASSERT(ggml_are_same_shape(src0f, dst));

    const int64_t ne00  = src0f->ne[0];
    const int64_t nrows = ggml_nrows(src0f);

    const float * grad_d  = (const float *) grad->data;
    const float * src0f_d = (const float *) src0f->data;
    const float * src1f_d = (const float *) src1f->data;
    float       * dst_d   = (float       *) dst->data;

    cudaStream_t stream = ctx.stream();

    const dim3 blocks_dim(WARP_SIZE, 1, 1);
    const dim3 blocks_num(nrows, 1, 1);
    const size_t nbytes_shared = ne00*sizeof(float);

    const int    id    = ggml_cuda_get_device();
    const size_t smpbo = ggml_cuda_info().devices[id].smpbo;

    if (nbytes_shared <= smpbo) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
        static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
        if (!shared_memory_limit_raised[id]) {
            CUDA_CHECK(cudaFuncSetAttribute(cross_entropy_loss_back_f32<true>, cudaFuncAttributeMaxDynamicSharedMemorySize, smpbo));
            shared_memory_limit_raised[id] = true;
        }
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
        cross_entropy_loss_back_f32<true><<<blocks_num, blocks_dim, nbytes_shared, stream>>>(grad_d, src0f_d, src1f_d, dst_d, ne00);
    } else {
        cross_entropy_loss_back_f32<false><<<blocks_num, blocks_dim, 0, stream>>>(grad_d, src0f_d, src1f_d, dst_d, ne00);
    }
}