File size: 29,800 Bytes
61b850a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 |
#pragma once
#include "common.cuh"
#include "convert.cuh"
#include "vecdotq.cuh"
#include <cstdint>
#define FATTN_KQ_STRIDE 256
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
typedef void (* fattn_kernel_t)(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int ne00,
const int ne01,
const int ne02,
const int ne03,
const int ne10,
const int ne11,
const int ne12,
const int ne13,
const int ne31,
const int nb31,
const int nb01,
const int nb02,
const int nb03,
const int nb11,
const int nb12,
const int nb13,
const int nb21,
const int nb22,
const int nb23,
const int ne0,
const int ne1,
const int ne2,
const int ne3);
typedef half (*vec_dot_KQ_f16_t)(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
typedef float (*vec_dot_KQ_f32_t)(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
template<typename T, int D>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c;
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
const int iqs4 = k_KQ % QI4_0;
const int shift = k_KQ & (QI8_1/2);
const int v = (get_int_b2(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int u = Q_q8[k_KQ_0/WARP_SIZE];
const int sumi = ggml_cuda_dp4a(v, u, 0);
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2) /* *8/QI8_1 == 1 */);
} else
#endif // FP16_AVAILABLE
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (8/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
}
}
return sum;
}
template<typename T, int D>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c;
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
const int iqs4 = k_KQ % QI4_1;
const int shift = k_KQ & (QI8_1/2);
const int v = (get_int_b4(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int u = Q_q8[k_KQ_0/WARP_SIZE];
const int sumi = ggml_cuda_dp4a(v, u, 0);
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
const half2 sumid4d8_m4s8scaled = d4d8_m4s8 * make_half2(sumi, 1.0f/QI8_1);
sum += (T) (__low2half(sumid4d8_m4s8scaled) + __high2half(sumid4d8_m4s8scaled));
} else
#endif // FP16_AVAILABLE
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
const float sumid4d8 = __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
sum += (T) (sumid4d8 + m4s8scaled);
}
}
return sum;
}
template<typename T, int D>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c;
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
const int iqs4 = k_KQ % QI5_0;
const int iqs8 = k_KQ % QI8_1;
const int shift = k_KQ & (QI8_1/2);
int v = (get_int_b2(K_q5_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int vh = get_int_b2(K_q5_0[ib].qh, 0) >> (iqs8 * QI5_0);
v |= (vh << 4) & 0x00000010; // 0 -> 4
v |= (vh << 11) & 0x00001000; // 1 -> 12
v |= (vh << 18) & 0x00100000; // 2 -> 20
v |= (vh << 25) & 0x10000000; // 3 -> 28
const int u = Q_q8[k_KQ_0/WARP_SIZE];
const int sumi = ggml_cuda_dp4a(v, u, 0);
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2)*__float2half(2.0f)) /* *16/QI8_1 == 2 */;
} else
#endif // FP16_AVAILABLE
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (16/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
}
}
return sum;
}
template<typename T, int D>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c;
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
const int iqs4 = k_KQ % QI5_1;
const int iqs8 = k_KQ % QI8_1;
const int shift = k_KQ & (QI8_1/2);
int v = (get_int_b2(K_q5_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int vh = get_int_b2(K_q5_1[ib].qh, 0) >> (iqs8 * QI5_1);
v |= (vh << 4) & 0x00000010; // 0 -> 4
v |= (vh << 11) & 0x00001000; // 1 -> 12
v |= (vh << 18) & 0x00100000; // 2 -> 20
v |= (vh << 25) & 0x10000000; // 3 -> 28
const int u = Q_q8[k_KQ_0/WARP_SIZE];
const int sumi = ggml_cuda_dp4a(v, u, 0);
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
const half2 sumid5d8_m5s8scaled = d5d8_m5s8 * make_half2(sumi, 1.0f/QI8_1);
sum += (T) (__low2half(sumid5d8_m5s8scaled) + __high2half(sumid5d8_m5s8scaled));
} else
#endif // FP16_AVAILABLE
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
const float sumid5d8 = __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
sum += (T) (sumid5d8 + m5s8scaled);
}
}
return sum;
}
template <typename T, int D>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c;
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_0;
const int iqs = k_KQ % QI8_0;
const int v = get_int_b2(K_q8_0[ib].qs, iqs);
T Q_d;
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
Q_d = __low2half(Q_ds[k_KQ_0/WARP_SIZE]);
} else {
const float2 * Q_ds = (const float2 *) Q_ds_v;
Q_d = Q_ds[k_KQ_0/WARP_SIZE].x;
}
sum += vec_dot_q8_0_q8_1_impl<T, 1>(&v, &Q_q8[k_KQ_0/WARP_SIZE], K_q8_0[ib].d, Q_d);
}
return sum;
}
template <typename T, int D>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds_v) {
const half2 * K_h2 = (const half2 *) K_c;
GGML_UNUSED(Q_q8);
GGML_UNUSED(Q_ds_v);
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
const half2 * Q_h2 = (const half2 *) Q_v;
half2 sum2 = make_half2(0.0f, 0.0f);
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const half2 K_ik = K_h2[k_KQ];
sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE];
}
return __low2half(sum2) + __high2half(sum2);
}
#endif // FP16_AVAILABLE
const float2 * Q_f2 = (const float2 *) Q_v;
float sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const half2 K_ik = K_h2[k_KQ];
sum += __low2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].x;
sum += __high2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].y;
}
return sum;
}
template <typename Tds>
static __device__ __forceinline__ void quantize_q8_1_to_shared(
const float * __restrict__ x, const float scale, int * __restrict__ yq32, void * __restrict__ yds) {
float vals[sizeof(int)] = {0.0f};
#pragma unroll
for (int l = 0; l < sizeof(int); ++l) {
vals[l] = scale * x[4*threadIdx.x + l];
}
float amax = fabsf(vals[0]);
float sum = vals[0];
#pragma unroll
for (int l = 1; l < sizeof(int); ++l) {
amax = fmaxf(amax, fabsf(vals[l]));
sum += vals[l];
}
#pragma unroll
for (int mask = QI8_1/2; mask > 0; mask >>= 1) {
amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, 32));
sum += __shfl_xor_sync(0xFFFFFFFF, sum, mask, 32);
}
const float d = amax / 127;
int q32 = 0;
int8_t * q8 = (int8_t *) &q32;
if (d != 0.0f) {
#pragma unroll
for (int l = 0; l < sizeof(int); ++l) {
q8[l] = roundf(vals[l] / d);
}
}
yq32[threadIdx.x] = q32;
if (threadIdx.x % QI8_1 == 0) {
if (std::is_same<Tds, half2>::value) {
((half2 *) yds)[threadIdx.x/QI8_1] = make_half2(d, sum);
} else {
((float2 *) yds)[threadIdx.x/QI8_1] = make_float2(d, sum);
}
}
}
typedef half (*dequantize_1_f16_t)(const void *, const int64_t);
typedef float (*dequantize_1_f32_t)(const void *, const int64_t);
template <typename T>
static __device__ __forceinline__ T dequantize_1_q4_0(const void * __restrict__ vx, const int64_t i) {
const block_q4_0 * x = (const block_q4_0 *) vx;
const int64_t ib = i / QK4_0;
const int iqs = i % (QK4_0/2);
const int shift = (i % QK4_0) / (QK4_0/2);
const T d = x[ib].d;
const int q0 = x[ib].qs[iqs];
const int q = ((q0 >> (4*shift)) & 0x0F) - 8;
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
return ((half) d)*((half) q);
}
#endif // FP16_AVAILABLE
return ((float) d)*((float) q);
}
template <typename T>
static __device__ __forceinline__ T dequantize_1_q4_1(const void * __restrict__ vx, const int64_t i) {
const block_q4_1 * x = (const block_q4_1 *) vx;
const int64_t ib = i / QK4_1;
const int iqs = i % (QK4_1/2);
const int shift = (i % QK4_1) / (QK4_1/2);
const half2 dm = x[ib].dm;
const int q0 = x[ib].qs[iqs];
const int q = ((q0 >> (4*shift)) & 0x0F);
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
return __low2half(dm)*((half) q) + __high2half(dm);
}
#endif // FP16_AVAILABLE
return __low2float(dm)*((float) q) + __high2float(dm);
}
template <typename T>
static __device__ __forceinline__ T dequantize_1_q5_0(const void * __restrict__ vx, const int64_t i) {
const block_q5_0 * x = (const block_q5_0 *) vx;
const int64_t ib = i / QK5_0;
const int idq = i % QK5_0;
const int iqs = i % (QK5_0/2);
const int shift = (i % QK5_0) / (QK5_0/2);
const T d = x[ib].d;
const int ql0 = x[ib].qs[iqs];
const int qh0 = get_int_b2(x[ib].qh, 0);
const int ql = ((ql0 >> (4*shift)) & 0x0F);
const int qh = ((qh0 >> idq) << 4) & 0x10;
const int q = (ql | qh) - 16;
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
return ((half) d)*((half) q);
}
#endif // FP16_AVAILABLE
return ((float) d)*((float) q);
}
template <typename T>
static __device__ __forceinline__ T dequantize_1_q5_1(const void * __restrict__ vx, const int64_t i) {
const block_q5_1 * x = (const block_q5_1 *) vx;
const int64_t ib = i / QK5_1;
const int idq = i % QK5_1;
const int iqs = i % (QK5_1/2);
const int shift = (i % QK5_1) / (QK5_1/2);
const half2 dm = x[ib].dm;
const int ql0 = x[ib].qs[iqs];
const int qh0 = get_int_b4(x[ib].qh, 0);
const int ql = ((ql0 >> (4*shift)) & 0x0F);
const int qh = ((qh0 >> idq) << 4) & 0x10;
const int q = (ql | qh);
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
return __low2half(dm)*((half) q) + __high2half(dm);
}
#endif // FP16_AVAILABLE
return __low2float(dm)*((float) q) + __high2float(dm);
}
template <typename T>
static __device__ __forceinline__ T dequantize_1_q8_0(const void * __restrict__ vx, const int64_t i) {
const block_q8_0 * x = (const block_q8_0 *) vx;
const int64_t ib = i / QK8_0;
const int iqs = i % QK8_0;
const T d = x[ib].d;
const int q = x[ib].qs[iqs];
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
return ((half) d)*((half) q);
}
#endif // FP16_AVAILABLE
return ((float) d)*((float) q);
}
template <typename T>
static __device__ __forceinline__ T dequantize_1_f16(const void * __restrict__ vx, const int64_t i) {
const half * x = (const half *) vx;
return x[i];
}
template <int D>
constexpr __device__ vec_dot_KQ_f16_t get_vec_dot_KQ_f16(ggml_type type_K) {
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<half, D> :
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<half, D> :
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<half, D> :
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<half, D> :
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<half, D> :
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<half, D> :
nullptr;
}
template <int D>
constexpr __device__ vec_dot_KQ_f32_t get_vec_dot_KQ_f32(ggml_type type_K) {
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<float, D> :
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<float, D> :
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<float, D> :
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<float, D> :
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<float, D> :
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<float, D> :
nullptr;
}
constexpr __device__ dequantize_1_f16_t get_dequantize_1_f16(ggml_type type_V) {
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<half> :
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<half> :
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<half> :
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<half> :
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<half> :
type_V == GGML_TYPE_F16 ? dequantize_1_f16<half> :
nullptr;
}
constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<float> :
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<float> :
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<float> :
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<float> :
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<float> :
type_V == GGML_TYPE_F16 ? dequantize_1_f16<float> :
nullptr;
}
// The HIP compiler for some reason complains that it can't unroll a loop because of the jt*ncols + j >= ne01 conditional.
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpass-failed"
#endif // __clang__
template<int D, int ncols, int KQ_stride> // D == head size
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
static __global__ void flash_attn_stream_k_fixup(
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne11) {
const float * dst_fixup_data = ((const float *) dst_fixup) + gridDim.x*(2*2*ncols);
const int iter_k = ne11 / KQ_stride;
const int iter_j = (ne01 + (ncols - 1)) / ncols;
const int bidx0 = blockIdx.x;
const int kbc0 = (bidx0 + 0)*iter_k*iter_j*ne02 / gridDim.x;
const int kbc0_stop = (bidx0 + 1)*iter_k*iter_j*ne02 / gridDim.x;
const bool did_not_have_any_data = kbc0 == kbc0_stop;
const bool wrote_beginning_of_tile = kbc0 % iter_k == 0;
const bool did_not_write_last = kbc0/iter_k == kbc0_stop/iter_k && kbc0_stop % iter_k != 0;
if (did_not_have_any_data || wrote_beginning_of_tile || did_not_write_last) {
return;
}
const int channel = kbc0 / (iter_k*iter_j);
const int jt = (kbc0 - channel*iter_k*iter_j) / iter_k;
dst += jt*ncols*ne02*D + channel*D;
// Load the partial result that needs a fixup:
float dst_val[ncols] = {0.0f};
float max_val[ncols] = {0.0f};
float rowsum[ncols] = {0.0f};
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (jt*ncols + j >= ne01) {
break;
}
dst_val[j] = dst[j*ne02*D + threadIdx.x];
const float2 tmp = dst_fixup[bidx0*ncols + j];
max_val[j] = tmp.x;
rowsum[j] = tmp.y;
}
// Iterate over previous blocks and compute the combined results.
// All CUDA blocks that get here must have a previous block that needs a fixup.
int bidx = bidx0 - 1;
int kbc_stop = kbc0;
while(true) {
const int kbc = bidx*iter_k*iter_j*ne02 / gridDim.x;
if (kbc == kbc_stop) { // Did not have any data.
bidx--;
kbc_stop = kbc;
continue;
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (jt*ncols + j >= ne01) {
break;
}
const float dst_add = dst_fixup_data[bidx*ncols*D + j*D + threadIdx.x];
const float2 tmp = dst_fixup[(gridDim.x + bidx)*ncols + j];
// Scale the current and new value accumulators depending on the max. values.
const float max_val_new = fmaxf(max_val[j], tmp.x);
const float diff_val = max_val[j] - max_val_new;
const float diff_add = tmp.x - max_val_new;
const float scale_val = diff_val >= SOFTMAX_FTZ_THRESHOLD ? expf(diff_val) : 0.0f;
const float scale_add = diff_add >= SOFTMAX_FTZ_THRESHOLD ? expf(diff_add) : 0.0f;
dst_val[j] = scale_val*dst_val[j] + scale_add*dst_add;
rowsum[j] = scale_val*rowsum[j] + scale_add*tmp.y;
max_val[j] = max_val_new;
}
// If this block started in a previous tile we are done and don't need to combine additional partial results.
if (kbc % iter_k == 0 || kbc/iter_k < kbc0/iter_k) {
break;
}
bidx--;
kbc_stop = kbc;
}
// Write back final result:
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (jt*ncols + j >= ne01) {
return;
}
dst[j*ne02*D + threadIdx.x] = dst_val[j] / rowsum[j];
}
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif // __clang__
template<int D, int parallel_blocks> // D == head size
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
static __global__ void flash_attn_combine_results(
const float * __restrict__ VKQ_parts,
const float2 * __restrict__ VKQ_meta,
float * __restrict__ dst) {
VKQ_parts += parallel_blocks*D * gridDim.y*blockIdx.x;
VKQ_meta += parallel_blocks * gridDim.y*blockIdx.x;
dst += D * gridDim.y*blockIdx.x;
const int tid = threadIdx.x;
__builtin_assume(tid < D);
__shared__ float2 meta[parallel_blocks];
if (tid < 2*parallel_blocks) {
((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.y*(2*parallel_blocks) + tid];
}
__syncthreads();
float kqmax = meta[0].x;
#pragma unroll
for (int l = 1; l < parallel_blocks; ++l) {
kqmax = max(kqmax, meta[l].x);
}
float VKQ_numerator = 0.0f;
float VKQ_denominator = 0.0f;
#pragma unroll
for (int l = 0; l < parallel_blocks; ++l) {
const float diff = meta[l].x - kqmax;
const float KQ_max_scale = expf(diff);
const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
*((uint32_t *) &KQ_max_scale) &= ftz_mask;
VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.y*D + blockIdx.y*D + tid];
VKQ_denominator += KQ_max_scale * meta[l].y;
}
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
}
static void on_no_fattn_vec_case(const int D) {
if (D == 64) {
fprintf(stderr, "Unsupported KV type combination for head_size 64.\n");
fprintf(stderr, "By default only f16 KV cache is supported.\n");
fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for V cache quantization support.\n");
GGML_ABORT("fatal error");
} else if (D == 128) {
fprintf(stderr, "Unsupported KV type combination for head_size 128.\n");
fprintf(stderr, "Supported combinations:\n");
fprintf(stderr, " - K == q4_0, V == q4_0, 4.50 BPV\n");
fprintf(stderr, " - K == q8_0, V == q8_0, 8.50 BPV\n");
fprintf(stderr, " - K == f16, V == f16, 16.00 BPV\n");
fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
GGML_ABORT("fatal error");
} else {
fprintf(stderr, "Unsupported KV type combination for head_size 256.\n");
fprintf(stderr, "Only f16 is supported.\n");
GGML_ABORT("fatal error");
}
}
// parallel_blocks == 0 is stream-k decomposition
template <int D, int cols_per_block, int parallel_blocks, int KQ_stride>
void launch_fattn(
ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel,
const int nwarps, const size_t nbytes_shared, const bool need_f16_K, const bool need_f16_V
) {
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
const ggml_tensor * mask = dst->src[3];
ggml_tensor * KQV = dst;
GGML_ASSERT(Q->type == GGML_TYPE_F32);
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
GGML_ASSERT(Q->ne[3] == 1);
ggml_cuda_pool & pool = ctx.pool();
cudaStream_t main_stream = ctx.stream();
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
ggml_cuda_pool_alloc<half> K_f16(pool);
ggml_cuda_pool_alloc<half> V_f16(pool);
ggml_cuda_pool_alloc<float> dst_tmp(pool);
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
const char * K_data = (const char *) K->data;
size_t nb11 = K->nb[1];
size_t nb12 = K->nb[2];
size_t nb13 = K->nb[3];
const char * V_data = (const char *) V->data;
size_t nb21 = V->nb[1];
size_t nb22 = V->nb[2];
size_t nb23 = V->nb[3];
if (need_f16_K && K->type != GGML_TYPE_F16) {
K_f16.alloc(ggml_nelements(K));
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type);
to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream);
K_data = (char *) K_f16.ptr;
const size_t bs = ggml_blck_size(K->type);
const size_t ts = ggml_type_size(K->type);
nb11 = nb11*bs*sizeof(half)/ts;
nb12 = nb12*bs*sizeof(half)/ts;
nb13 = nb13*bs*sizeof(half)/ts;
}
if (need_f16_V && V->type != GGML_TYPE_F16) {
V_f16.alloc(ggml_nelements(V));
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type);
to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream);
V_data = (char *) V_f16.ptr;
const size_t bs = ggml_blck_size(V->type);
const size_t ts = ggml_type_size(V->type);
nb21 = nb21*bs*sizeof(half)/ts;
nb22 = nb22*bs*sizeof(half)/ts;
nb23 = nb23*bs*sizeof(half)/ts;
}
const int ntiles_x = ((Q->ne[1] + cols_per_block - 1) / cols_per_block);
const int ntiles_total = ntiles_x*Q->ne[2]*Q->ne[3];
const dim3 block_dim(WARP_SIZE, nwarps, 1);
dim3 blocks_num;
if (parallel_blocks == 0) {
// For short contexts it can be faster to have the SMs work on whole tiles because this lets us skip the fixup.
const int tiles_nwaves = (ntiles_total - nsm - 1) / nsm;
const bool tiles_inefficient = 3*nsm < 2*tiles_nwaves*ntiles_total;
const bool short_context = K->ne[1] < 4096;
const int nblocks_stream_k = 2*nsm;
blocks_num.x = short_context && !tiles_inefficient ? ntiles_total : nblocks_stream_k;
blocks_num.y = 1;
blocks_num.z = 1;
dst_tmp_meta.alloc(blocks_num.x*cols_per_block * (2*2 + D) * sizeof(float));
} else {
blocks_num.x = parallel_blocks*ntiles_x;
blocks_num.y = Q->ne[2];
blocks_num.z = Q->ne[3];
if (parallel_blocks > 1) {
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
}
}
float scale = 1.0f;
float max_bias = 0.0f;
float logit_softcap = 0.0f;
memcpy(&scale, (const float *) KQV->op_params + 0, sizeof(float));
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (logit_softcap != 0.0f) {
scale /= logit_softcap;
}
const uint32_t n_head = Q->ne[2];
const uint32_t n_head_log2 = 1u << uint32_t(floorf(log2f(float(n_head))));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
fattn_kernel<<<blocks_num, block_dim, nbytes_shared, main_stream>>>(
(const char *) Q->data,
K_data,
V_data,
mask ? ((const char *) mask->data) : nullptr,
(parallel_blocks) > 1 ? dst_tmp.ptr : (float *) KQV->data, dst_tmp_meta.ptr,
scale, max_bias, m0, m1, n_head_log2, logit_softcap,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
Q->nb[1], Q->nb[2], Q->nb[3],
nb11, nb12, nb13,
nb21, nb22, nb23,
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
);
CUDA_CHECK(cudaGetLastError());
if constexpr (parallel_blocks == 0) {
if (blocks_num.x % ntiles_total != 0) { // Fixup is only needed if the SMs work on fractional tiles.
const dim3 block_dim_combine(D, 1, 1);
const dim3 blocks_num_combine = blocks_num;
flash_attn_stream_k_fixup<D, cols_per_block, KQ_stride>
<<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], K->ne[1]);
}
} else if constexpr (parallel_blocks > 1) {
const dim3 block_dim_combine(D, 1, 1);
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
flash_attn_combine_results<D, parallel_blocks>
<<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
}
CUDA_CHECK(cudaGetLastError());
}
|