File size: 26,921 Bytes
61b850a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
#include "common.cuh"
#include "mma.cuh"
#include "fattn-common.cuh"

template<int D, int ncols, int nwarps, int KQ_stride, bool use_logit_softcap, bool needs_fixup, bool is_fixup>
static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
        const float2 * const __restrict__ Q_f2,
        const half2  * const __restrict__ K_h2,
        const half2  * const __restrict__ V_h2,
        const half   * const __restrict__ maskh,
        float2       * const __restrict__ dstk,
        float2       * const __restrict__ dstk_fixup,
        const float scale,
        const float slope,
        const float logit_softcap,
        const int ne00,
        const int ne01,
        const int ne02,
        const int ne03,
        const int ne10,
        const int ne11,
        const int ne12,
        const int ne13,
        const int ne31,
        const int nb31,
        const int nb01,
        const int nb02,
        const int nb03,
        const int nb11,
        const int nb12,
        const int nb13,
        const int nb21,
        const int nb22,
        const int nb23,
        const int ne0,
        const int ne1,
        const int ne2,
        const int ne3,
        const int jt,
        const int kb0_start,
        const int kb0_stop) {
#ifdef NEW_MMA_AVAILABLE
    //In this kernel Q, K, V are matrices while i, j, k are matrix indices.

    typedef mma_A_I16K8<half2> mma_A;
    typedef mma_B_J8K8<half2>  mma_B;
    typedef mma_C_I16J8<float> mma_C_KQ;
    typedef mma_C_I16J8<half2> mma_C_VKQ;

    static_assert(nwarps*mma_B::J % ncols == 0, "bad nwarps");
    constexpr int np = nwarps*mma_B::J / ncols; // Number of parallel CUDA warps per Q column.

    static_assert(D         % nwarps == 0, "bad D");
    static_assert(KQ_stride % nwarps == 0, "bad KQ_stride");

    constexpr int D2_padded = D/2 + 4; // Size of D in half2, padded to avoid shared memory bank conflicts.
    extern __shared__ half2 tile_KV[]; // Temporary shared buffer for loading K/V data with KQ_stride*D logical elements.

    const int stride_Q    = nb01 / sizeof(float2);
    const int stride_KV   = nb11 / sizeof(half2);
    const int stride_mask = nb31 / sizeof(half);

    mma_B Q_B[D/(2*mma_B::K)];
    mma_C_VKQ VKQ_C[D/mma_C_VKQ::I];

    float2    KQ_rowsum = {0.0f, 0.0f};
    float2       KQ_max = {-FLT_MAX/2.0f, -FLT_MAX/2.0f};
    float2 KQ_max_scale = {0.0f, 0.0f};

    // Temporarily load Q data into tile_KV, will be loaded into registers afterwards.
    // The loading is done with decreasing granularity for D for better memory bandwidth.
    const half2 scale_h2 = make_half2(scale, scale);
#pragma unroll
    for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
        const int k0_start = stride_k == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_k);
        const int k0_stop  =                             D/2 - (D/2) % (1*stride_k);
        const int stride_j = WARP_SIZE / stride_k;

        if (nwarps*stride_j > ncols && threadIdx.y*stride_j >= ncols) {
            break;
        }

#pragma unroll
        for (int j0 = 0; j0 < ncols; j0 += nwarps*stride_j) {
            const int j = j0 + threadIdx.y*stride_j + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k);

            if (jt*ncols + j < ne01) {
#pragma unroll
                for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) {
                    const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);

                    const float2 tmp = Q_f2[(jt*ncols + j)*stride_Q + k];
                    tile_KV[j*D2_padded + k] = scale_h2 * make_half2(tmp.x, tmp.y);
                }
            } else {
#pragma unroll
                for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) {
                    const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);

                    tile_KV[j*D2_padded + k] = make_half2(0.0f, 0.0f);
                }
            }
        }
    }

    __syncthreads();

    {
        const int j0 = (threadIdx.y / np) * mma_B::J;

#pragma unroll
        for (int k0 = 0; k0 < D/2; k0 += mma_B::K) {
            Q_B[k0/mma_B::K].load_ldmatrix(tile_KV + j0*D2_padded + k0, D2_padded);
        }
    }

    __syncthreads();

    // Iterate over ne11 == previous tokens:
    for (int kb0 = kb0_start; kb0 < kb0_stop; ++kb0) {
        const int k_VKQ_0 = kb0*KQ_stride;
        mma_C_KQ KQ_C[KQ_stride/(np*mma_C_KQ::I)];

        // Load K data into tile with decreasing granularity for D for better memory bandwidth:
        static_assert(KQ_stride % (4*nwarps) == 0, "out of bounds");
#pragma unroll
        for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
            const int k0_start = stride_k == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_k);
            const int k0_stop  =                             D/2 - (D/2) % (1*stride_k);
            const int stride_i = WARP_SIZE / stride_k;

#pragma unroll
            for (int i_KQ_0 = 0; i_KQ_0 < KQ_stride; i_KQ_0 += nwarps*stride_i) {
                const int i_KQ = i_KQ_0 + threadIdx.y*stride_i + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k);

#pragma unroll
                for (int k_KQ_0 = k0_start; k_KQ_0 < k0_stop; k_KQ_0 += stride_k) {
                    const int k_KQ = k_KQ_0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);

                    tile_KV[i_KQ*D2_padded + k_KQ] = K_h2[(k_VKQ_0 + i_KQ)*stride_KV + k_KQ];
                }
            }
        }

        __syncthreads();

        // Calculate tile of KQ:
#pragma unroll
        for (int i_KQ_00 = 0; i_KQ_00 < KQ_stride; i_KQ_00 += np*mma_A::I) {
            const int i_KQ_0 = i_KQ_00 + (threadIdx.y % np)*mma_A::I;
#pragma unroll
            for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += mma_A::K) {
                mma_A K_A;
                K_A.load_ldmatrix(tile_KV + i_KQ_0*D2_padded + k_KQ_0, D2_padded);
                KQ_C[i_KQ_00/(np*mma_A::I)].mma(K_A, Q_B[k_KQ_0/mma_A::K]);
            }
        }

        __syncthreads();

        if (use_logit_softcap) {
            static_assert(KQ_stride % (np*mma_C_KQ::I) == 0, "bad loop size");
#pragma unroll
            for (int i = 0; i < KQ_stride/(np*mma_C_KQ::I); ++i) {
#pragma unroll
                for (int l = 0; l < mma_C_KQ::ne; ++l) {
                    KQ_C[i].x[l] = logit_softcap*tanhf(KQ_C[i].x[l]);
                }
            }
        }

        if (maskh) {
            static_assert(KQ_stride % (np       *mma_C_KQ::I) == 0, "bad loop size");
            static_assert(ncols     % (nwarps/np*mma_C_KQ::J) == 0, "bad loop size");
#pragma unroll
            for (int i00 = 0; i00 < KQ_stride; i00 += np*mma_C_KQ::I) {
                const int i0 = i00 + (threadIdx.y % np)*mma_C_KQ::I;
#pragma unroll
                for (int l = 0; l < mma_C_KQ::ne; ++l) {
                    const int i = i0 + mma_C_KQ::get_i(l);
                    const int j = (threadIdx.y / np)*mma_C_KQ::J + mma_C_KQ::get_j(l);

                    KQ_C[i00/(np*mma_C_KQ::I)].x[l] += slope*__half2float(maskh[j*stride_mask + k_VKQ_0 + i]);
                }
            }
        }

        // Calculate softmax for each KQ column using the current max. value.
        // The divisor is stored in KQ_rowsum and will be applied at the end.
        float2 KQ_max_new = KQ_max;
        static_assert(KQ_stride % (np*mma_C_KQ::I) == 0, "bad loop size");
#pragma unroll
        for (int k = 0; k < KQ_stride/(np*mma_C_KQ::I); ++k) {
#pragma unroll
            for (int l0 = 0; l0 < mma_C_KQ::ne; l0 += 2) {
                KQ_max_new.x = fmaxf(KQ_max_new.x, KQ_C[k].x[l0 + 0]);
                KQ_max_new.y = fmaxf(KQ_max_new.y, KQ_C[k].x[l0 + 1]);
            }
        }

        // Values per KQ column are spread across 8 threads, does not need full warp reduce:
#pragma unroll
        for (int offset = 16; offset > 2; offset >>= 1) {
            KQ_max_new.x = fmaxf(KQ_max_new.x, __shfl_xor_sync(0xFFFFFFFF, KQ_max_new.x, offset, WARP_SIZE));
            KQ_max_new.y = fmaxf(KQ_max_new.y, __shfl_xor_sync(0xFFFFFFFF, KQ_max_new.y, offset, WARP_SIZE));
        }

        {
            const float2 diff = make_float2(KQ_max.x - KQ_max_new.x, KQ_max.y - KQ_max_new.y);
            KQ_max_scale = make_float2(expf(diff.x), expf(diff.y));
            if (diff.x <= SOFTMAX_FTZ_THRESHOLD) {
                KQ_max_scale.x = 0.0f;
            }
            if (diff.y <= SOFTMAX_FTZ_THRESHOLD) {
                KQ_max_scale.y = 0.0f;
            }
            KQ_max = KQ_max_new;
        }

        float2 KQ_rowsum_add = make_float2(0.0f, 0.0f);
        static_assert(KQ_stride % (np*mma_C_KQ::I) == 0, "bad loop size");
#pragma unroll
        for (int k = 0; k < KQ_stride/(np*mma_C_KQ::I); ++k) {
#pragma unroll
            for (int l = 0; l < mma_C_KQ::ne; ++l) {
                const float KQ_max_l = l % 2 == 0 ? KQ_max.x : KQ_max.y;
                const float diff = KQ_C[k].x[l] - KQ_max_l;
                KQ_C[k].x[l] = expf(diff);
                if (diff <= SOFTMAX_FTZ_THRESHOLD) {
                    KQ_C[k].x[l] = 0.0f;
                }

                if (l % 2 == 0) {
                    KQ_rowsum_add.x += KQ_C[k].x[l];
                } else {
                    KQ_rowsum_add.y += KQ_C[k].x[l];
                }
            }
        }

        // Scale previous KQ_rowsum to account for a potential increase in KQ_max:
        KQ_rowsum.x = KQ_max_scale.x*KQ_rowsum.x + KQ_rowsum_add.x;
        KQ_rowsum.y = KQ_max_scale.y*KQ_rowsum.y + KQ_rowsum_add.y;

        const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale.x, KQ_max_scale.y);
#pragma unroll
        for (int i = 0; i < D/mma_C_VKQ::I; ++i) {
#pragma unroll
            for (int l = 0; l < mma_C_VKQ::ne; ++l) {
                VKQ_C[i].x[l] *= KQ_max_scale_h2;
            }
        }

        // Convert KQ C tiles into B tiles for VKQ calculation:
        mma_B B[KQ_stride/(np*2*mma_B::K)];
        static_assert(KQ_stride % (np*2*mma_B::K) == 0, "bad loop size");
#pragma unroll
        for (int k = 0; k < KQ_stride/(np*2*mma_B::K); ++k) {
            B[k] = KQ_C[k].to_mma_B();
        }

        // Load V data into tile with decreasing granularity for D for better memory bandwidth:
        static_assert(KQ_stride % (4*nwarps) == 0, "out of bounds");
#pragma unroll
        for (int stride_i : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
            const int i0_start = stride_i == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_i);
            const int i0_stop  =                             D/2 - (D/2) % (1*stride_i);
            const int stride_k = WARP_SIZE / stride_i;

#pragma unroll
            for (int k_V_0 = 0; k_V_0 < KQ_stride; k_V_0 += nwarps*stride_k) {
                const int k_V = k_V_0 + threadIdx.y*stride_k + (stride_i == WARP_SIZE ? 0 : threadIdx.x / stride_i);

#pragma unroll
                for (int i_V_0 = i0_start; i_V_0 < i0_stop; i_V_0 += stride_i) {
                    const int i_V = i_V_0 + (stride_i == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_i);

                    tile_KV[k_V*D2_padded + i_V] = V_h2[(k_VKQ_0 + k_V)*stride_KV + i_V];
                }
            }
        }

        __syncthreads();

        // Calculate VKQ tile:
#pragma unroll
        for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += mma_C_VKQ::I) {
            static_assert((KQ_stride/2) % (np*mma_A::K) == 0, "bad loop size");
#pragma unroll
            for (int k00 = 0; k00 < KQ_stride/2; k00 += np*mma_A::K) {
                const int k0 = k00 + (threadIdx.y % np)*mma_A::K;

                mma_A A;
                A.load_ldmatrix_trans(tile_KV + 2*k0*D2_padded + i_VKQ_0/2, D2_padded);
                VKQ_C[i_VKQ_0/mma_C_VKQ::I].mma(A, B[k00/(np*mma_A::K)]);
            }
        }

        __syncthreads();
    }

    // Finally, sum up partial KQ rowsums.
    // The partial sums are spread across 8 threads each, does not need full reduce.
#pragma unroll
    for (int offset = 16; offset > 2; offset >>= 1) {
        KQ_rowsum.x += __shfl_xor_sync(0xFFFFFFFF, KQ_rowsum.x, offset, WARP_SIZE);
        KQ_rowsum.y += __shfl_xor_sync(0xFFFFFFFF, KQ_rowsum.y, offset, WARP_SIZE);
    }

    // Write VKQ accumulators to shared memory in column-major format.
    // It's faster to do small writes to shared memory, then large write to VRAM than to do small writes to VRAM.
    // Also for np > 1 the combination is done via these values in shared memory.
    const int j_cwd = threadIdx.y*mma_B::J + mma_B::get_j(-1); // j combine write data
#pragma unroll
    for (int k0 = 0; k0 < D/2; k0 += mma_B::K) {
        const mma_B B = VKQ_C[k0/mma_B::K].to_mma_B(); // Conversion of C to B matrix puts it in column-major format.

#pragma unroll
        for (int l = 0; l < mma_B::ne; ++l) {
            const int k = k0 + mma_B::get_k(l);

            tile_KV[j_cwd*D2_padded + k] = B.x[l];
        }
    }

    const int j_cwmo = (threadIdx.x % (2*mma_C_VKQ::J)) / mma_C_VKQ::J; // j combine write meta offset
    const int j_cwm = threadIdx.y*(2*mma_C_VKQ::J) + 2*mma_C_VKQ::get_j(-1) + j_cwmo; // j combine write meta
    const float2 KQ_cmr = make_float2(((const float *) &KQ_max)[j_cwmo], ((const float *) &KQ_rowsum)[j_cwmo]); // KQ combine max rowsum

    if (((!needs_fixup && !is_fixup) || np > 1) && threadIdx.x < 2*mma_C_VKQ::J) {
        // Use the 16 bytes of padding in each row to store the meta data: KQ max, KQ rowsum, KQ max scale.
        ((float2 *) tile_KV)[j_cwm*(D2_padded/2) + D/4] = KQ_cmr;
    }

    __syncthreads();

    static_assert(np == 1 || np == 2 || np == 4, "bad np");
    if (np == 1) {
        // No combination is needed, the meta data can be directly written from registers to VRAM.
        if (needs_fixup && threadIdx.x < mma_B::J) {
            float2 * dstk_fixup_meta = dstk_fixup + blockIdx.x*ncols;
            dstk_fixup_meta[j_cwm] = KQ_cmr;
        }
        if (is_fixup && threadIdx.x < mma_B::J) {
            float2 * dstk_fixup_meta = dstk_fixup + (gridDim.x + blockIdx.x)*ncols;
            dstk_fixup_meta[j_cwm] = KQ_cmr;
        }
    } else if (threadIdx.y % np == 0) {
        // Combine the meta data for parallel warps via shared memory.
        // Warps with threadIdx.y % np != 0 must NOT return early.
        // All threads must return simultaneously to avoid race conditions with work on the next tile.

        float * meta_j = (float *) tile_KV + (threadIdx.y*mma_B::J + threadIdx.x)*D2_padded + D/2;

        float KQ_cm = -FLT_MAX/2; // KQ combine max per parallel warp.
        if (np*mma_B::J == WARP_SIZE || threadIdx.x < np*mma_B::J) {
            KQ_cm = meta_j[0];
        }

        float KQ_cmn = KQ_cm; // KQ combine max new, max between all parallel warps.
#pragma unroll
        for (int offset = np*mma_B::J/2; offset >= mma_B::J; offset >>= 1) {
            KQ_cmn = fmaxf(KQ_cmn, __shfl_xor_sync(0xFFFFFFFF, KQ_cmn, offset, WARP_SIZE));
        }

        const float KQ_cms = expf(KQ_cm - KQ_cmn); // KQ combine max scale per warp.
        float KQ_crs = 0.0f; // KQ combine rowsum, scaled sum of all parallel warps.
        if (np*mma_B::J == WARP_SIZE || threadIdx.x < np*mma_B::J) {
            KQ_crs = KQ_cms*meta_j[1];
        }
#pragma unroll
        for (int offset = np*mma_B::J/2; offset >= mma_B::J; offset >>= 1) {
            KQ_crs += __shfl_xor_sync(0xFFFFFFFF, KQ_crs, offset, WARP_SIZE);
        }

        // Write back combined meta data:
        if (np*mma_B::J == WARP_SIZE || threadIdx.x < np*mma_B::J) {
            meta_j[0] = KQ_cmn; // Combined max. KQ values.
            meta_j[1] = KQ_crs; // Combined KQ rowsums.
            meta_j[2] = KQ_cms; // KQ max scales per parallel warp.
        }
        if (needs_fixup && threadIdx.x < mma_B::J) {
            float2 * dstk_fixup_meta = dstk_fixup + blockIdx.x*ncols;
            dstk_fixup_meta[(threadIdx.y/np)*mma_B::J + threadIdx.x] = make_float2(KQ_cmn, KQ_crs);
        }
        if (is_fixup && threadIdx.x < mma_B::J) {
            float2 * dstk_fixup_meta = dstk_fixup + (gridDim.x + blockIdx.x)*ncols;
            dstk_fixup_meta[(threadIdx.y/np)*mma_B::J + threadIdx.x] = make_float2(KQ_cmn, KQ_crs);
        }
    }

    if (np > 1) {
        __syncthreads();
    }

    if (np == 1 || threadIdx.y % np == 0) {
        // The first 2*2*gridDim.x*ncols floats in dstk_fixup are for storing max. values and row sums.
        // The values after that are for the partial results of the individual blocks.
        float2 * dstk_fixup_data = dstk_fixup + gridDim.x*(2*ncols) + blockIdx.x*(ncols*(D/2));

#pragma unroll
        for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
            const int k0_start = stride_k == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_k);
            const int k0_stop  =                             D/2 - (D/2) % (1*stride_k);
            const int stride_j = WARP_SIZE / stride_k;

            if (nwarps*stride_j > ncols && threadIdx.y*stride_j >= ncols) {
                break;
            }

#pragma unroll
            for (int j0_dst = 0; j0_dst < ncols; j0_dst += (nwarps/np)*stride_j) {
                const int j_dst = j0_dst + (threadIdx.y/np)*stride_j + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k);
                const int j_tile_KV = (j_dst/mma_B::J)*(np*mma_B::J) + j_dst % mma_B::J;

                if (!is_fixup && jt*ncols + j_dst >= ne01) {
                    continue;
                }
                const float * meta_j = (const float *) tile_KV + j_tile_KV*D2_padded + D/2;
#pragma unroll
                for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) {
                    const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);

                    float2 dstk_val = make_float2(0.0f, 0.0f);
#pragma unroll
                    for (int ip = 0; ip < np; ++ip) {
                        const float KQ_crs = np == 1 ? 1.0f : meta_j[ip*mma_B::J*D2_padded + 2];
                        const float2 dstk_val_add = __half22float2(tile_KV[(j_tile_KV + ip*mma_B::J)*D2_padded + k]);
                        dstk_val.x += dstk_val_add.x*KQ_crs;
                        dstk_val.y += dstk_val_add.y*KQ_crs;
                    }

                    if (!needs_fixup && !is_fixup) {
                        const float KQ_rowsum_j = meta_j[1];
                        dstk_val.x /= KQ_rowsum_j;
                        dstk_val.y /= KQ_rowsum_j;
                    }

                    if (is_fixup) {
                        dstk_fixup_data[j_dst*(D/2) + k] = dstk_val;
                    } else {
                        dstk[(jt*ncols + j_dst)*ne02*(D/2) + k] = dstk_val;
                    }
                }
            }
        }
    }

    if (np > 1) {
        __syncthreads();
    }
#else
   NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
}

template<int D, int ncols, int nwarps, int KQ_stride, bool use_logit_softcap>
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 2)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
static __global__ void flash_attn_ext_f16(
        const char * __restrict__ Q,
        const char * __restrict__ K,
        const char * __restrict__ V,
        const char * __restrict__ mask,
        float      * __restrict__ dst,
        float2     * __restrict__ dst_meta,
        const float scale,
        const float max_bias,
        const float m0,
        const float m1,
        const uint32_t n_head_log2,
        const float logit_softcap,
        const int ne00,
        const int ne01,
        const int ne02,
        const int ne03,
        const int ne10,
        const int ne11,
        const int ne12,
        const int ne13,
        const int ne31,
        const int nb31,
        const int nb01,
        const int nb02,
        const int nb03,
        const int nb11,
        const int nb12,
        const int nb13,
        const int nb21,
        const int nb22,
        const int nb23,
        const int ne0,
        const int ne1,
        const int ne2,
        const int ne3) {
    // Skip unused kernel variants for faster compilation:
    if (use_logit_softcap && !(D == 128 || D == 256)) {
        NO_DEVICE_CODE;
        return;
    }

    static_assert(FATTN_KQ_STRIDE % KQ_stride == 0, "bad KQ_stride");

    const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.

    const int iter_k = ne11 / KQ_stride;
    const int iter_j = (ne01 + (ncols - 1)) / ncols;

    // kbc == k block continuous, current index in continuous ijk space.
    int       kbc      = (blockIdx.x + 0)*iter_k*iter_j*ne02 / gridDim.x;
    const int kbc_stop = (blockIdx.x + 1)*iter_k*iter_j*ne02 / gridDim.x;

    // If the seams of 2 CUDA blocks fall within an output tile their results need to be combined.
    // For this we need to track both the block that starts the tile (needs_fixup) and the block that finishes the tile (is_fixup).
    // In the most general case >2 seams can fall into the same tile.

    // kb0 == k start index when in the output tile.
    int kb0_start = kbc % iter_k;
    int kb0_stop  = min(iter_k, kb0_start + kbc_stop - kbc);
    while (kbc < kbc_stop && kb0_stop == iter_k) {
        const int channel = kbc / (iter_k*iter_j);
        const int jt      = (kbc - channel*iter_k*iter_j) / iter_k; // j index of current tile.

        const float2 * Q_f2  = (const float2 *) (Q + nb02* channel);
        const half2  * K_h2  = (const half2  *) (K + nb12*(channel / gqa_ratio));
        const half2  * V_h2  = (const half2  *) (V + nb12*(channel / gqa_ratio)); // K and V have same shape
        const half   * maskh = mask ? (const half  *) mask + (nb31/sizeof(half))*jt*ncols : nullptr;
        float2       * dstk  = ((float2 *) dst) + channel*(D/2);

        const float slope = get_alibi_slope(max_bias, channel, n_head_log2, m0, m1);

        constexpr bool is_fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
        if (kb0_start == 0) {
            constexpr bool needs_fixup = false; // CUDA block is working on an entire tile.
            flash_attn_ext_f16_process_tile<D, ncols, nwarps, KQ_stride, use_logit_softcap, needs_fixup, is_fixup>
                (Q_f2, K_h2, V_h2, maskh, dstk, dst_meta, scale, slope, logit_softcap,
                ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, ne31, nb31, nb01, nb02, nb03, nb11, nb12, nb13, nb21, nb22, nb23, ne0, ne1, ne2, ne3,
                jt, kb0_start, kb0_stop);
        } else {
            constexpr bool needs_fixup = true; // CUDA block is working on the beginning of a tile.
            flash_attn_ext_f16_process_tile<D, ncols, nwarps, KQ_stride, use_logit_softcap, needs_fixup, is_fixup>
                (Q_f2, K_h2, V_h2, maskh, dstk, dst_meta, scale, slope, logit_softcap,
                ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, ne31, nb31, nb01, nb02, nb03, nb11, nb12, nb13, nb21, nb22, nb23, ne0, ne1, ne2, ne3,
                jt, kb0_start, kb0_stop);
        }

        kbc += iter_k;
        kbc -= kbc % iter_k;

        kb0_start = 0;
        kb0_stop  = min(iter_k, kbc_stop - kbc);
    }

    if (kbc >= kbc_stop) {
        return;
    }

    const int channel = kbc / (iter_k*iter_j);
    const int jt      = (kbc - channel*iter_k*iter_j) / iter_k; // j index of current tile.

    const float2 * Q_f2  = (const float2 *) (Q + nb02* channel);
    const half2  * K_h2  = (const half2  *) (K + nb12*(channel / gqa_ratio));
    const half2  * V_h2  = (const half2  *) (V + nb12*(channel / gqa_ratio)); // K and V have same shape
    const half   * maskh = mask ? (const half  *) mask + (nb31/sizeof(half))*jt*ncols : nullptr;
    float2       * dstk  = ((float2 *) dst) + channel*(D/2);

    const float slope = get_alibi_slope(max_bias, channel, n_head_log2, m0, m1);

    constexpr bool is_fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks.
    constexpr bool needs_fixup = false;
    flash_attn_ext_f16_process_tile<D, ncols, nwarps, KQ_stride, use_logit_softcap, needs_fixup, is_fixup>
        (Q_f2, K_h2, V_h2, maskh, dstk, dst_meta, scale, slope, logit_softcap,
        ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, ne31, nb31, nb01, nb02, nb03, nb11, nb12, nb13, nb21, nb22, nb23, ne0, ne1, ne2, ne3,
        jt, kb0_start, kb0_stop);
}

template <int D, int cols_per_block>
void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    typedef mma_A_I16K8<half2> mma_A;
    typedef mma_B_J8K8<half2>  mma_B;

    static_assert(D              % mma_B::K == 0, "bad D");
    static_assert(cols_per_block % mma_B::J == 0, "bad cols_per_block");

    const ggml_tensor * KQV = dst;

    constexpr int    KQ_stride     = D <= 128 ? 64 : 32;
    constexpr int    nwarps        = (KQ_stride == 32 && cols_per_block <= 16) ?
                                     cols_per_block/mma_B::J * KQ_stride/mma_A::I : (cols_per_block <= 8 ? 4 : 8);
    constexpr size_t nbytes_shared = std::max(KQ_stride, nwarps*mma_B::J) * (D + 8) * sizeof(half);

    float logit_softcap;
    memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));

    fattn_kernel_t fattn_kernel;
    if (logit_softcap == 0.0f) {
        constexpr bool use_logit_softcap = false;
        fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, KQ_stride, use_logit_softcap>;
    } else {
        constexpr bool use_logit_softcap = true;
        fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, KQ_stride, use_logit_softcap>;
    }
    launch_fattn<D, cols_per_block, 0, KQ_stride>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, true, true);
}

#define DECL_FATTN_MMA_F16_CASE(D, cols_per_block)                          \
    template void ggml_cuda_flash_attn_ext_mma_f16_case                     \
    <D, cols_per_block>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \

extern DECL_FATTN_MMA_F16_CASE( 64,  8);
extern DECL_FATTN_MMA_F16_CASE( 80,  8);
extern DECL_FATTN_MMA_F16_CASE( 96,  8);
extern DECL_FATTN_MMA_F16_CASE(112,  8);
extern DECL_FATTN_MMA_F16_CASE(128,  8);
extern DECL_FATTN_MMA_F16_CASE(256,  8);

extern DECL_FATTN_MMA_F16_CASE( 64, 16);
extern DECL_FATTN_MMA_F16_CASE( 80, 16);
extern DECL_FATTN_MMA_F16_CASE( 96, 16);
extern DECL_FATTN_MMA_F16_CASE(112, 16);
extern DECL_FATTN_MMA_F16_CASE(128, 16);
extern DECL_FATTN_MMA_F16_CASE(256, 16);

extern DECL_FATTN_MMA_F16_CASE( 64, 32);
extern DECL_FATTN_MMA_F16_CASE( 80, 32);
extern DECL_FATTN_MMA_F16_CASE( 96, 32);
extern DECL_FATTN_MMA_F16_CASE(112, 32);
extern DECL_FATTN_MMA_F16_CASE(128, 32);
extern DECL_FATTN_MMA_F16_CASE(256, 32);

extern DECL_FATTN_MMA_F16_CASE( 64, 64);
extern DECL_FATTN_MMA_F16_CASE( 80, 64);
extern DECL_FATTN_MMA_F16_CASE( 96, 64);
extern DECL_FATTN_MMA_F16_CASE(112, 64);
extern DECL_FATTN_MMA_F16_CASE(128, 64);
extern DECL_FATTN_MMA_F16_CASE(256, 64);