File size: 166,699 Bytes
61b850a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
#define CL_TARGET_OPENCL_VERSION 220
#define CL_USE_DEPRECATED_OPENCL_1_2_APIS

// suppress warnings in CL headers for GCC and Clang
#pragma GCC diagnostic ignored "-Woverlength-strings"
#ifdef __clang__
#pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
#endif

#include "ggml-opencl.h"
#include "ggml-backend.h"
#include "ggml-impl.h"
#include "ggml-backend-impl.h"
#include "ggml.h"

#include <CL/cl.h>

#include <string.h>

#include <cstddef>
#include <cstdint>
#include <atomic>
#include <fstream>
#include <limits>
#include <vector>
#include <string>
#include <cmath>

#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))

#define UNUSED(x) (void)(x)

#define CL_CHECK(err)                                               \
    do {                                                            \
        cl_int err_ = (err);                                        \
        if (err_ != CL_SUCCESS) {                                   \
            GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n",  \
                #err, err_, __FILE__, __LINE__);                    \
            GGML_ASSERT(0);                                         \
        }                                                           \
    } while (0)

//------------------------------------------------------------------------------
// OpenCL
//------------------------------------------------------------------------------

bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);

enum GPU_FAMILY {
    ADRENO,
    INTEL,
    UNKNOWN,
};

enum ADRENO_GPU_GEN {
    ADRENO_UNKNOWN,
    A7X,
    A8X,
    X1E,
};

static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
    if (strstr(device_name, "730") ||
        strstr(device_name, "740") ||
        strstr(device_name, "750")) {
        return ADRENO_GPU_GEN::A7X;
    }

    if (strstr(device_name, "830")) {
        return ADRENO_GPU_GEN::A8X;
    }

    if (strstr(device_name, "X1")) {
        return ADRENO_GPU_GEN::X1E;
    }

    return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
}

static int get_adreno_cl_compiler_version(const char *driver_version) {
    std::string driver_ver_str(driver_version);
    size_t compiler_ver_pos = driver_ver_str.find("E031");
    size_t compiler_ver_len = 13;
    size_t compiler_ver_offset = 5;

    if (compiler_ver_pos == std::string::npos) {
        compiler_ver_pos = driver_ver_str.find("DX");
        if (compiler_ver_pos == std::string::npos) {
            return -1;
        }
        compiler_ver_len = 11;
        compiler_ver_offset = 3;
    }

    std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
    std::string major_ver_str = compiler_ver_str.substr(compiler_ver_offset, 2);
    return std::atoi(major_ver_str.c_str());
}

// backend device context
struct ggml_backend_opencl_device_context {
    cl_platform_id platform;
    std::string platform_name;

    cl_device_id device;
    std::string device_name;
};

// backend context
struct ggml_backend_opencl_context {
    cl_device_id device;
    std::string device_name;

    std::string driver_version;

    GPU_FAMILY gpu_family;
    ADRENO_GPU_GEN adreno_gen;

    cl_int alignment;
    size_t max_alloc_size;
    bool fp16_support;

    int adreno_wave_size;

    cl_context context;
    cl_command_queue queue;

    cl_program program;
    cl_program program_1;
    cl_program program_2;

    cl_kernel kernel_add, kernel_add_row;
    cl_kernel kernel_mul, kernel_mul_row;
    cl_kernel kernel_scale;
    cl_kernel kernel_silu, kernel_silu_4;
    cl_kernel kernel_gelu, kernel_gelu_4;
    cl_kernel kernel_relu;
    cl_kernel kernel_clamp;
    cl_kernel kernel_norm;
    cl_kernel kernel_rms_norm;
    cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
    cl_kernel kernel_soft_max, kernel_soft_max_4;
    cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
    cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
    cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
    cl_kernel kernel_mul_mat_f32_f32;
    cl_kernel kernel_mul_mat_f16_f16;
    cl_kernel kernel_mul_mat_f16_f32_1row;
    cl_kernel kernel_mul_mat_f16_f32;
    cl_kernel kernel_mul_mat_f16_f32_l4;
    cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
    cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0, kernel_mul_mat_q4_0_f32_flat;
    cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
    cl_kernel kernel_convert_block_q4_0_noshuffle, kernel_mul_mat_q4_0_f32_flat_v0,
              kernel_mul_mat_q4_0_f32_flat_img_v0;
    cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
    cl_kernel kernel_mul_mv_q6_K_f32;

#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
    // Transpose kernels
    cl_program program_transpose_32;
    cl_program program_transpose_32_16;
    cl_program program_transpose_16;
    cl_kernel kernel_transpose_32;
    cl_kernel kernel_transpose_32_16;
    cl_kernel kernel_transpose_16;

    cl_mem A_s_d_max;            // max scale buffer size for transpose
    cl_mem A_q_d_max;            // max weight buffer size for transpose
    cl_mem B_d_max;              // max activation buffer size for transpose

    // Gemm and Gemv related programs, kernels, etc
    cl_program program_CL_gemm;
    cl_program program_CL_gemv_general;
    cl_program program_CL_gemv_4096_1_11008;
    cl_program program_CL_gemv_4096_1_4096;
    cl_program program_CL_gemv_11008_1_4096;
    cl_program program_CL_gemv_32000_1_4096;
    cl_kernel CL_mul_mat_Ab_Bi_8x4;
    cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
    cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
    cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
    cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
    cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
};

static ggml_backend_device                 g_ggml_backend_opencl_device;
static ggml_backend_opencl_device_context  g_ggml_ctx_dev_main {
    /*.platform         =*/ nullptr,
    /*.platform_nane    =*/ "",
    /*.device           =*/ nullptr,
    /*.device_name      =*/ "",
};

static int ggml_backend_opencl_n_devices = 0;

// Profiling
#ifdef GGML_OPENCL_PROFILING
struct ProfilingInfo {
    std::string op_name;
    std::string kernel_name;
    // Kernel execution time in nanoseconds.
    cl_ulong duration_ns;
    // Global and local work sizes.
    size_t global_size[3];
    size_t local_size[3];
    // Op output size.
    size_t output_size[4];
};

std::vector<ProfilingInfo> g_profiling_info;
#endif

inline std::string read_file(const std::string &path) {
  std::ifstream ifs(path);
  if (!ifs) {
    return "";
  }
  std::string text;
  ifs.seekg(0, std::ios::end);
  text.resize(ifs.tellg());
  ifs.seekg(0, std::ios::beg);
  ifs.read(&text[0], text.size());
  return text;
}

static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
    cl_program p;
    char *program_log;
    size_t program_size;
    size_t log_size;
    int err;

    program_size = strlen(program_buffer);

    p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
    if(err < 0) {
        GGML_LOG_ERROR("OpenCL error creating program");
        exit(1);
    }

    err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
    if(err < 0) {
        clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
        program_log = (char*) malloc(log_size + 1);
        program_log[log_size] = '\0';
        clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
        GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
        free(program_log);
        exit(1);
    }

    return p;
}

static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
    static bool initialized = false;
    static ggml_backend_opencl_context *backend_ctx = nullptr;

    if (initialized) {
        return backend_ctx;
    }

    ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *)dev->context;
    GGML_ASSERT(dev_ctx);
    GGML_ASSERT(dev_ctx->platform == nullptr);
    GGML_ASSERT(dev_ctx->device == nullptr);
    GGML_ASSERT(backend_ctx == nullptr);

    initialized = true;
    backend_ctx = new ggml_backend_opencl_context();
    backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;

    cl_int err;

#ifdef GGML_PROFILE_OPENCL
    GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
#endif

    struct cl_device;
    struct cl_platform {
        cl_platform_id id;
        unsigned number;
        char name[128];
        char vendor[128];
        struct cl_device * devices;
        unsigned n_devices;
        struct cl_device * default_device;
    };

    struct cl_device {
        struct cl_platform * platform;
        cl_device_id id;
        unsigned number;
        cl_device_type type;
        char name[128];
    };

    enum { NPLAT = 16, NDEV = 16 };

    struct cl_platform platforms[NPLAT];
    unsigned n_platforms = 0;
    struct cl_device devices[NDEV];
    unsigned n_devices = 0;
    struct cl_device * default_device = NULL;

    cl_platform_id platform_ids[NPLAT];
    if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
        GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
        return backend_ctx;
    }

    for (unsigned i = 0; i < n_platforms; i++) {
        struct cl_platform * p = &platforms[i];
        p->number = i;
        p->id = platform_ids[i];
        CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
        CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));

        cl_device_id device_ids[NDEV];
        cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
        if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
            p->n_devices = 0;
        } else {
            CL_CHECK(clGetDeviceIDsError);
        }
        p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
        p->default_device = NULL;

        for (unsigned j = 0; j < p->n_devices; j++) {
            struct cl_device * d = &devices[n_devices];
            d->number = n_devices++;
            d->id = device_ids[j];
            d->platform = p;
            CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
            CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));

            if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
                p->default_device = d;
            }
        }

        if (default_device == NULL && p->default_device != NULL) {
            default_device = p->default_device;
        }
    }

    if (n_devices == 0) {
        GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
        return backend_ctx;
    }

    char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
    char * user_device_string = getenv("GGML_OPENCL_DEVICE");
    int user_platform_number = -1;
    int user_device_number = -1;

    unsigned n;
    if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
        user_platform_number = (int)n;
    }
    if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
        user_device_number = (int)n;
    }
    if (user_platform_number != -1 && user_device_number != -1) {
        cl_platform* platform = &platforms[user_platform_number];
        if ((unsigned)user_device_number >= platform->n_devices) {
            GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
            exit(1);
        }
        default_device = &platform->devices[user_device_number];
    } else {

        struct cl_device * selected_devices = devices;
        unsigned n_selected_devices = n_devices;

        if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
            for (unsigned i = 0; i < n_platforms; i++) {
                struct cl_platform * p = &platforms[i];
                if (strstr(p->name, user_platform_string) != NULL ||
                    strstr(p->vendor, user_platform_string) != NULL) {
                    user_platform_number = (int)i;
                    break;
                }
            }
            if (user_platform_number == -1) {
                GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
                exit(1);
            }
        }
        if (user_platform_number != -1) {
            struct cl_platform * p = &platforms[user_platform_number];
            selected_devices = p->devices;
            n_selected_devices = p->n_devices;
            default_device = p->default_device;
            if (n_selected_devices == 0) {
                GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
                exit(1);
            }
        }

        if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
            for (unsigned i = 0; i < n_selected_devices; i++) {
                struct cl_device * d = &selected_devices[i];
                if (strstr(d->name, user_device_string) != NULL) {
                    user_device_number = d->number;
                    break;
                }
            }
            if (user_device_number == -1) {
                GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
                exit(1);
            }
        }
        if (user_device_number != -1) {
            selected_devices = &devices[user_device_number];
            n_selected_devices = 1;
            default_device = &selected_devices[0];
        }

        GGML_ASSERT(n_selected_devices > 0);

        if (default_device == NULL) {
            default_device = &selected_devices[0];
        }
    }

    GGML_LOG_INFO("ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
    GGML_LOG_INFO("ggml_opencl: selecting device: '%s'\n", default_device->name);
    if (default_device->type != CL_DEVICE_TYPE_GPU) {
        GGML_LOG_WARN("ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
    }

    dev_ctx->platform = default_device->platform->id;
    dev_ctx->device = default_device->id;
    backend_ctx->device = default_device->id;

    if (strstr(default_device->name, "Adreno")) {
        backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
        backend_ctx->adreno_gen = get_adreno_gpu_gen(default_device->name);

        // Default wave size is 128, A8x uses 64.
        if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::A8X) {
            backend_ctx->adreno_wave_size = 64;
        } else if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::A7X ||
                   backend_ctx->adreno_gen == ADRENO_GPU_GEN::X1E) {
            backend_ctx->adreno_wave_size = 128;
        } else {
            backend_ctx->adreno_wave_size = 128;
            GGML_LOG_WARN("ggml_opencl: Unsupported Adreno GPU: %s, "
                "using wave size %d, "
                "may not work as expected\n",
                backend_ctx->device_name.c_str(), backend_ctx->adreno_wave_size);
        }
    } else if (strstr(default_device->name, "Intel")) {
        backend_ctx->gpu_family = GPU_FAMILY::INTEL;
    } else {
        GGML_LOG_ERROR("Unsupported GPU: %s\n", default_device->name);
        backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
        return backend_ctx;
    }

#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
    if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
        GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
            "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
        return backend_ctx;
    }
#endif

    // Populate backend device name
    dev_ctx->platform_name = default_device->platform->name;
    dev_ctx->device_name = default_device->name;
    backend_ctx->device_name = default_device->name;

    // A local ref of cl_device_id for convenience
    cl_device_id device = backend_ctx->device;

    // Check device OpenCL version, OpenCL 2.0 or above is required
    size_t device_ver_str_size;
    clGetDeviceInfo(device, CL_DEVICE_VERSION, 0, NULL, &device_ver_str_size);
    char *device_ver_buffer = (char *)alloca(device_ver_str_size + 1);
    clGetDeviceInfo(device, CL_DEVICE_VERSION, device_ver_str_size, device_ver_buffer, NULL);
    device_ver_buffer[device_ver_str_size] = '\0';
    GGML_LOG_INFO("ggml_opencl: device OpenCL version: %s\n", device_ver_buffer);

    if (strstr(device_ver_buffer, "OpenCL 2") == NULL &&
        strstr(device_ver_buffer, "OpenCL 3") == NULL) {
        GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
        return backend_ctx;
    }

    // Check driver version
    size_t driver_version_str_size;
    clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
    char *driver_version = (char *)alloca(driver_version_str_size + 1);
    clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
    driver_version[driver_version_str_size] = '\0';
    GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
    backend_ctx->driver_version = driver_version;

    int adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
    bool has_vector_subgroup_broadcast =
        adreno_cl_compiler_version >= 47 || adreno_cl_compiler_version == 17;
    GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
        has_vector_subgroup_broadcast ? "true" : "false");

    size_t ext_str_size;
    clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
    char *ext_buffer = (char *)alloca(ext_str_size + 1);
    clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
    ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
    // Check if ext_buffer contains cl_khr_fp16
    backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
    GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");

    // fp16 is required
    if (!backend_ctx->fp16_support) {
        GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
        return backend_ctx;
    }

    // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
    // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
    if (strstr(device_ver_buffer, "OpenCL 3") &&
        strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
        strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
        GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
            "(note that subgroups is an optional feature in OpenCL 3.0)\n");
        return backend_ctx;
    }

    CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &backend_ctx->alignment, NULL));
    GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);

    clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
    GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);

    // Check SVM.
    cl_device_svm_capabilities svm_caps;
    CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
    GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
        svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
    GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
        svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
    GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
        svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
    GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
        svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");

    // Print out configurations
#ifdef GGML_OPENCL_SOA_Q
    GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
#endif // GGML_OPENCL_SOA_Q

#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
    GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
#endif // GGML_OPENCL_USE_ADRENO_KERNELS

    cl_context_properties properties[] = {
        (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)dev_ctx->platform, 0
    };

    CL_CHECK((backend_ctx->context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));

    // A local ref of cl_context for convenience
    cl_context context = backend_ctx->context;

    //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
    //    (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
    //    (queue = clCreateCommandQueue(context, device, 0, &err), err)
    //)));
    cl_command_queue_properties command_queue_props = 0;
#ifdef GGML_OPENCL_PROFILING
    command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
#endif
    CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));

#ifdef GGML_OPENCL_EMBED_KERNELS
    const std::string kernel_src {
        #include "ggml-opencl.cl.h"
    };
#else
    const std::string kernel_src = read_file("ggml-opencl.cl");
#endif

    std::string compile_opts =
        "-cl-std=CL2.0 -cl-mad-enable -cl-unsafe-math-optimizations "
        "-cl-finite-math-only -cl-fast-relaxed-math ";
    backend_ctx->program = build_program_from_source(context, device, kernel_src.c_str(), compile_opts);

    // Non matmul kernels.
    CL_CHECK((backend_ctx->kernel_get_rows_f32       = clCreateKernel(backend_ctx->program, "kernel_get_rows_f32", &err), err));
    CL_CHECK((backend_ctx->kernel_get_rows_f16       = clCreateKernel(backend_ctx->program, "kernel_get_rows_f16", &err), err));
    CL_CHECK((backend_ctx->kernel_get_rows_q4_0      = clCreateKernel(backend_ctx->program, "kernel_get_rows_q4_0", &err), err));
    CL_CHECK((backend_ctx->kernel_add                = clCreateKernel(backend_ctx->program, "kernel_add", &err), err));
    CL_CHECK((backend_ctx->kernel_add_row            = clCreateKernel(backend_ctx->program, "kernel_add_row", &err), err));
    CL_CHECK((backend_ctx->kernel_mul                = clCreateKernel(backend_ctx->program, "kernel_mul", &err), err));
    CL_CHECK((backend_ctx->kernel_mul_row            = clCreateKernel(backend_ctx->program, "kernel_mul_row", &err), err));
    CL_CHECK((backend_ctx->kernel_scale              = clCreateKernel(backend_ctx->program, "kernel_scale", &err), err));
    CL_CHECK((backend_ctx->kernel_silu               = clCreateKernel(backend_ctx->program, "kernel_silu", &err), err));
    CL_CHECK((backend_ctx->kernel_silu_4             = clCreateKernel(backend_ctx->program, "kernel_silu_4", &err), err));
    CL_CHECK((backend_ctx->kernel_gelu               = clCreateKernel(backend_ctx->program, "kernel_gelu", &err), err));
    CL_CHECK((backend_ctx->kernel_gelu_4             = clCreateKernel(backend_ctx->program, "kernel_gelu_4", &err), err));
    CL_CHECK((backend_ctx->kernel_relu               = clCreateKernel(backend_ctx->program, "kernel_relu", &err), err));
    CL_CHECK((backend_ctx->kernel_clamp              = clCreateKernel(backend_ctx->program, "kernel_clamp", &err), err));
    CL_CHECK((backend_ctx->kernel_norm               = clCreateKernel(backend_ctx->program, "kernel_norm", &err), err));
    CL_CHECK((backend_ctx->kernel_rms_norm           = clCreateKernel(backend_ctx->program, "kernel_rms_norm", &err), err));
    CL_CHECK((backend_ctx->kernel_diag_mask_inf      = clCreateKernel(backend_ctx->program, "kernel_diag_mask_inf", &err), err));
    CL_CHECK((backend_ctx->kernel_diag_mask_inf_8    = clCreateKernel(backend_ctx->program, "kernel_diag_mask_inf_8", &err), err));
    CL_CHECK((backend_ctx->kernel_soft_max           = clCreateKernel(backend_ctx->program, "kernel_soft_max", &err), err));
    CL_CHECK((backend_ctx->kernel_soft_max_4         = clCreateKernel(backend_ctx->program, "kernel_soft_max_4", &err), err));
    CL_CHECK((backend_ctx->kernel_rope_norm_f32      = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f32", &err), err));
    CL_CHECK((backend_ctx->kernel_rope_norm_f16      = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f16", &err), err));
    CL_CHECK((backend_ctx->kernel_rope_neox_f32      = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f32", &err), err));
    CL_CHECK((backend_ctx->kernel_rope_neox_f16      = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f16", &err), err));
    CL_CHECK((backend_ctx->kernel_cpy_f16_f16        = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f16", &err), err));
    CL_CHECK((backend_ctx->kernel_cpy_f16_f32        = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f32", &err), err));
    CL_CHECK((backend_ctx->kernel_cpy_f32_f16        = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f16", &err), err));
    CL_CHECK((backend_ctx->kernel_cpy_f32_f32        = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f32", &err), err));

    // Matmul kernels.
    CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32        = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f32_f32", &err), err));
    CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16        = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f16", &err), err));
    CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row   = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32_1row", &err), err));
    CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32        = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32", &err), err));
    CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4     = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32_l4", &err), err));
    CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32       = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32", &err), err));
    CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v     = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_v", &err), err));

    CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat  = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_flat", &err), err));
    CL_CHECK((backend_ctx->kernel_convert_block_q4_0     = clCreateKernel(backend_ctx->program, "kernel_convert_block_q4_0", &err), err));
    CL_CHECK((backend_ctx->kernel_restore_block_q4_0     = clCreateKernel(backend_ctx->program, "kernel_restore_block_q4_0", &err), err));
    CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));

    // Load additional mulmat kernels.
#ifdef GGML_OPENCL_EMBED_KERNELS
    const std::string kernel_src_1 {
        #include "ggml-opencl_mm.cl.h"
    };
#else
    const std::string kernel_src_1 = read_file("ggml-opencl_mm.cl");
#endif
    backend_ctx->program_1 = build_program_from_source(context, device, kernel_src_1.c_str(), compile_opts);

    CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat      = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
    CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat     = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
    CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32                  = clCreateKernel(backend_ctx->program_1, "kernel_mul_mv_q6_K_f32", &err), err));
    CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat_v0         = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_flat_v0", &err), err));
    CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat_img_v0     = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_flat_img_v0", &err), err));

    // Load additional data conversion kernels.
#ifdef GGML_OPENCL_EMBED_KERNELS
    const std::string kernel_src_2 {
        #include "ggml-opencl_cvt.cl.h"
    };
#else
    const std::string kernel_src_2 = read_file("ggml-opencl_cvt.cl");
#endif
    backend_ctx->program_2 = build_program_from_source(context, device, kernel_src_2.c_str(), compile_opts);

    CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle     = clCreateKernel(backend_ctx->program_2, "kernel_convert_block_q4_0_noshuffle", &err), err));

    // Kernels for Adreno
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
#ifdef GGML_OPENCL_EMBED_KERNELS
    const std::string transpose_32_src {
        #include "ggml-opencl_transpose_32.cl.h"
    };
#else
    const std::string transpose_32_src = read_file("ggml-opencl_transpose_32.cl");
#endif
    backend_ctx->program_transpose_32 = build_program_from_source(context, device, transpose_32_src.c_str(), compile_opts);
    CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose_32, "kernel_transpose_32", &err), err));

#ifdef GGML_OPENCL_EMBED_KERNELS
    const std::string transpose_32_16_src {
        #include "ggml-opencl_transpose_32_16.cl.h"
    };
#else
    const std::string transpose_32_16_src = read_file("ggml-opencl_transpose_32_16.cl");
#endif
    backend_ctx->program_transpose_32_16 = build_program_from_source(context, device, transpose_32_16_src.c_str(), compile_opts);
    CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose_32_16, "kernel_transpose_32_16", &err), err));

#ifdef GGML_OPENCL_EMBED_KERNELS
    const std::string transpose_16_src {
        #include "ggml-opencl_transpose_16.cl.h"
    };
#else
    const std::string transpose_16_src = read_file("ggml-opencl_transpose_16.cl");
#endif
    backend_ctx->program_transpose_16 = build_program_from_source(context, device, transpose_16_src.c_str(), compile_opts);
    CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose_16, "kernel_transpose_16", &err), err));

    // Gemv general
    std::string CL_gemv_compile_opts =
        " -cl-std=CL2.0 "
        " -cl-mad-enable "
        " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
    if (has_vector_subgroup_broadcast) {
        CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
    }
#ifdef GGML_OPENCL_EMBED_KERNELS
    const std::string kernel_src_CL_gemv_general {
        #include "ggml-opencl_gemv_noshuffle_general.cl.h"
    };
#else
    const std::string kernel_src_CL_gemv_general = read_file("ggml-opencl_gemv_noshuffle_general.cl");
#endif

    backend_ctx->program_CL_gemv_general = build_program_from_source(
        context, device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
    CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));

    // Gemv 2048, 16384
    CL_gemv_compile_opts =
        " -cl-std=CL2.0 "
        " -cl-mad-enable "
        " -DLINE_STRIDE_A=2048 "
        " -DBLOCK_STRIDE_A=16384 "
        " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
    if (has_vector_subgroup_broadcast) {
        CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
    }
#ifdef GGML_OPENCL_EMBED_KERNELS
    const std::string kernel_src_CL_gemv {
        #include "ggml-opencl_gemv_noshuffle.cl.h"
    };
#else
    const std::string kernel_src_CL_gemv = read_file("ggml-opencl_gemv_noshuffle.cl");
#endif

    backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
        context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
    CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));

    // Gemv 2048, 16384
    CL_gemv_compile_opts =
        " -cl-std=CL2.0 "
        " -cl-mad-enable "
        " -DLINE_STRIDE_A=2048 "
        " -DBLOCK_STRIDE_A=16384 "
        " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
    if (has_vector_subgroup_broadcast) {
        CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
    }

    backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
        context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
    CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));

    // Gemv 5504, 44032
    CL_gemv_compile_opts =
        " -cl-std=CL2.0 "
        " -cl-mad-enable "
        " -DLINE_STRIDE_A=5504 "
        " -DBLOCK_STRIDE_A=44032 "
        " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
    if (has_vector_subgroup_broadcast) {
        CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
    }

    backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
        context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
    CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));

    // Gemv 16000, 128000
    CL_gemv_compile_opts =
        " -cl-std=CL2.0 "
        " -cl-mad-enable "
        " -DLINE_STRIDE_A=16000 "
        " -DBLOCK_STRIDE_A=128000 "
        " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
    if (has_vector_subgroup_broadcast) {
        CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
    }

    backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
    CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));

    // Gemm
#ifdef GGML_OPENCL_EMBED_KERNELS
    const std::string kernel_src_CL_gemm {
        #include "ggml-opencl_mul_mat_Ab_Bi_8x4.cl.h"
    };
#else
    const std::string kernel_src_CL_gemm = read_file("ggml-opencl_mul_mat_Ab_Bi_8x4.cl");
#endif
    backend_ctx->program_CL_gemm = build_program_from_source(context, device, kernel_src_CL_gemm.c_str(), compile_opts);
    CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));

    // Allocate intermediate buffers and images
    size_t max_A_q_d_bytes = 311164928;
    size_t max_A_s_d_bytes = 38895616;
    size_t max_B_d_bytes = 45088768;

    CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
    CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
    CL_CHECK((backend_ctx->B_d_max   = clCreateBuffer(context, 0, max_B_d_bytes,   NULL, &err), err));
#endif // GGML_OPENCL_USE_ADRENO_KERNELS

    // For now we support a single devices
    ggml_backend_opencl_n_devices = 1;

    return backend_ctx;
}

static void ggml_cl2_free(void) {
#ifdef GGML_OPENCL_PROFILING
    FILE * fperf = fopen("cl_profiling.csv", "w");
    if (!fperf) {
        GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
        return;
    }

    float total_kernel_time = 0;
    fprintf(fperf, "op name, kernel name, duration (ms), global size, local size, output size\n");
    for (const ProfilingInfo & info : g_profiling_info) {
        total_kernel_time += info.duration_ns/1.e6f;
        fprintf(fperf, "%s,%s,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
            info.op_name.c_str(), info.kernel_name.c_str(), info.duration_ns/1.e6f,
            info.global_size[0], info.global_size[1], info.global_size[2],
            info.local_size[0], info.local_size[2], info.local_size[2],
            info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
    }
    fclose(fperf);

    GGML_LOG_INFO("ggml_opencl: total kernel time: %f\n", total_kernel_time);
#endif
}

//------------------------------------------------------------------------------
// Tensor extra management
//------------------------------------------------------------------------------
struct ggml_tensor_extra_cl {
    // The buffer object that holds the data.
    cl_mem data_device;
    // The offset into the buffer object. This is primarily for scratch buffer
    // and view operation.
    // NB: this offset no longer includes view offset (view_offs). Whenever this
    // offset is used, view_offs should be considered.
    cl_ulong offset;
    // The actual size of the cl_mem object. This is needed when returning the
    // block to the pool.
    size_t actual_size;

    void reset() {
        data_device = nullptr;
        offset = 0;
        actual_size = 0;
    }
};

// Additional tensor extra structs for quantized tensors.
// These tensors are loaded from files and should not be allocated in scratch --
// they should always be allocated from the pool. Hence, they do not have an
// `offset`, which indicate their locations in the scratch buffer.
struct ggml_tensor_extra_cl_q4_0 {
    // Quantized values.
    cl_mem q = nullptr;
    // Quantized values in image1d_buffer_t.
    cl_mem q_img = nullptr;
    // Scales.
    cl_mem d = nullptr;
    // Scales in image1d_buffer_t.
    cl_mem d_img = nullptr;
    // Size of quantized values.
    size_t size_q = 0;
    // Size of scales.
    size_t size_d = 0;

    ~ggml_tensor_extra_cl_q4_0() {
        reset();
    }

    void reset() {
        // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
        // They must be properly released so that the original buffer can be
        // properly released to avoid memory leak.
        if (q != nullptr) {
            CL_CHECK(clReleaseMemObject(q));
            q = nullptr;
        }
        if (d != nullptr) {
            CL_CHECK(clReleaseMemObject(d));
            d = nullptr;
        }
        // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
        // enabled. They point to the images in ggml_backend_opencl_buffer_context.
        // So, there is no need to release them here.
        // TODO: initialize them for non SMALL_PATH path, or remove them.
        q_img = nullptr;
        d_img = nullptr;
        size_q = 0;
        size_d = 0;
    }
};

//------------------------------------------------------------------------------
// Backend API
//------------------------------------------------------------------------------

//
// backend
//
static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
    return "OpenCL";

    UNUSED(backend);
}

static void ggml_backend_opencl_free(ggml_backend_t backend) {
    ggml_cl2_free();

    GGML_UNUSED(backend);
}

static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
    GGML_UNUSED(backend);
    GGML_UNUSED(tensor);
    GGML_UNUSED(data);
    GGML_UNUSED(offset);
    GGML_UNUSED(size);
}

static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
    GGML_UNUSED(backend);
    GGML_UNUSED(tensor);
    GGML_UNUSED(data);
    GGML_UNUSED(offset);
    GGML_UNUSED(size);
}

static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
    GGML_UNUSED(backend);
    GGML_UNUSED(src);
    GGML_UNUSED(dst);
    return false;
}

static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
    GGML_UNUSED(backend);
}

static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
    for (int i = 0; i < cgraph->n_nodes; i++) {
        ggml_tensor * node = cgraph->nodes[i];

        if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
            continue;
        }

        bool ok = ggml_cl_compute_forward(backend, node);
        if (!ok) {
            GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
        }
        GGML_ASSERT(ok);
    }

    return GGML_STATUS_SUCCESS;
}

static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
    GGML_UNUSED(dev);

    switch (op->op) {
        case GGML_OP_NONE:
            return true;
        case GGML_OP_GET_ROWS:
            switch (op->src[0]->type) {
                case GGML_TYPE_F32:
                case GGML_TYPE_F16:
                    return true;
                case GGML_TYPE_Q4_0:
#ifdef GGML_OPENCL_SOA_Q
                    // We do not support flattened Q4_0 (and possibly other Q's)
                    return false;
#else // GGML_OPENCL_SOA_Q
                    return true;
#endif // GGML_OPENCL_SOA_Q
                default:
                    return false;
            }
        case GGML_OP_CPY:
        case GGML_OP_DUP:
        case GGML_OP_CONT:
            switch (op->src[0]->type) {
                case GGML_TYPE_F32:
                    switch (op->type) {
                        case GGML_TYPE_F16:
                        case GGML_TYPE_F32:
                            return true;
                        default:
                            return false;
                    }
                case GGML_TYPE_F16:
                    switch (op->type) {
                        case GGML_TYPE_F16:
                        case GGML_TYPE_F32:
                            return true;
                        default:
                            return false;
                    }
                default:
                    return false;
            }
        case GGML_OP_ADD:
        case GGML_OP_SCALE:
        case GGML_OP_MUL:
            return true;
        case GGML_OP_UNARY:
            switch (ggml_get_unary_op(op)) {
                case GGML_UNARY_OP_GELU:
                case GGML_UNARY_OP_SILU:
                case GGML_UNARY_OP_RELU:
                   return ggml_is_contiguous(op->src[0]);
                default:
                    return false;
            }
        case GGML_OP_CLAMP:
        case GGML_OP_SOFT_MAX:
        case GGML_OP_NORM:
        case GGML_OP_RMS_NORM:
            return true;
        case GGML_OP_MUL_MAT:
            if (op->src[0]->type == GGML_TYPE_F16) {
                return true;
            } else if (op->src[0]->type == GGML_TYPE_F32) {
                return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
            } else if (op->src[0]->type == GGML_TYPE_Q4_0 ||
                       op->src[0]->type == GGML_TYPE_Q6_K) {
                return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
            }
            return false;
        case GGML_OP_RESHAPE:
        case GGML_OP_VIEW:
        case GGML_OP_PERMUTE:
        case GGML_OP_TRANSPOSE:
            return true;
        case GGML_OP_DIAG_MASK_INF:
            return op->ne[3] == 1;
        case GGML_OP_ROPE:
            return true;
        default:
            return false;
    }
}

// Forward declaration - implementation appears later in the file.
static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);

static ggml_guid_t ggml_backend_opencl_guid() {
    static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
    return &guid;
}

static ggml_backend_i ggml_backend_opencl_i = {
    /* .get_name                = */ ggml_backend_opencl_name,
    /* .free                    = */ ggml_backend_opencl_free,
    /* .set_tensor_async        = */ NULL,  /* ggml_backend_opencl_set_tensor_async */
    /* .get_tensor_async        = */ NULL,  /* ggml_backend_opencl_get_tensor_async */
    /* .cpy_tensor_async        = */ NULL,  /* ggml_backend_opencl_cpy_tensor_async */
    /* .synchronize             = */ NULL,  /* ggml_backend_opencl_synchronize */
    /* .graph_plan_create       = */ NULL,
    /* .graph_plan_free         = */ NULL,
    /* .graph_plan_update       = */ NULL,
    /* .graph_plan_compute      = */ NULL,
    /* .graph_compute           = */ ggml_backend_opencl_graph_compute,
    /* .event_record            = */ NULL,
    /* .event_wait              = */ NULL,
};

ggml_backend_t ggml_backend_opencl_init(void) {
    ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
    ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);

    ggml_backend_t backend = new ggml_backend {
        /* .guid      = */ ggml_backend_opencl_guid(),
        /* .interface = */ ggml_backend_opencl_i,
        /* .device    = */ dev,
        /* .context   = */ backend_ctx
    };

    return backend;
}

bool ggml_backend_is_opencl(ggml_backend_t backend) {
    return backend && backend->iface.get_name == ggml_backend_opencl_name;
}

//
// buffer
//
struct ggml_backend_opencl_buffer_context {
    // A buffer context can hold multiple cl_mem objects. This is for flattening
    // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
    // each tensor is allocated a separate buffer. When flattening is enabled
    // with small allocation, each tensor is backed by two cl_mem objects (for
    // quants and scales) packed into a backend_opencl_buffer.
    ggml_backend_opencl_buffer_context(cl_mem buf)
        : name("OpenCL") {
        buffer.push_back(buf);
    }

    ~ggml_backend_opencl_buffer_context() {
        for (cl_mem buf : buffer) {
            CL_CHECK(clReleaseMemObject(buf));
        }
        for (cl_mem im : img) {
            CL_CHECK(clReleaseMemObject(im));
        }

        // Delete all extras to trigger their destructors
        for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
            delete e;
        }
        for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
            delete e;
        }
        for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
            delete e;
        }
        for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
            delete e;
        }
    }

    ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
        ggml_tensor_extra_cl * extra;
        if (temp_tensor_extras.empty()) {
            extra = new ggml_tensor_extra_cl();
        } else {
            extra = temp_tensor_extras.back();
            temp_tensor_extras.pop_back();
        }

        temp_tensor_extras_in_use.push_back(extra);

        extra->reset();
        return extra;
    }

    ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
        ggml_tensor_extra_cl_q4_0 * extra;
        if (temp_tensor_extras_q4_0.empty()) {
            extra = new ggml_tensor_extra_cl_q4_0();
        } else {
            extra = temp_tensor_extras_q4_0.back();
            temp_tensor_extras_q4_0.pop_back();
        }

        temp_tensor_extras_q4_0_in_use.push_back(extra);

        extra->reset();
        return extra;
    }

    void reset() {
        for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
            temp_tensor_extras.push_back(e);
        }
        temp_tensor_extras_in_use.clear();

        for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
            temp_tensor_extras_q4_0.push_back(e);
        }
        temp_tensor_extras_q4_0_in_use.clear();
    }

    // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
    // being used are in `temp_tensor_extras_in_use`. At the first run, new
    // extras get created and put in `in_use`. When the buffer is reset via
    // the `reset` callback, all extras in `in_use` get moved to available extras
    // for reuse.
    std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
    std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
    std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
    std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;

    // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
    // before any tensor is initialized (at the beginning of alloc_tensor_range).
    // Hence, there is alway a buffer object in this vector. When each tensor is
    // being initialized, this original buffer object will be released if both
    // flattening and small allocation are enabled, and additional buffer
    // objects will be created in init_tensor to represent flattened quantized
    // weights.
    std::vector<cl_mem> buffer;
    // These are image1d_buffer_t objects that wrap around the quants and scales.
    // For Q4_0 quantization, there should be two of them - one for quants and
    // one for scales. They should be populated only when flattening and small
    // allocation are enabled.
    std::vector<cl_mem> img;
    std::string name;
};

static void * const cl_ptr_base = (void *)(uintptr_t) 0x1000;

static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
    ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
    delete ctx;
}

static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
    return cl_ptr_base;

    GGML_UNUSED(buffer);
}

static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
    ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;

    ggml_cl2_init(buffer->buft->device);

    if (tensor->view_src != nullptr) {
        GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);

        ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
        GGML_ASSERT(view_extra && "view_extra is nullptr?");

        // Reuse extra of the parent tensor. The offset of this view tensor
        // becomes `extra->offset + view_offs` and needs to be calculated when
        // it is used. This changes is needed because of the change to
        // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
        // `buffer` passed in here will always be `tensor->buffer`. It is OK
        // to allocate extras from the same buffer context for ordinary
        // intermediate tensors. But for views into kv cache tensors, doing so
        // would mess up the extras used by kv cache.
        // Before #7640, `buffer` is for intermediate tensors, which is always
        // different from that of kv cache tensors.
        //
        // NB: now extra->offset no longer accounts for view_offs.
        // NB: this should not apply to weight tensors (for end-to-end runs, but
        //     may apply for test-backend-ops).
        // FIXME: if any unexpected results are seen, double check the offset -
        // there could be other places that need fix.
        tensor->extra = view_extra;
    } else {
        {
            size_t offset = (char *)tensor->data - (char *)cl_ptr_base;

            ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
            extra->offset = offset;
            extra->data_device = ctx->buffer[0];
            extra->actual_size = ggml_nbytes(tensor);

            tensor->extra = extra;
        }
    }
}

// The optimized gemm and gemv kernels are used for large matrices without batch.
// tensor is the quantized weights matrix.
inline bool use_adreno_kernels(const ggml_tensor *tensor) {
    return tensor->ne[0] >= 512 && tensor->ne[1] >= 512 &&
            tensor->ne[2] == 1 && tensor->ne[3] == 1;
}

static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
    ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);

    cl_context context = backend_ctx->context;
    cl_command_queue queue = backend_ctx->queue;

#ifdef GGML_OPENCL_SOA_Q
    // We separate the quantized bits and scale from block_q4_0 by using an
    // additional kernel, where each thread handles a block. We first read the
    // original weights into a temporary buffer, then create two separate
    // buffers for quantized bits and scales, which are then populated by the
    // conversion kernel.
    if (tensor->type == GGML_TYPE_Q4_0) {
        // Tensors should have been preallocated, therefore they should
        // already have ggml_tensor_extra_cl as extra.
        ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
        GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");

        // Allocate the new extra and create aliases from the original.
        ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
        ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();

        size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
        size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
        GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");

        cl_int err;
        cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
            ggml_nbytes(tensor), NULL, &err);
        CL_CHECK(err);
        CL_CHECK(clEnqueueWriteBuffer(
            queue, data_device, CL_TRUE, 0,
            ggml_nbytes(tensor), data, 0, NULL, NULL));

        // We consider the specified offset arg as always, although For weights
        // the offset arg should be 0 (we do not assert this).
        //GGML_ASSERT(offset == 0);

        // We create subbuffers from the original tensor buffer for scales and
        // quants - i.e., scales and quants are aliases into the buffer obejct
        // that backs the original tensor. This is a cleaner way to adapt to the
        // new memory management.
        // In the old code, we allocate new buffers for scales and quants
        // respectively, which could still be done but would result in double
        // allocation; properly deallocating the preallocated buffer that backs
        // the tensors is tricky and would leak the backend specific information
        // into the general backend code.
        // Does this create misaligned subbuffers (alignment is 1024) in certain
        // cases ?
        cl_buffer_region region;

        // The original tensor memory is divided into scales and quants, i.e.,
        // we first store scales, then quants.
        // Create subbuffer for scales.
        region.origin = extra_orig->offset + tensor->view_offs + offset;
        region.size = size_d;
        extra->d = clCreateSubBuffer(
            extra_orig->data_device, CL_MEM_READ_WRITE,
            CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
        CL_CHECK(err);

        // Create subbuffer for quants.
        region.origin = extra_orig->offset + tensor->view_offs + offset + size_d;
        region.size = size_q;
        extra->q = clCreateSubBuffer(
            extra_orig->data_device, CL_MEM_READ_WRITE,
            CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
        CL_CHECK(err);

        //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
    #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
        cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;

        // The optimized kernels need weights in natural order, so unshuffle.
        if (use_adreno_kernels(tensor)) {
            kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
        }
    #else
        cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
    #endif // GGML_OPENCL_USE_ADRENO_KERNELS
        CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
        CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
        CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));

        size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
        size_t local_work_size[] = {64, 1, 1};

        cl_event evt;
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
        CL_CHECK(clWaitForEvents(1, &evt));
        CL_CHECK(clReleaseMemObject(data_device));

        tensor->extra = extra;

        // transpose the weights and scales
    #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
        // Only do transpose for large, non batched matrix
        // TODO: use preallocated images instead of sub-buffer then image
        if (use_adreno_kernels(tensor)) {
        // <----------------------------------------------------------------------------------> //
        // start transpose
        // <----------------------------------------------------------------------------------> //
        int M = tensor->ne[1];   // ne01
        int K = tensor->ne[0];   // ne00

        // transpose is out of place, so we need to allocate transposed buffers
        // <----------------------------------------------------------------------------------> //
        // use sub_buffer of max buffer size instead

        size_t q_size_bytes = K * M / 8 * sizeof(float);
        cl_buffer_region region;
        region.origin = 0;
        region.size = q_size_bytes;
        cl_mem qT_d = clCreateSubBuffer(
            backend_ctx->A_q_d_max,
            0,
            CL_BUFFER_CREATE_TYPE_REGION,
            &region,
            &err);
        // cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
        CL_CHECK(err);

        // size_t d_size_bytes = M * (K / 32) / 2 * sizeof(float);
        size_t d_size_bytes = M * (K / 32) * 2;
        region.origin = 0;
        region.size = d_size_bytes;
        cl_mem dT_d = clCreateSubBuffer(
            backend_ctx->A_s_d_max,
            0,
            CL_BUFFER_CREATE_TYPE_REGION,
            &region,
            &err);
        // cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
        CL_CHECK(err);

        // <----------------------------------------------------------------------------------> //


        // create images from the buffers
        // <----------------------------------------------------------------------------------> //
        cl_mem q_d_image1D;
        cl_mem d_d_image1D;
        cl_mem qT_d_image1D;
        cl_mem dT_d_image1D;

        cl_image_format img_fmt_1d = { CL_RGBA, CL_FLOAT };
        cl_image_desc img_desc_1d;

        memset(&img_desc_1d, 0, sizeof(img_desc_1d));
        img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
        img_desc_1d.image_width = M * K / 8 / 4;
        img_desc_1d.buffer = extra->q;
        q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
        CL_CHECK(err);

        img_fmt_1d = { CL_RGBA, CL_FLOAT };
        memset(&img_desc_1d, 0, sizeof(img_desc_1d));
        img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
        img_desc_1d.image_width = M * K / 8 / 4;
        img_desc_1d.buffer = qT_d;
        qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
        CL_CHECK(err);

        img_fmt_1d = { CL_RGBA, CL_FLOAT };
        memset(&img_desc_1d, 0, sizeof(img_desc_1d));
        img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
        img_desc_1d.image_width = M * K / 32 / 4 / 2;
        img_desc_1d.buffer = extra->d;
        d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
        CL_CHECK(err);

        img_fmt_1d = { CL_RGBA, CL_FLOAT };
        memset(&img_desc_1d, 0, sizeof(img_desc_1d));
        img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
        img_desc_1d.image_width = M * K / 32 / 4 / 2;
        img_desc_1d.buffer = dT_d;
        dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
        CL_CHECK(err);
        // <----------------------------------------------------------------------------------> //

        // set up and call the transpose kernels
        // <----------------------------------------------------------------------------------> //
        // weights
        int height_q = M / 8;
        int width_q = K / 8 / 4;
        kernel = backend_ctx->kernel_transpose_16;

        CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
        CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
        CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int),    &height_q));
        CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int),    &width_q));

        size_t local_size_q[3] = {4, 16, 1};
        size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
        CL_CHECK(clWaitForEvents(1, &evt));

        // scales
        int height_s = M / 8;
        int width_s = K / 32 / 8;

        kernel = backend_ctx->kernel_transpose_16;
        CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
        CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
        CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
        CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));

        size_t local_size_s[3] = {4, 16, 1};
        size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
        CL_CHECK(clWaitForEvents(1, &evt));
        // <----------------------------------------------------------------------------------> //

        // copy transposed buffer contents to original buffers
        // <----------------------------------------------------------------------------------> //
        // weights
        CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
        CL_CHECK(clWaitForEvents(1, &evt));

        // scales
        CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
        CL_CHECK(clWaitForEvents(1, &evt));
        // <----------------------------------------------------------------------------------> //

        // deallocate transpose buffers
        // <----------------------------------------------------------------------------------> //
        CL_CHECK(clReleaseMemObject(qT_d));
        CL_CHECK(clReleaseMemObject(dT_d));

        // deallocate temporary images
        CL_CHECK(clReleaseMemObject(q_d_image1D));
        CL_CHECK(clReleaseMemObject(d_d_image1D));
        CL_CHECK(clReleaseMemObject(qT_d_image1D));
        CL_CHECK(clReleaseMemObject(dT_d_image1D));
        // <----------------------------------------------------------------------------------> //
        // end transpose
        // <----------------------------------------------------------------------------------> //
        }
    #endif // GGML_OPENCL_USE_ADRENO_KERNELS

        return;
    }
#endif // GGML_OPENCL_SOA_Q

    ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
    GGML_ASSERT(extra);

    CL_CHECK(clEnqueueWriteBuffer(
        queue, extra->data_device, CL_TRUE, extra->offset + offset,
        size, data, 0, NULL, NULL));

    GGML_UNUSED(buffer);
}

static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
    GGML_ASSERT(tensor->extra);

    ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);

    cl_context context = backend_ctx->context;
    cl_command_queue queue = backend_ctx->queue;

    // Make sure all previously submitted commands are finished.
    CL_CHECK(clFinish(queue));

#ifdef GGML_OPENCL_SOA_Q
    // In end-to-end runs, get_tensor is usually used to get back the logits,
    // where we can simply do clEnqueueReadBuffer since they are f32.
    // However, in test-backend-ops, the GPU graph is copied to the CPU backend,
    // which requires reading back quantized weight tensors.
    // To properly support this, we need to restore block_q4_0 struct arrays
    // from the flattened buffers.
    if (tensor->type == GGML_TYPE_Q4_0) {
        ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;

        cl_int err;
        cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
            ggml_nbytes(tensor), NULL, &err);
        CL_CHECK(err);

        cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
        CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
        CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
        CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));

        size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
        size_t local_work_size[] = {1, 1, 1};

        cl_event evt;
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
            global_work_size, local_work_size, 0, NULL, &evt));
        CL_CHECK(clWaitForEvents(1, &evt));
        CL_CHECK(clEnqueueReadBuffer(
            queue, data_device, CL_TRUE, offset,
            size, data, 0, NULL, NULL));
        CL_CHECK(clReleaseMemObject(data_device));
        return;
    }
#endif // GGML_OPENCL_SOA_Q

    ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;

    CL_CHECK(clEnqueueReadBuffer(
        queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
        size, data, 0, NULL, NULL));

    GGML_UNUSED(buffer);
}

static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
    ggml_backend_dev_t dev = buffer->buft->device;
    ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
    cl_command_queue queue = backend_ctx->queue;

    ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
    for (cl_mem buf : ctx->buffer) {
        CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
    }
    CL_CHECK(clFinish(queue));
}

static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
    ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
    ctx->reset();
}

static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
    /* .free_buffer     = */ ggml_backend_opencl_buffer_free_buffer,
    /* .get_base        = */ ggml_backend_opencl_buffer_get_base,
    /* .init_tensor     = */ ggml_backend_opencl_buffer_init_tensor,
    /* .memset_tensor   = */ NULL,
    /* .set_tensor      = */ ggml_backend_opencl_buffer_set_tensor,
    /* .get_tensor      = */ ggml_backend_opencl_buffer_get_tensor,
    /* .cpy_tensor      = */ NULL,
    /* .clear           = */ ggml_backend_opencl_buffer_clear,
    /* .reset           = */ ggml_backend_opencl_buffer_reset,
};

//
// buffer type
//

static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
    return "OpenCL";

    GGML_UNUSED(buffer_type);
}

static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
    ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);

    // clCreateBuffer returns -61 for size 0
    size = std::max(size, (size_t)1);

    cl_int err;
    cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
    if (err != CL_SUCCESS) {
        GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
        return nullptr;
    }

    ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);

    return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
}

static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
    // FIXME: not thread safe, device may not be initialized yet
    static cl_uint alignment = -1;
    if (alignment == (cl_uint)-1) {
        ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
        alignment = backend_ctx->alignment;
    }
    return alignment;
}

static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
    static size_t max_size = -1;
    if (max_size == (size_t)-1) {
        ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
        max_size = backend_ctx->max_alloc_size;
    }
    return max_size;
}

static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
    return ggml_backend_is_opencl(backend);

    UNUSED(buft);
}

static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
    /* .get_name         = */ ggml_backend_opencl_buffer_type_get_name,
    /* .alloc_buffer     = */ ggml_backend_opencl_buffer_type_alloc_buffer,
    /* .get_alignment    = */ ggml_backend_opencl_buffer_type_get_alignment,
    /* .get_max_size     = */ ggml_backend_opencl_buffer_type_get_max_size,
    /* .get_alloc_size   = */ NULL,
    /* .is_host          = */ NULL,
};

ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() {
    static ggml_backend_buffer_type buffer_type = {
        /* .iface   = */ ggml_backend_opencl_buffer_type_interface,
        /* .device  = */ &g_ggml_backend_opencl_device,
        /* .context = */ nullptr,
    };

    return &buffer_type;
}

//
// backend device
//

static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
    return "GPUOpenCL";

    GGML_UNUSED(dev);
}

static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
    ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
    return dev_ctx->device_name.c_str();
}

static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
    *free = 1;
    *total = 1;

    GGML_UNUSED(dev);
}

static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
    return GGML_BACKEND_DEVICE_TYPE_GPU;

    GGML_UNUSED(dev);
}

static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
    props->name        = ggml_backend_opencl_device_get_name(dev);
    props->description = ggml_backend_opencl_device_get_description(dev);
    props->type        = ggml_backend_opencl_device_get_type(dev);
    ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
    props->caps = ggml_backend_dev_caps {
        /* .async                 = */ false,
        /* .host_buffer           = */ false,
        /* .buffer_from_host_ptr  = */ false,
        /* .events                = */ false,
    };
}

static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
    ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);

    ggml_backend_t backend = new ggml_backend {
        /* .guid      = */ ggml_backend_opencl_guid(),
        /* .interface = */ ggml_backend_opencl_i,
        /* .device    = */ dev,
        /* .context   = */ backend_ctx,
    };

    return backend;

    GGML_UNUSED(params);
}

static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
    return ggml_backend_opencl_buffer_type();

    GGML_UNUSED(dev);
}

static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
    GGML_UNUSED(dev);
    GGML_UNUSED(ptr);
    GGML_UNUSED(size);
    GGML_UNUSED(max_tensor_size);
    return nullptr;
}

static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
    return ggml_opencl_supports_op(dev, op);
}

static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
    return buft->iface.get_name == ggml_backend_opencl_buffer_type_get_name;

    GGML_UNUSED(dev);
}

static struct ggml_backend_device_i ggml_backend_opencl_device_i = {
    /* .get_name             = */ ggml_backend_opencl_device_get_name,
    /* .get_description      = */ ggml_backend_opencl_device_get_description,
    /* .get_memory           = */ ggml_backend_opencl_device_get_memory,
    /* .get_type             = */ ggml_backend_opencl_device_get_type,
    /* .get_props            = */ ggml_backend_opencl_device_get_props,
    /* .init_backend         = */ ggml_backend_opencl_device_init,
    /* .get_buffer_type      = */ ggml_backend_opencl_device_get_buffer_type,
    /* .get_host_buffer_type = */ NULL,
    /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
    /* .supports_op          = */ ggml_backend_opencl_device_supports_op,
    /* .supports_buft        = */ ggml_backend_opencl_device_supports_buft,
    /* .offload_op           = */ NULL,
    /* .event_new            = */ NULL,
    /* .event_free           = */ NULL,
    /* .event_synchronize    = */ NULL,
};

// Backend registry

static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
    return "OpenCL";

    GGML_UNUSED(reg);
}

static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
    return ggml_backend_opencl_n_devices;

    GGML_UNUSED(reg);
}

static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
    GGML_ASSERT(index == 0);

    return &g_ggml_backend_opencl_device;

    GGML_UNUSED(reg);
    GGML_UNUSED(index);
}

static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
    /* .get_name         = */ ggml_backend_opencl_reg_get_name,
    /* .device_count     = */ ggml_backend_opencl_reg_device_count,
    /* .device_get       = */ ggml_backend_opencl_reg_device_get,
    /* .get_proc_address = */ NULL,
};

ggml_backend_reg_t ggml_backend_opencl_reg(void) {
    // TODO: make this thread-safe somehow?
    static ggml_backend_reg reg;
    static bool initialized = false;

    if (!initialized) {
        reg = ggml_backend_reg {
            /* .api_version = */ GGML_BACKEND_API_VERSION,
            /* .iface   = */ ggml_backend_opencl_reg_i,
            /* .context = */ NULL,
        };

        g_ggml_backend_opencl_device = ggml_backend_device {
            /* .iface   = */ ggml_backend_opencl_device_i,
            /* .reg     = */ &reg,
            /* .context = */ &g_ggml_ctx_dev_main,
        };

        ggml_cl2_init(&g_ggml_backend_opencl_device);

        initialized = true;
    }

    return &reg;
}

GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)

//------------------------------------------------------------------------------
// Debugging utils
//------------------------------------------------------------------------------
#if 0
#define QK4_0 32
typedef struct {
    ggml_fp16_t d;          // delta
    uint8_t qs[QK4_0 / 2];  // nibbles / quants
} block_q4_0;
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
    "wrong q4_0 block size/padding");

#include <math.h>
#ifdef __cplusplus
#include "half.hpp"
#endif

static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
    void * buf = malloc(ggml_nbytes(tensor));

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;
#ifdef GGML_OPENCL_SOA_Q
    void * buf_q;
    void * buf_d;
#endif

#ifdef GGML_USE_OPENCL
    // Make sure everything is done.
    CL_CHECK(clFinish(queue));

#ifdef GGML_OPENCL_SOA_Q
    if (tensor->type == GGML_TYPE_Q4_0) {
        ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
        GGML_ASSERT(extra);

        size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
        size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
        GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
        buf_q = malloc(size_q);
        buf_d = malloc(size_d);

        CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
        CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
        CL_CHECK(clFinish(queue));
    } else {
        // Read out the tensor from GPU memory.
        ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
        GGML_ASSERT(extra);

        CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
        extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
        CL_CHECK(clFinish(queue));
    }
#else
    // Read out the tensor from GPU memory.
    ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
    GGML_ASSERT(extra);

    CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
        extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
    CL_CHECK(clFinish(queue));
#endif // GGML_OPENCL_SOA_Q
#endif // GGML_USE_OPENCL

    // Open file and dump.
    char fname[512];
    sprintf(fname, "./tensor-dumps/%s.txt", tensor->name);
    FILE * f = fopen(fname, "w");
    if (!f) {
        printf("Failed to open %s\n", fname);
        return;
    }

    if (tensor->type == GGML_TYPE_F32) {
        float * data = (float *) buf;
        for (int i = 0; i < ggml_nelements(tensor); ++i) {
            if (isnan(data[i])) {
                printf("NaN found: %s\n", tensor->name);
                break;
            }
            fprintf(f, "%f\n", data[i]);
        }
    } else if (tensor->type == GGML_TYPE_I32) {
        int * data = (int *) buf;
        for (int i = 0; i < ggml_nelements(tensor); ++i) {
            if (isnan(data[i])) {
                printf("NaN found: %s\n", tensor->name);
                break;
            }
            fprintf(f, "%d\n", data[i]);
        }
    } else if (tensor->type == GGML_TYPE_F16) {
#ifdef __cplusplus
        half_float::half * data = (half_float::half *) buf;
        for (int i = 0; i < ggml_nelements(tensor); ++i) {
            if (std::isnan(data[i])) {
                printf("NaN found: %s\n", tensor->name);
                break;
            }
            fprintf(f, "%f\n", float(data[i]));
        }
#endif
    } else if (tensor->type == GGML_TYPE_Q4_0) {
#ifdef GGML_OPENCL_SOA_Q
        ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
        unsigned char * data_q = (unsigned char *)buf_q;

        for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
            fprintf(f, "%04x, ", data_d[i]);
            for (int k = 0; k < QK4_0/2; ++k) {
                fprintf(f, "%02x, ", data_q[k]);
            }
            fprintf(f, "\n");
            data_q += QK4_0/2;
        }
        free(buf_d);
        free(buf_q);
#else
        block_q4_0 * data = (block_q4_0 *) buf;
        for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
            fprintf(f, "%04x, ", data[i].d);
            for (int k = 0; k < QK4_0/2; ++k) {
                fprintf(f, "%02x, ", data[i].qs[k]);
            }
            fprintf(f, "\n");
        }
#endif // GGML_OPENCL_SOA_Q
    }
    free(buf);
    fflush(f);
    fclose(f);
}
#else
#define dump_tensor(tensor)
#endif

//------------------------------------------------------------------------------
// Profiling utility
//------------------------------------------------------------------------------
#ifdef GGML_OPENCL_PROFILING
void populateProfilingInfo(
        ProfilingInfo& info, cl_event evt, cl_kernel kernel,
        size_t global_size[3], size_t local_size[3],
        const ggml_tensor * tensor) {
    cl_ulong start;
    cl_ulong end;
    CL_CHECK(clWaitForEvents(1, &evt));
    CL_CHECK(clGetEventProfilingInfo(
        evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL));
    CL_CHECK(clGetEventProfilingInfo(
        evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL));

    char kernel_name[512];
    CL_CHECK(clGetKernelInfo(kernel, CL_KERNEL_FUNCTION_NAME,
        sizeof(kernel_name), kernel_name, NULL));

    info.duration_ns = end - start;
    info.op_name = tensor->name;
    info.kernel_name = kernel_name;
    info.local_size[0]  = local_size[0];
    info.local_size[1]  = local_size[1];
    info.local_size[2]  = local_size[2];
    info.global_size[0] = global_size[0];
    info.global_size[1] = global_size[1];
    info.global_size[2] = global_size[2];
    info.output_size[0] = tensor->ne[0];
    info.output_size[1] = tensor->ne[1];
    info.output_size[2] = tensor->ne[2];
    info.output_size[3] = tensor->ne[3];
}
#endif

//------------------------------------------------------------------------------
// Ops
//------------------------------------------------------------------------------

static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
    const int64_t ne10 = src1->ne[0];

    const int64_t ne0 = dst->ne[0];
    const int64_t ne1 = dst->ne[1];

    // TODO: find the optimal values for these
    return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
            src1->type == GGML_TYPE_F32 &&
             dst->type == GGML_TYPE_F32 &&
            (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
}

static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    UNUSED(backend);
    UNUSED(src0);
    UNUSED(src1);
    UNUSED(dst);
}

static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0);
    GGML_ASSERT(src0->extra);
    GGML_ASSERT(src1);
    GGML_ASSERT(src1->extra);
    GGML_ASSERT(dst);
    GGML_ASSERT(dst->extra);

    const int      ne00 = src0 ? src0->ne[0] : 0;
    const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
    const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
    const int      ne10 = src1 ? src1->ne[0] : 0;
    const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
    const int      ne11 = src1 ? src1->ne[1] : 0;
    const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
    const cl_ulong nb1  = dst  ?  dst->nb[1] : 0;
    const cl_ulong nb2  = dst  ?  dst->nb[2] : 0;

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;

    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
    ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

    cl_ulong offset0 = extra0->offset + src0->view_offs;
    cl_ulong offset1 = extra1->offset + src1->view_offs;
    cl_ulong offsetd = extrad->offset + dst->view_offs;

    cl_kernel kernel;

    switch (src0->type) {
        case GGML_TYPE_F32:
            kernel = backend_ctx->kernel_get_rows_f32;
            break;
        case GGML_TYPE_F16:
            kernel = backend_ctx->kernel_get_rows_f16;
            break;
        case GGML_TYPE_Q4_0:
            kernel = backend_ctx->kernel_get_rows_q4_0;
            break;
        default:
            GGML_ASSERT(false && "not implemented");
    }

    CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0->data_device));
    CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_ulong), &offset0));
    CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
    CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
    CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extrad->data_device));
    CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offsetd));
    CL_CHECK(clSetKernelArg(kernel,  6, sizeof(int),      &ne00));
    CL_CHECK(clSetKernelArg(kernel,  7, sizeof(cl_ulong), &nb01));
    CL_CHECK(clSetKernelArg(kernel,  8, sizeof(cl_ulong), &nb02));
    CL_CHECK(clSetKernelArg(kernel,  9, sizeof(int),      &ne10));
    CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb10));
    CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
    CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
    CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));

    size_t global_work_size[] = {(size_t)ne10, (size_t)ne11, 1};
    size_t local_work_size[] = {1, 1, 1};

#ifdef GGML_OPENCL_PROFILING
    cl_event evt;
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

    g_profiling_info.emplace_back();
    populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}

static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0);
    GGML_ASSERT(src0->extra);
    GGML_ASSERT(src1);
    GGML_ASSERT(src1->extra);
    GGML_ASSERT(dst);
    GGML_ASSERT(dst->extra);

    const int  ne00 = src0 ? src0->ne[0] : 0;
    const int  ne01 = src0 ? src0->ne[1] : 0;
    const int  ne02 = src0 ? src0->ne[2] : 0;
    const int  ne03 = src0 ? src0->ne[3] : 0;

    const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
    const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
    const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
    const cl_ulong nb03 = src0 ? src0->nb[3] : 0;

    const int  ne10 = src1 ? src1->ne[0] : 0;
    const int  ne11 = src1 ? src1->ne[1] : 0;
    const int  ne12 = src1 ? src1->ne[2] : 0;
    const int  ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);

    const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
    const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
    const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
    const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);

    const int  ne0  = dst ? dst->ne[0] : 0;
    const int  ne1  = dst ? dst->ne[1] : 0;
    const int  ne2  = dst ? dst->ne[2] : 0;
    const int  ne3  = dst ? dst->ne[3] : 0;

    const cl_ulong nb0  = dst ? dst->nb[0] : 0;
    const cl_ulong nb1  = dst ? dst->nb[1] : 0;
    const cl_ulong nb2  = dst ? dst->nb[2] : 0;
    const cl_ulong nb3  = dst ? dst->nb[3] : 0;

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;

    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
    ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

    cl_ulong offset0 = extra0->offset + src0->view_offs;
    cl_ulong offset1 = extra1->offset + src1->view_offs;
    cl_ulong offsetd = extrad->offset + dst->view_offs;

    bool bcast_row = false;
    cl_kernel kernel;

    if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
        GGML_ASSERT(ggml_is_contiguous(src0));

        // src1 is a row
        GGML_ASSERT(ne11 == 1);

        bcast_row = true;
        int ne = ne00 / 4;
        kernel = backend_ctx->kernel_add_row;

        CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem),   &extra0->data_device));
        CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
        CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem),   &extra1->data_device));
        CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
        CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem),   &extrad->data_device));
        CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
        CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int),      &ne));
    } else {
        kernel = backend_ctx->kernel_add;

        CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0->data_device));
        CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_ulong), &offset0));
        CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
        CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
        CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extrad->data_device));
        CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offsetd));
        CL_CHECK(clSetKernelArg(kernel,  6, sizeof(int),      &ne00));
        CL_CHECK(clSetKernelArg(kernel,  7, sizeof(int),      &ne01));
        CL_CHECK(clSetKernelArg(kernel,  8, sizeof(int),      &ne02));
        CL_CHECK(clSetKernelArg(kernel,  9, sizeof(int),      &ne03));
        CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
        CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
        CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
        CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
        CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int),      &ne10));
        CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int),      &ne11));
        CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int),      &ne12));
        CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int),      &ne13));
        CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
        CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
        CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
        CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
        CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int),      &ne0));
        CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int),      &ne1));
        CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int),      &ne2));
        CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int),      &ne3));
        CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
        CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
        CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
        CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
    }

    if (bcast_row) {
        int n = ggml_nelements(dst)/4;
        size_t global_work_size[] = {(size_t)n, 1, 1};
        size_t local_work_size[] = {64, 1, 1};

#ifdef GGML_OPENCL_PROFILING
        cl_event evt;
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

        g_profiling_info.emplace_back();
        populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
    } else {
        unsigned int nth = MIN(64, ne0);
        size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
        size_t local_work_size[] = {nth, 1, 1};

#ifdef GGML_OPENCL_PROFILING
        cl_event evt;
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

        g_profiling_info.emplace_back();
        populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
    }
}

static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0);
    GGML_ASSERT(src0->extra);
    GGML_ASSERT(src1);
    GGML_ASSERT(src1->extra);
    GGML_ASSERT(dst);
    GGML_ASSERT(dst->extra);

    const int ne00 = src0 ? src0->ne[0] : 0;
    const int ne01 = src0 ? src0->ne[1] : 0;
    const int ne02 = src0 ? src0->ne[2] : 0;
    const int ne03 = src0 ? src0->ne[3] : 0;

    const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
    const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
    const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
    const cl_ulong nb03 = src0 ? src0->nb[3] : 0;

    const int ne10 = src1 ? src1->ne[0] : 0;
    const int ne11 = src1 ? src1->ne[1] : 0;
    const int ne12 = src1 ? src1->ne[2] : 0;
    const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);

    const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
    const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
    const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
    const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);

    const int ne0  = dst ? dst->ne[0] : 0;
    const int ne1  = dst ? dst->ne[1] : 0;
    const int ne2  = dst ? dst->ne[2] : 0;
    const int ne3  = dst ? dst->ne[3] : 0;

    const cl_ulong nb0  = dst ? dst->nb[0] : 0;
    const cl_ulong nb1  = dst ? dst->nb[1] : 0;
    const cl_ulong nb2  = dst ? dst->nb[2] : 0;
    const cl_ulong nb3  = dst ? dst->nb[3] : 0;

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;

    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
    ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

    cl_ulong offset0 = extra0->offset + src0->view_offs;
    cl_ulong offset1 = extra1->offset + src1->view_offs;
    cl_ulong offsetd = extrad->offset + dst->view_offs;

    bool bcast_row = false;
    cl_kernel kernel;

    if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
        GGML_ASSERT(ggml_is_contiguous(src0));

        // src1 is a row
        GGML_ASSERT(ne11 == 1);

        bcast_row = true;
        int ne = ne00 / 4;
        kernel = backend_ctx->kernel_mul_row;

        CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem),   &extra0->data_device));
        CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
        CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem),   &extra1->data_device));
        CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
        CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem),   &extrad->data_device));
        CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
        CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int),      &ne));
    } else {
        kernel = backend_ctx->kernel_mul;

        CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0->data_device));
        CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_ulong), &offset0));
        CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
        CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
        CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extrad->data_device));
        CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offsetd));
        CL_CHECK(clSetKernelArg(kernel,  6, sizeof(int),      &ne00));
        CL_CHECK(clSetKernelArg(kernel,  7, sizeof(int),      &ne01));
        CL_CHECK(clSetKernelArg(kernel,  8, sizeof(int),      &ne02));
        CL_CHECK(clSetKernelArg(kernel,  9, sizeof(int),      &ne03));
        CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
        CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
        CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
        CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
        CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int),      &ne10));
        CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int),      &ne11));
        CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int),      &ne12));
        CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int),      &ne13));
        CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
        CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
        CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
        CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
        CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int),      &ne0));
        CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int),      &ne1));
        CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int),      &ne2));
        CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int),      &ne3));
        CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
        CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
        CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
        CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
    }

    if (bcast_row) {
        int n = ggml_nelements(dst)/4;
        size_t global_work_size[] = {(size_t)n, 1, 1};
        size_t local_work_size[] = {64, 1, 1};

#ifdef GGML_OPENCL_PROFILING
        cl_event evt;
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

        g_profiling_info.emplace_back();
        populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
    } else {
        unsigned int nth = MIN(64, ne0);
        size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
        size_t local_work_size[] = {nth, 1, 1};

#ifdef GGML_OPENCL_PROFILING
        cl_event evt;
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

        g_profiling_info.emplace_back();
        populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
    }
}

static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0);
    GGML_ASSERT(src0->extra);
    GGML_ASSERT(dst);
    GGML_ASSERT(dst->extra);

    UNUSED(src1);

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;

    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

    cl_ulong offset0 = extra0->offset + src0->view_offs;
    cl_ulong offsetd = extrad->offset + dst->view_offs;

    cl_kernel kernel;

    int n = ggml_nelements(dst);

    if (n % 4 == 0) {
        kernel = backend_ctx->kernel_gelu_4;
        n /= 4;
    } else {
        kernel = backend_ctx->kernel_gelu;
    }

    CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem),   &extra0->data_device));
    CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
    CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem),   &extrad->data_device));
    CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));

    size_t global_work_size[] = {(size_t)n, 1, 1};
    size_t local_work_size[] = {64, 1, 1};

#ifdef GGML_OPENCL_PROFILING
    cl_event evt;
    clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt);

    g_profiling_info.emplace_back();
    populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
    clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL);
#endif
}

static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0);
    GGML_ASSERT(src0->extra);
    GGML_ASSERT(dst);
    GGML_ASSERT(dst->extra);

    UNUSED(src1);

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;

    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

    cl_ulong offset0 = extra0->offset + src0->view_offs;
    cl_ulong offsetd = extrad->offset + dst->view_offs;

    cl_kernel kernel;

    int n = ggml_nelements(dst);

    if (n % 4 == 0) {
        kernel = backend_ctx->kernel_silu_4;
        n /= 4;
    } else {
        kernel = backend_ctx->kernel_silu;
    }

    CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem),   &extra0->data_device));
    CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
    CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem),   &extrad->data_device));
    CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));

    size_t global_work_size[] = {(size_t)n, 1, 1};
    size_t local_work_size[] = {64, 1, 1};

#ifdef GGML_OPENCL_PROFILING
    cl_event evt;
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

    g_profiling_info.emplace_back();
    populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}

static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0);
    GGML_ASSERT(src0->extra);
    GGML_ASSERT(dst);
    GGML_ASSERT(dst->extra);

    UNUSED(src1);

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;

    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

    cl_ulong offset0 = extra0->offset + src0->view_offs;
    cl_ulong offsetd = extrad->offset + dst->view_offs;

    cl_kernel kernel = backend_ctx->kernel_relu;

    CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem),   &extra0->data_device));
    CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
    CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem),   &extrad->data_device));
    CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));

    const int64_t n = ggml_nelements(dst);

    size_t global_work_size[] = {(size_t)n, 1, 1};
    size_t local_work_size[] = {64, 1, 1};

#ifdef GGML_OPENCL_PROFILING
    cl_event evt;
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

    g_profiling_info.emplace_back();
    populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}

static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0);
    GGML_ASSERT(src0->extra);
    GGML_ASSERT(dst);
    GGML_ASSERT(dst->extra);

    UNUSED(src1);

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;

    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

    cl_ulong offset0 = extra0->offset + src0->view_offs;
    cl_ulong offsetd = extrad->offset + dst->view_offs;

    float min;
    float max;
    memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
    memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));

    cl_kernel kernel = backend_ctx->kernel_clamp;

    CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem),   &extra0->data_device));
    CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
    CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem),   &extrad->data_device));
    CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
    CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float),    &min));
    CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float),    &max));

    const int64_t n = ggml_nelements(dst);

    size_t global_work_size[] = {(size_t)n, 1, 1};
    size_t local_work_size[] = {64, 1, 1};

#ifdef GGML_OPENCL_PROFILING
    cl_event evt;
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

    g_profiling_info.emplace_back();
    populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}

static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0);
    GGML_ASSERT(src0->extra);
    GGML_ASSERT(dst);
    GGML_ASSERT(dst->extra);

    UNUSED(src1);

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;

    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

    cl_ulong offset0 = extra0->offset + src0->view_offs;
    cl_ulong offsetd = extrad->offset + dst->view_offs;

    float eps;
    memcpy(&eps, dst->op_params, sizeof(float));

    const int ne00 = src0 ? src0->ne[0] : 0;
    const cl_ulong nb01 = src0 ? src0->nb[1] : 0;

    GGML_ASSERT(ggml_is_contiguous_1(src0));

    const int nth = MIN(64, ne00);

    cl_kernel kernel = backend_ctx->kernel_norm;

    CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem),    &extra0->data_device));
    CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong),  &offset0));
    CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem),    &extrad->data_device));
    CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong),  &offsetd));
    CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int),       &ne00));
    CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong),  &nb01));
    CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float),     &eps));
    CL_CHECK(clSetKernelArg(kernel, 7, sizeof(float)*nth, NULL));

    const int64_t nrows = ggml_nrows(src0);

    size_t global_work_size[] = {(size_t)nrows*nth, 1, 1};
    size_t local_work_size[] = {(size_t)nth, 1, 1};

#ifdef GGML_OPENCL_PROFILING
    cl_event evt;
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

    g_profiling_info.emplace_back();
    populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}

static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0);
    GGML_ASSERT(src0->extra);
    GGML_ASSERT(dst);
    GGML_ASSERT(dst->extra);

    UNUSED(src1);

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;

    ggml_backend_opencl_device_context * dev_ctx =
        (ggml_backend_opencl_device_context *)backend->device->context;

    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

    cl_ulong offset0 = extra0->offset + src0->view_offs;
    cl_ulong offsetd = extrad->offset + dst->view_offs;

    float eps;
    memcpy(&eps, dst->op_params, sizeof(float));

    const int ne00 = src0 ? src0->ne[0] : 0;
    const cl_ulong nb01 = src0 ? src0->nb[1] : 0;

    GGML_ASSERT(ne00 % 4 == 0);
    GGML_ASSERT(ggml_is_contiguous_1(src0));

    const int nth = MIN(64, ne00);

    const int64_t nrows = ggml_nrows(src0);

    size_t global_work_size[] = {(size_t)nrows*nth, 1, 1};
    size_t local_work_size[] = {(size_t)nth, 1, 1};

    cl_kernel kernel = backend_ctx->kernel_rms_norm;

    // Note, this kernel declares local memory in kernel args and the size
    // depends on subgroup size.
    // Retrieve subgroup size.
    // Note, this requires OpenCL 2.1 and above
    size_t sgs;
    CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
        CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
        sizeof(local_work_size), local_work_size,
        sizeof(size_t), &sgs, NULL));

    CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem),    &extra0->data_device));
    CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong),  &offset0));
    CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem),    &extrad->data_device));
    CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong),  &offsetd));
    CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int),       &ne00));
    CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong),  &nb01));
    CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float),     &eps));
    // This is local memory - the size depends on subgroup size.
    CL_CHECK(clSetKernelArg(kernel, 7, sizeof(float)*nth/sgs,  NULL));

#ifdef GGML_OPENCL_PROFILING
    cl_event evt;
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

    g_profiling_info.emplace_back();
    populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}

static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0);
    GGML_ASSERT(src0->extra);
    GGML_ASSERT(src1);
    GGML_ASSERT(src1->extra);
    GGML_ASSERT(dst);
    GGML_ASSERT(dst->extra);

    const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
    const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;

    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
    ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

    cl_ulong offset0 = extra0->offset + src0->view_offs;
    cl_ulong offset1 = extra1->offset + src1->view_offs;
    cl_ulong offsetd = extrad->offset + dst->view_offs;

#ifdef GGML_OPENCL_SOA_Q
    ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
#endif

    const int  ne00 = src0 ? src0->ne[0] : 0;
    const int  ne01 = src0 ? src0->ne[1] : 0;
    const int  ne02 = src0 ? src0->ne[2] : 0;
    const int  ne03 = src0 ? src0->ne[3] : 0;

    const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
    const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
    const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
    const cl_ulong nb03 = src0 ? src0->nb[3] : 0;

    const int  ne10 = src1 ? src1->ne[0] : 0;
    const int  ne11 = src1 ? src1->ne[1] : 0;
    const int  ne12 = src1 ? src1->ne[2] : 0;
    const int  ne13 = src1 ? src1->ne[3] : 0;

    const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
    const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
    const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
    const cl_ulong nb13 = src1 ? src1->nb[3] : 0;

    const int  ne0 = dst ? dst->ne[0] : 0;
    const int  ne1 = dst ? dst->ne[1] : 0;

    int r2 = ne12/ne02;
    int r3 = ne13/ne03;

    GGML_ASSERT(ne00 == ne10);

    int nth0 = 32;
    int nth1 = 1;
    int nrows = 1;
    // The number of values produced by each subgroup
    int ndst = 4;

    cl_kernel kernel;

#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
    cl_context context = backend_ctx->context;

    if (ne01 && ne1 && use_adreno_kernels(src0)) {

    // init CL objects
    // <--------------------------------------------> //
    cl_int              status;
    cl_image_format     img_fmt_1d;
    cl_image_desc       img_desc_1d;
    cl_buffer_region    region;
    cl_mem              A_image1d = nullptr;
    cl_mem              B_image1d = nullptr;
    cl_mem              B_sub_buffer = nullptr;
    cl_mem              C_d = nullptr;
    // for B transpose
    cl_mem B_d = nullptr;
    cl_mem B_d_input_image = nullptr;
    // <--------------------------------------------> //

    // define matrix dimensions
    // <--------------------------------------------> //
    int M = ne01;
    int N = ne1;
    int K = ne00;
    int padding;
    // <--------------------------------------------> //

    // q4_0 x fp32
    if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
        // TODO: remove duplicate definitions of image description + format -- move to top

        // create an image for A
        // <--------------------------------------------> //
        if (N == 1) {
            img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
        } else {
            img_fmt_1d = { CL_R, CL_FLOAT};
        }
        memset(&img_desc_1d, 0, sizeof(img_desc_1d));
        img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
        img_desc_1d.image_width = M * K / 2 / 4;    // Divide by 4 for char -> float
        img_desc_1d.buffer = extra0_q4_0->q;
        A_image1d = clCreateImage(
            context,
            CL_MEM_READ_ONLY,
            &img_fmt_1d,
            &img_desc_1d,
            NULL,
            &status);
        CL_CHECK(status);
        // <--------------------------------------------> //


        // create a sub_buffer for B
        // <--------------------------------------------> //
        region.origin = (extra1->offset);
        region.size = K * N * sizeof(float);
        B_sub_buffer = clCreateSubBuffer(
            extra1->data_device,
            0,
            CL_BUFFER_CREATE_TYPE_REGION,
            &region,
            &status);
        CL_CHECK(status);
        // <--------------------------------------------> //

        // transpose activation for Skyler's gemm
        if (N != 1) {
            //how many extra elements beyond multiple of 8
            int extra_elements = N % 8;

            //how much padding to add
            padding = 0;
            if (extra_elements > 0){
                padding = 8 - extra_elements;
            }

            // Specify the starting offset (in bytes)
            region.origin = 0;
            // Specify the size of the sub-buffer (divide by 2 for FP16)
            region.size = K * (N + padding) * sizeof(float)/2;
            B_d = clCreateSubBuffer(
                backend_ctx->B_d_max,
                0,
                CL_BUFFER_CREATE_TYPE_REGION,
                &region,
                &status);
            CL_CHECK(status);

            cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
            cl_image_desc image_desc_B_d_input = {
                CL_MEM_OBJECT_IMAGE1D_BUFFER,
                static_cast<size_t>(K * N / 4),
                0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
            };
            B_d_input_image = clCreateImage(
                context,
                0,
                &image_format_B_d_input,
                &image_desc_B_d_input,
                NULL,
                &status);
            CL_CHECK(status);

            cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
            cl_image_desc image_desc_B_d_output = {
                CL_MEM_OBJECT_IMAGE1D_BUFFER,
                static_cast<size_t>(K * (N + padding)/4),
                0, 0, 0, 0, 0, 0, 0, { B_d }
            };
            B_image1d = clCreateImage(
                context,
                0,
                &image_format_B_d_output,
                &image_desc_B_d_output,
                NULL,
                &status);
            CL_CHECK(status);

            int height_B = N/4;
            int width_B = K/4;
            int padded_height_B = (N + padding)/4;

            kernel = backend_ctx->kernel_transpose_32_16;
            CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
            CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
            CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int),    &height_B));
            CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int),    &width_B));
            CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int),    &padded_height_B));

            size_t local_size_t[2] = { 1, 16 };
            //WGS tuning
            if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
                local_size_t[0]=4;
                local_size_t[1]=8;
            } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
                local_size_t[0]=2;
                local_size_t[1]=8;
            } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
                local_size_t[0]=1;
                local_size_t[1]=8;
            } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
                local_size_t[0]=2;
                local_size_t[1]=8;
            }

            size_t global_size_t[2] = {
                static_cast<size_t>(width_B),
                static_cast<size_t>(padded_height_B)
            };

            #ifdef GGML_OPENCL_PROFILING
                cl_event evt;
                CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, &evt));

                g_profiling_info.emplace_back();
                populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_size_t, local_size_t, dst);
            #else
                CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, NULL));
            #endif
        } else {
            // no need to transpose B in other cases
            // create an image for B from sub_buffer
            // <--------------------------------------------> //
            img_fmt_1d = {CL_RGBA, CL_FLOAT};

            memset(&img_desc_1d, 0, sizeof(img_desc_1d));
            img_desc_1d.image_width = K * N / 4;
            img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
            img_desc_1d.buffer = B_sub_buffer;
            B_image1d = clCreateImage(
                context,
                CL_MEM_READ_ONLY,
                &img_fmt_1d,
                &img_desc_1d,
                NULL,
                &status);
            CL_CHECK(status);
            // <--------------------------------------------> //
        }

        // choose gemm or gemv kernel
        // <--------------------------------------------> //
        if (N == 1) {
            kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
            if (M == 4096 && K == 4096) {
                kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
            } else if (M == 4096 && K == 11008) {
                kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
            } else if (M == 11008 && K == 4096) {
                kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
            } else if (M == 32000 && K == 4096) {
                kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
            }
        } else {
            kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
        }
        // <--------------------------------------------> //

        // set kernel args
        // <--------------------------------------------> //
        cl_uint k_arg = 0;

        if (N == 1) {
            CL_CHECK(clSetKernelArg(kernel,  k_arg++, sizeof(cl_mem),   &A_image1d));
            CL_CHECK(clSetKernelArg(kernel,  k_arg++, sizeof(cl_mem),   &extra0_q4_0->d));
            CL_CHECK(clSetKernelArg(kernel,  k_arg++, sizeof(cl_mem),   &B_image1d));
            CL_CHECK(clSetKernelArg(kernel,  k_arg++, sizeof(cl_ulong), &extra1->offset));
            CL_CHECK(clSetKernelArg(kernel,  k_arg++, sizeof(cl_mem),   &extrad->data_device));
            CL_CHECK(clSetKernelArg(kernel,  k_arg++, sizeof(cl_ulong), &extrad->offset));
            CL_CHECK(clSetKernelArg(kernel,  k_arg++, sizeof(int),      &ne00));
            CL_CHECK(clSetKernelArg(kernel,  k_arg++, sizeof(int),      &ne01));
            CL_CHECK(clSetKernelArg(kernel,  k_arg++, sizeof(int),      &ne02));
            CL_CHECK(clSetKernelArg(kernel,  k_arg++, sizeof(int),      &ne10));
            CL_CHECK(clSetKernelArg(kernel,  k_arg++, sizeof(int),      &ne12));
            CL_CHECK(clSetKernelArg(kernel,  k_arg++, sizeof(int),      &ne0));
            CL_CHECK(clSetKernelArg(kernel,  k_arg++, sizeof(int),      &ne1));
            CL_CHECK(clSetKernelArg(kernel,  k_arg++, sizeof(int),      &r2));
            CL_CHECK(clSetKernelArg(kernel,  k_arg++, sizeof(int),      &r3));
        } else {
            region.origin = extrad->offset; // Specify the starting offset (in bytes)
            region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
            C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
            CL_CHECK(status);

            int padded_N = ne1 + padding;

            CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
            CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
            CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
            CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
            CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int),    &ne01)); //M
            CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int),    &padded_N)); //N with padding
            CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int),    &ne00)); //K
            CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int),    &ne1)); //N without padding
        }
        // <--------------------------------------------> //

        // choose workgroup size
        // <--------------------------------------------> //
        size_t global_work_size[3] = {
            64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
        size_t local_work_size[3] = {64, 2, 4};

        global_work_size[0] = (size_t)(ceil((float)ne1/8));
        global_work_size[1] = (size_t)(ne01/4);
        global_work_size[2] = (size_t)(1);

        local_work_size[0]  = (size_t)(1); //4x32 for FP32
        local_work_size[1]  = (size_t)(128);
        local_work_size[2]  = (size_t)(1);

        //WGS tuning
        if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
            local_work_size[0] = 1;
            local_work_size[1] = 128;
        } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
            local_work_size[0] = 2;
            local_work_size[1] = 64;
        } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
            local_work_size[0] = 2;
            local_work_size[1] = 64;
        } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
            local_work_size[0] = 2;
            local_work_size[1] = 64;
        }

        if (N == 1) {
            local_work_size[0] = backend_ctx->adreno_wave_size; // localsize
            local_work_size[1] = 4; // reduce factor
            local_work_size[2] = 1;

            global_work_size[0] = M / 2;
            global_work_size[1] = 4; // reduce factor
            global_work_size[2] = 1;
        }
        // <--------------------------------------------> //

        // enqueue kernel with profiling
        // <--------------------------------------------> //
    #ifdef GGML_OPENCL_PROFILING
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

        g_profiling_info.emplace_back();
        populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
        // enqueue kernel without profiling
    #else
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
    #endif
        // <--------------------------------------------> //

        // deallocate sub buffers and images
        // <--------------------------------------------> //
        CL_CHECK(clReleaseMemObject(A_image1d));
        CL_CHECK(clReleaseMemObject(B_sub_buffer));
        CL_CHECK(clReleaseMemObject(B_image1d));

        if (N != 1) {
            CL_CHECK(clReleaseMemObject(B_d));
            CL_CHECK(clReleaseMemObject(B_d_input_image));
            CL_CHECK(clReleaseMemObject(C_d));
        }
        // <--------------------------------------------> //

        return;
    }
    } // if (ne01 && ne1)
#endif // GGML_OPENCL_USE_ADRENO_KERNELS

    if (!ggml_is_transposed(src0) &&
        !ggml_is_transposed(src1) &&
        src1t == GGML_TYPE_F32 &&
        ne00%32 == 0 &&
        ne11 > 2) {
#ifdef GGML_OPENCL_SOA_Q
        // Set up kernel.
        switch(src0t) {
            case GGML_TYPE_Q4_0:
                // This should have been satisfied.
                GGML_ASSERT(ne11 == ne1);
                GGML_ASSERT(ne01 == ne0);

                if (backend_ctx->gpu_family == INTEL) {
                    nth0 = 16;
                    nth1 = 1;

                    kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
                } else if (backend_ctx->gpu_family == ADRENO) {
                    nth0 = 64;
                    nth1 = 1;

                    kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
                } else {
                    GGML_ASSERT(false && "TODO: Unknown GPU");
                }

                CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0_q4_0->q));
                CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_mem),   &extra0_q4_0->d));
                CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
                CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
                CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extrad->data_device));
                CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offsetd));
                CL_CHECK(clSetKernelArg(kernel,  6, sizeof(int),      &ne00));
                CL_CHECK(clSetKernelArg(kernel,  7, sizeof(int),      &ne01));
                CL_CHECK(clSetKernelArg(kernel,  8, sizeof(int),      &ne02));
                CL_CHECK(clSetKernelArg(kernel,  9, sizeof(int),      &ne10));
                CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int),      &ne12));
                CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int),      &ne0));
                CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int),      &ne1));
                CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int),      &r2));
                CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int),      &r3));
                break;
            default:
                break;
        }

        // Launch kernel.
        if (src0t == GGML_TYPE_Q4_0) {
            size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
            size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};

            if (backend_ctx->gpu_family == INTEL) {
                // Set global size for Intel. It uses 16x output values.
                global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
                global_work_size[1] = (size_t)ne11*nth1;
                global_work_size[2] = (size_t)ne12*ne13;
            }

#ifdef GGML_OPENCL_PROFILING
            cl_event evt;
            CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

            g_profiling_info.emplace_back();
            populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
            CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
            return;
        }
#else // GGML_OPENCL_SOA_Q
        // TODO: add block_q4_0 variant.
#endif // GGML_OPENCL_SOA_Q
    }

    // use custom matrix x vector kernel
    switch (src0t) {
        case GGML_TYPE_F32:
            //GGML_ASSERT(ne02 == ne12);
            GGML_ASSERT(src1t == GGML_TYPE_F32);
            kernel = backend_ctx->kernel_mul_mat_f32_f32;
            nrows = 4;

            if (backend_ctx->gpu_family == INTEL) {
                nth0 = 32;
                nth1 = 1;
            } else if (backend_ctx->gpu_family == ADRENO) {
                nth0 = 64;
                nth1 = 1;
            } else {
                GGML_ASSERT(false && "TODO: Unknown GPU");
            }

            CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0->data_device));
            CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_ulong), &offset0));
            CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
            CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
            CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extrad->data_device));
            CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offsetd));
            CL_CHECK(clSetKernelArg(kernel,  6, sizeof(int),      &ne00));
            CL_CHECK(clSetKernelArg(kernel,  7, sizeof(int),      &ne01));
            CL_CHECK(clSetKernelArg(kernel,  8, sizeof(int),      &ne02));
            CL_CHECK(clSetKernelArg(kernel,  9, sizeof(cl_ulong), &nb00));
            CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
            CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
            CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
            CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int),      &ne10));
            CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int),      &ne11));
            CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int),      &ne12));
            CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
            CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
            CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
            CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
            CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int),      &ne0));
            CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int),      &ne1));
            CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int),      &r2));
            CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int),      &r3));
            break;
        case GGML_TYPE_F16:
            //GGML_ASSERT(ne02 == ne12);
            if (backend_ctx->gpu_family == INTEL) {
                nth0 = 32;
                nth1 = 1;
            } else if (backend_ctx->gpu_family == ADRENO) {
                nth0 = 64;
                nth1 = 1;
            } else {
                GGML_ASSERT(false && "TODO: Unknown GPU");
            }

            if (src1t == GGML_TYPE_F32) {
                if (ne11 * ne12 < 4) {
                    kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
                } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
                    kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
                    nrows = ne11;
                } else {
                    kernel = backend_ctx->kernel_mul_mat_f16_f32;
                    nrows = 4;
                }
            } else {
                kernel = backend_ctx->kernel_mul_mat_f16_f16;
                nrows = 4;
            }

            CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0->data_device));
            CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_ulong), &offset0));
            CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
            CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
            CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extrad->data_device));
            CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offsetd));
            CL_CHECK(clSetKernelArg(kernel,  6, sizeof(int),      &ne00));
            CL_CHECK(clSetKernelArg(kernel,  7, sizeof(int),      &ne01));
            CL_CHECK(clSetKernelArg(kernel,  8, sizeof(int),      &ne02));
            CL_CHECK(clSetKernelArg(kernel,  9, sizeof(cl_ulong), &nb00));
            CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
            CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
            CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
            CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int),      &ne10));
            CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int),      &ne11));
            CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int),      &ne12));
            CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
            CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
            CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
            CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
            CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int),      &ne0));
            CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int),      &ne1));
            CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int),      &r2));
            CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int),      &r3));
            break;
        case GGML_TYPE_Q4_0:
            // This should have been satisfied.
            GGML_ASSERT(ne11 == ne1);
            GGML_ASSERT(ne01 == ne0);

#ifdef GGML_OPENCL_SOA_Q
            if (backend_ctx->gpu_family == INTEL) {
                nth0 = 16;
                nth1 = 1;

                kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
                ndst = 8;
            } else if (backend_ctx->gpu_family == ADRENO) {
                nth0 = 64;
                nth1 = 1;

                kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
                ndst =8;
            } else {
                GGML_ASSERT(false && "TODO: Unknown GPU");
            }

            CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0_q4_0->q));
            CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_mem),   &extra0_q4_0->d));
            CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
            CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
            CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extrad->data_device));
            CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offsetd));
            CL_CHECK(clSetKernelArg(kernel,  6, sizeof(int),      &ne00));
            CL_CHECK(clSetKernelArg(kernel,  7, sizeof(int),      &ne01));
            CL_CHECK(clSetKernelArg(kernel,  8, sizeof(int),      &ne02));
            CL_CHECK(clSetKernelArg(kernel,  9, sizeof(int),      &ne10));
            CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int),      &ne12));
            CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int),      &ne0));
            CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int),      &ne1));
            CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int),      &r2));
            CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int),      &r3));
#else // GGML_OPENCL_SOA_Q
            if (backend_ctx->gpu_family == INTEL) {
                // Use 1D local size. Each workgroup is a SIMD group. Each SIMD
                // group produces N_DST (4 for Q4_0 kernel) values in the result.
                // The number of workgroups on dim 0 (the leading dimension) is
                // the nearest multiple of 4 that covers ne0 (equals ne01).
                nth0 = 16;
                nth1 = 1;

                kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
                ndst = 4;
            } else if (backend_ctx->gpu_family == ADRENO) {
                nth0 = 64;
                nth1 = 1;

                kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
                ndst = 4;
            } else {
                GGML_ASSERT(false && "TODO: Unknown GPU");
            }

            CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0->data_device));
            CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_ulong), &offset0));
            CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
            CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
            CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extrad->data_device));
            CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offsetd));
            CL_CHECK(clSetKernelArg(kernel,  6, sizeof(int),      &ne00));
            CL_CHECK(clSetKernelArg(kernel,  7, sizeof(int),      &ne01));
            CL_CHECK(clSetKernelArg(kernel,  8, sizeof(int),      &ne02));
            CL_CHECK(clSetKernelArg(kernel,  9, sizeof(int),      &ne10));
            CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int),      &ne12));
            CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int),      &ne0));
            CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int),      &ne1));
            CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int),      &r2));
            CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int),      &r3));
#endif // GGML_OPENCL_SOA_Q
            break;
        case GGML_TYPE_Q4_1:
        case GGML_TYPE_Q8_0:
        case GGML_TYPE_Q2_K:
        case GGML_TYPE_Q3_K:
        case GGML_TYPE_Q4_K:
        case GGML_TYPE_Q5_K:
        case GGML_TYPE_Q6_K:
            kernel = backend_ctx->kernel_mul_mv_q6_K_f32;

            if (backend_ctx->gpu_family == INTEL) {
                nth0 = 2;
                nth1 = 16;
            } else if (backend_ctx->gpu_family == ADRENO) {
                nth0 = 2;
                nth1 = 64;
            } else {
                GGML_ASSERT(false && "TODO: Unknown GPU");
            }

            CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0->data_device));
            CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_ulong), &offset0));
            CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
            CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
            CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extrad->data_device));
            CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offsetd));
            CL_CHECK(clSetKernelArg(kernel,  6, sizeof(int),      &ne00));
            CL_CHECK(clSetKernelArg(kernel,  7, sizeof(int),      &ne01));
            CL_CHECK(clSetKernelArg(kernel,  8, sizeof(int),      &ne02));
            CL_CHECK(clSetKernelArg(kernel,  9, sizeof(int),      &ne10));
            CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int),      &ne12));
            CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int),      &ne0));
            CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int),      &ne1));
            CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int),      &r2));
            CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int),      &r3));
            break;
        default:
            GGML_ASSERT(false && "not implemented");
    }

    if (src0t == GGML_TYPE_Q4_0 ||
        src0t == GGML_TYPE_Q4_1 ||
        src0t == GGML_TYPE_Q8_0 ||
        src0t == GGML_TYPE_Q2_K) {
        // Each SIMD group produces N_DST values in the result. Assuming each
        // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
        // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
        // (number of workgroups) will be a nearest multiple of
        // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
        // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
        size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
        size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};

#ifdef GGML_OPENCL_PROFILING
        cl_event evt;
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

        g_profiling_info.emplace_back();
        populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
    } else if (src0t == GGML_TYPE_Q4_K) {
        GGML_ASSERT(false && "not implemented");
    } else if (src0t == GGML_TYPE_Q3_K) {
        GGML_ASSERT(false && "not implemented");
    } else if (src0t == GGML_TYPE_Q5_K) {
        GGML_ASSERT(false && "not implemented");
    } else if (src0t == GGML_TYPE_Q6_K) {
        size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
        size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};

#ifdef GGML_OPENCL_PROFILING
        cl_event evt;
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

        g_profiling_info.emplace_back();
        populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
    } else {
        int64_t ny = (ne11 + nrows - 1)/nrows;

        size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
        size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};

#ifdef GGML_OPENCL_PROFILING
        cl_event evt;
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

        g_profiling_info.emplace_back();
        populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
    }
}

static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0);
    GGML_ASSERT(src0->extra);
    GGML_ASSERT(dst);
    GGML_ASSERT(dst->extra);
    GGML_UNUSED(src1);

    GGML_ASSERT(ggml_is_contiguous(src0));

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;

    float scale;
    memcpy(&scale, dst->op_params, sizeof(scale));

    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

    cl_ulong offset0 = extra0->offset + src0->view_offs;
    cl_ulong offsetd = extrad->offset + dst->view_offs;

    cl_kernel kernel = backend_ctx->kernel_scale;

    CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem),   &extra0->data_device));
    CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
    CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem),   &extrad->data_device));
    CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
    CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float),    &scale));

    int n = ggml_nelements(dst)/4;

    size_t global_work_size[] = {(size_t)n, 1, 1};
    size_t local_work_size[] = {64, 1, 1};

#ifdef GGML_OPENCL_PROFILING
    cl_event evt;
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

    g_profiling_info.emplace_back();
    populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}

static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0);
    GGML_ASSERT(src0->extra);
    GGML_ASSERT(src1);
    GGML_ASSERT(src1->extra);

    // GGML_OP_CPY happens between src0 and src1.
    // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
    UNUSED(dst);

    const int ne00 = src0 ? src0->ne[0] : 0;
    const int ne01 = src0 ? src0->ne[1] : 0;
    const int ne02 = src0 ? src0->ne[2] : 0;
    const int ne03 = src0 ? src0->ne[3] : 0;

    const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
    const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
    const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
    const cl_ulong nb03 = src0 ? src0->nb[3] : 0;

    const int ne10 = src1 ? src1->ne[0] : 0;
    const int ne11 = src1 ? src1->ne[1] : 0;
    const int ne12 = src1 ? src1->ne[2] : 0;
    const int ne13 = src1 ? src1->ne[3] : 0;

    const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
    const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
    const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
    const cl_ulong nb13 = src1 ? src1->nb[3] : 0;

    const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
    const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;

    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
    ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;

    cl_ulong offset0 = extra0->offset + src0->view_offs;
    cl_ulong offset1 = extra1->offset + src1->view_offs;

    cl_kernel kernel;

    switch (src0t) {
        case GGML_TYPE_F32:
            switch (src1t) {
                case GGML_TYPE_F16:
                    kernel = backend_ctx->kernel_cpy_f32_f16;
                    break;
                case GGML_TYPE_F32:
                    kernel = backend_ctx->kernel_cpy_f32_f32;
                    break;
                default:
                    GGML_ASSERT(false && "not implemented");
            }
            break;
        case GGML_TYPE_F16:
            switch (src1t) {
                case GGML_TYPE_F16:
                    kernel = backend_ctx->kernel_cpy_f16_f16;
                    break;
                case GGML_TYPE_F32:
                    kernel = backend_ctx->kernel_cpy_f16_f32;
                    break;
                default:
                    GGML_ASSERT(false && "not implemented");
            }
            break;
        default:
            GGML_ASSERT(false && "not implemented");
    }

    CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0->data_device));
    CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_ulong), &offset0));
    CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
    CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
    CL_CHECK(clSetKernelArg(kernel,  4, sizeof(int),      &ne00));
    CL_CHECK(clSetKernelArg(kernel,  5, sizeof(int),      &ne01));
    CL_CHECK(clSetKernelArg(kernel,  6, sizeof(int),      &ne02));
    CL_CHECK(clSetKernelArg(kernel,  7, sizeof(int),      &ne03));
    CL_CHECK(clSetKernelArg(kernel,  8, sizeof(cl_ulong), &nb00));
    CL_CHECK(clSetKernelArg(kernel,  9, sizeof(cl_ulong), &nb01));
    CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
    CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
    CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int),      &ne10));
    CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int),      &ne11));
    CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int),      &ne12));
    CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int),      &ne13));
    CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
    CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
    CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
    CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));

    const int nth = MIN(64, ne00);

    size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
    size_t local_work_size[] = {(size_t)nth, 1, 1};

#ifdef GGML_OPENCL_PROFILING
    cl_event evt;
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

    g_profiling_info.emplace_back();
    populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, src1);
#else
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}

static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    ggml_cl_cpy(backend, src0, dst, nullptr);
    UNUSED(src1);
}

static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0);
    GGML_ASSERT(src0->extra);
    GGML_ASSERT(dst);
    GGML_ASSERT(dst->extra);

    UNUSED(src1);

    int n_past = ((int32_t *)(dst->op_params))[0];

    const int  ne00 = src0 ? src0->ne[0] : 0;
    const int  ne01 = src0 ? src0->ne[1] : 0;
    const int  ne02 = src0 ? src0->ne[2] : 0;

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;

    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

    cl_ulong offset0 = extra0->offset + src0->view_offs;
    cl_ulong offsetd = extrad->offset + dst->view_offs;

    cl_kernel kernel;

    if (ne00%8 == 0) {
        kernel = backend_ctx->kernel_diag_mask_inf_8;

        CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem),   &extra0->data_device));
        CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
        CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem),   &extrad->data_device));
        CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
        CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int),      &ne00));
        CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int),      &ne01));
        CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int),      &n_past));

        size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
        size_t local_work_size[] = {64, 1, 1};

#ifdef GGML_OPENCL_PROFILING
        cl_event evt;
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

        g_profiling_info.emplace_back();
        populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
    } else {
        kernel = backend_ctx->kernel_diag_mask_inf;

        CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem),   &extra0->data_device));
        CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
        CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem),   &extrad->data_device));
        CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
        CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int),      &ne00));
        CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int),      &ne01));
        CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int),      &n_past));

        size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
        size_t local_work_size[] = {64, 1, 1};

#ifdef GGML_OPENCL_PROFILING
        cl_event evt;
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

        g_profiling_info.emplace_back();
        populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
    }
}

static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0);
    GGML_ASSERT(src0->extra);
    GGML_ASSERT(dst);
    GGML_ASSERT(dst->extra);

    // Softmax can now fuse KQ mask and KQ scale, which used to be two additional
    // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
    // alibi is not used; however, for some other models, it is used.
    // KQ_mask
    if (src1) {
        GGML_ASSERT(src1);
        GGML_ASSERT(src1->extra);
    }

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;

    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

    ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;

    cl_ulong offset0 = extra0->offset + src0->view_offs;
    cl_ulong offsetd = extrad->offset + dst->view_offs;

    cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;

    const int  ne00 = src0 ? src0->ne[0] : 0;
    const int  ne01 = src0 ? src0->ne[1] : 0;
    const int  ne02 = src0 ? src0->ne[2] : 0;
    const int  ne03 = src0 ? src0->ne[3] : 0;

    float scale, max_bias;
    memcpy(&scale,    dst->op_params + 0, sizeof(float));
    memcpy(&max_bias, dst->op_params + 1, sizeof(float));

    const int nrows_x = ggml_nrows(src0);
    const int nrows_y = src0->ne[1];

    const int n_head      = nrows_x/nrows_y;
    const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));

    const float m0 = powf(2.0f, -(max_bias       ) / n_head_log2);
    const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);

    // Local size must be wave size. Each workgroup is a wave, working on a row,
    // where a row corresponds to leading dimension.
    int nth = MIN(32, ne00);

    if (backend_ctx->gpu_family == INTEL) {
        // This is the same as the initial value.
        nth = MIN(32, ne00);
    }
    else if (backend_ctx->gpu_family == ADRENO) {
        nth = 64;
    } else {
        GGML_ASSERT(false && "TODO: Unknown GPU");
    }

    cl_kernel kernel;

    if (ne00%4 == 0) {
        kernel = backend_ctx->kernel_soft_max_4;
    } else {
        kernel = backend_ctx->kernel_soft_max;
    }

    CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0->data_device));
    CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_ulong), &offset0));
    CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   extra1 ? &extra1->data_device : &extra0->data_device));
    CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
    CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extrad->data_device));
    CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offsetd));
    CL_CHECK(clSetKernelArg(kernel,  6, sizeof(int),      &ne00));
    CL_CHECK(clSetKernelArg(kernel,  7, sizeof(int),      &ne01));
    CL_CHECK(clSetKernelArg(kernel,  8, sizeof(int),      &ne02));
    CL_CHECK(clSetKernelArg(kernel,  9, sizeof(float),    &scale));
    CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float),    &max_bias));
    CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float),    &m0));
    CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float),    &m1));
    CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int),      &n_head_log2));

    size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
    size_t local_work_size[] = {(size_t)nth, 1, 1};

#ifdef GGML_OPENCL_PROFILING
    cl_event evt;
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

    g_profiling_info.emplace_back();
    populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}

static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0);
    GGML_ASSERT(src0->extra);
    GGML_ASSERT(src1);
    GGML_ASSERT(src1->extra);
    GGML_ASSERT(dst);
    GGML_ASSERT(dst->extra);

    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
    cl_command_queue queue = backend_ctx->queue;

    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
    ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

    cl_ulong offset0 = extra0->offset + src0->view_offs;
    cl_ulong offset1 = extra1->offset + src1->view_offs;
    cl_ulong offsetd = extrad->offset + dst->view_offs;

    ggml_tensor * src2 = dst->src[2];
    ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;

    cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;

    const int  ne00 = src0 ? src0->ne[0] : 0;
    const int  ne01 = src0 ? src0->ne[1] : 0;
    const int  ne02 = src0 ? src0->ne[2] : 0;
    const int  ne03 = src0 ? src0->ne[3] : 0;

    const int  nb00 = src0 ? src0->nb[0] : 0;
    const int  nb01 = src0 ? src0->nb[1] : 0;
    const int  nb02 = src0 ? src0->nb[2] : 0;
    const int  nb03 = src0 ? src0->nb[3] : 0;

    const int ne10 = src1 ? src1->ne[0] : 0;
    const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
    const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
    const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);

    const int  ne0 = dst ? dst->ne[0] : 0;
    const int  ne1 = dst ? dst->ne[1] : 0;
    const int  ne2 = dst ? dst->ne[2] : 0;
    const int  ne3 = dst ? dst->ne[3] : 0;

    const int  nb0 = dst ? dst->nb[0] : 0;
    const int  nb1 = dst ? dst->nb[1] : 0;
    const int  nb2 = dst ? dst->nb[2] : 0;
    const int  nb3 = dst ? dst->nb[3] : 0;

    GGML_ASSERT(ne10 == ne02);

    int nth = MIN(64, ne00);

    const int n_past     = ((int *) dst->op_params)[0];
    const int n_dims     = ((int *) dst->op_params)[1];
    const int mode       = ((int *) dst->op_params)[2];
    const int n_ctx_orig = ((int32_t *) dst->op_params)[4];

    float freq_base;
    float freq_scale;
    float ext_factor;
    float attn_factor;
    float beta_fast;
    float beta_slow;

    memcpy(&freq_base,   (int32_t *) dst->op_params + 5, sizeof(float));
    memcpy(&freq_scale,  (int32_t *) dst->op_params + 6, sizeof(float));
    memcpy(&ext_factor,  (int32_t *) dst->op_params + 7, sizeof(float));
    memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
    memcpy(&beta_fast,   (int32_t *) dst->op_params + 9, sizeof(float));
    memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));

    const bool is_neox = mode & 2;

    cl_kernel kernel;

    if (!is_neox) {
        switch (src0->type) {
            case GGML_TYPE_F32:
                kernel = backend_ctx->kernel_rope_norm_f32;
                break;
            case GGML_TYPE_F16:
                kernel = backend_ctx->kernel_rope_norm_f16;
                break;
            default:
                GGML_ASSERT(false);
        };
    } else {
        switch (src0->type) {
            case GGML_TYPE_F32:
                kernel = backend_ctx->kernel_rope_neox_f32;
                break;
            case GGML_TYPE_F16:
                kernel = backend_ctx->kernel_rope_neox_f16;
                break;
            default:
                GGML_ASSERT(false);
        };
    }

    CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0->data_device));
    CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_ulong), &offset0));
    CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
    CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
    CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   extra2 ? &extra2->data_device : &extra0->data_device));
    CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offset2));
    CL_CHECK(clSetKernelArg(kernel,  6, sizeof(cl_mem),   &extrad->data_device));
    CL_CHECK(clSetKernelArg(kernel,  7, sizeof(cl_ulong), &offsetd));
    CL_CHECK(clSetKernelArg(kernel,  8, sizeof(int),      &ne00));
    CL_CHECK(clSetKernelArg(kernel,  9, sizeof(int),      &ne01));
    CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int),      &ne02));
    CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int),      &ne03));
    CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
    CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
    CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
    CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
    CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int),      &ne0));
    CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int),      &ne1));
    CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int),      &ne2));
    CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int),      &ne3));
    CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
    CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
    CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
    CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
    CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int),      &n_past));
    CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int),      &n_dims));
    CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int),      &n_ctx_orig));
    CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float),    &freq_base));
    CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float),    &freq_scale));
    CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float),    &ext_factor));
    CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float),    &attn_factor));
    CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float),    &beta_fast));
    CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float),    &beta_slow));

    size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
    size_t local_work_size[] = {(size_t)nth, 1, 1};

#ifdef GGML_OPENCL_PROFILING
    cl_event evt;
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

    g_profiling_info.emplace_back();
    populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
    CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}

//------------------------------------------------------------------------------
// Op offloading
//------------------------------------------------------------------------------

typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);

bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
    ggml_cl_func_t func = nullptr;

    ggml_tensor * src0 = tensor->src[0];
    ggml_tensor * src1 = tensor->src[1];

    const bool any_on_device = tensor->extra
        || (src0 != nullptr && src0->extra)
        || (src1 != nullptr && src1->extra);

    switch (tensor->op) {
        case GGML_OP_GET_ROWS:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cl_get_rows;
            break;
        case GGML_OP_CPY:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cl_cpy;
            break;
        case GGML_OP_DUP:
        case GGML_OP_CONT:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cl_dup;
            break;
        case GGML_OP_ADD:
            if (!any_on_device) {
                return false;
            }
            GGML_ASSERT(ggml_is_contiguous(src0));
            GGML_ASSERT(ggml_is_contiguous(src1));
            func = ggml_cl_add;
            break;
        case GGML_OP_MUL:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cl_mul;
            break;
        case GGML_OP_UNARY:
            switch (ggml_get_unary_op(tensor)) {
                case GGML_UNARY_OP_GELU:
                    if (!any_on_device) {
                        return false;
                    }
                    func = ggml_cl_gelu;
                    break;
                case GGML_UNARY_OP_SILU:
                    if (!any_on_device) {
                        return false;
                    }
                    func = ggml_cl_silu;
                    break;
                case GGML_UNARY_OP_RELU:
                    if (!any_on_device) {
                        return false;
                    }
                    func = ggml_cl_relu;
                    break;
                default:
                    return false;
            } break;
        case GGML_OP_CLAMP:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cl_clamp;
            break;
        case GGML_OP_NORM:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cl_norm;
            break;
        case GGML_OP_RMS_NORM:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cl_rms_norm;
            break;
        case GGML_OP_MUL_MAT:
            if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
                return false;
            }
            func = ggml_cl_mul_mat;
            break;
        case GGML_OP_SCALE:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cl_scale;
            break;
        case GGML_OP_RESHAPE:
        case GGML_OP_VIEW:
        case GGML_OP_PERMUTE:
        case GGML_OP_TRANSPOSE:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cl_nop;
            break;
        case GGML_OP_DIAG_MASK_INF:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cl_diag_mask_inf;
            break;
        case GGML_OP_SOFT_MAX:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cl_soft_max;
            break;
        case GGML_OP_ROPE:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cl_rope;
            break;
        default:
            return false;
    }

    func(backend, tensor->src[0], tensor->src[1], tensor);
    return true;
}