File size: 31,718 Bytes
61b850a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
#include "ggml-opt.h"

#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "ggml-impl.h"

#include <algorithm>
#include <cmath>
#include <cstdint>
#include <cinttypes>
#include <map>
#include <random>
#include <vector>

struct ggml_opt_dataset {
    struct ggml_context   * ctx    = nullptr;
    ggml_backend_buffer_t   buf    = nullptr;
    struct ggml_tensor    * data   = nullptr;
    struct ggml_tensor    * labels = nullptr;

    int64_t ndata       = -1;
    int64_t ndata_shard = -1;
    size_t  nbs_data    = -1;
    size_t  nbs_labels  = -1;

    std::vector<int64_t> permutation;
};

struct ggml_opt_context {
    ggml_backend_sched_t    backend_sched        = nullptr;
    ggml_cgraph           * allocated_graph      = nullptr;
    ggml_cgraph           * allocated_graph_copy = nullptr;
    struct ggml_context   * ctx_static           = nullptr;
    struct ggml_context   * ctx_static_cpu       = nullptr;
    struct ggml_context   * ctx_compute          = nullptr;
    struct ggml_context   * ctx_copy             = nullptr;
    ggml_backend_buffer_t   buf_static           = nullptr;
    ggml_backend_buffer_t   buf_static_cpu       = nullptr;
    std::mt19937            rng;

    struct ggml_tensor * inputs  = nullptr;
    struct ggml_tensor * outputs = nullptr;
    struct ggml_tensor * labels  = nullptr;

    struct ggml_tensor * loss     = nullptr;
    struct ggml_tensor * pred     = nullptr;
    struct ggml_tensor * ncorrect = nullptr;

    struct ggml_cgraph * gf      = nullptr;
    struct ggml_cgraph * gb_grad = nullptr;
    struct ggml_cgraph * gb_opt  = nullptr;

    int64_t iter               = 1;
    int32_t opt_period         = 1;
    int32_t opt_i              = 0;
    bool    loss_per_datapoint = false;

    ggml_opt_get_optimizer_params get_opt_pars = nullptr;
    void * get_opt_pars_ud                     = nullptr;
    struct ggml_tensor * adamw_params          = nullptr;
};

struct ggml_opt_result {
    int64_t              ndata    = 0;
    std::vector<float>   loss;
    std::vector<int32_t> pred;
    int64_t              ncorrect = 0;

    int64_t opt_period         = -1;
    bool    loss_per_datapoint = false;
};

// ====== Dataset ======

ggml_opt_dataset_t ggml_opt_dataset_init(int64_t ne_datapoint, int64_t ne_label, int64_t ndata, int64_t ndata_shard) {
    GGML_ASSERT(ne_datapoint >  0);
    GGML_ASSERT(ne_label     >= 0);
    GGML_ASSERT(ndata        >  0);
    GGML_ASSERT(ndata_shard  >  0);

    ggml_opt_dataset_t result = new ggml_opt_dataset;
    result->ndata       = ndata;
    result->ndata_shard = ndata_shard;

    {
        struct ggml_init_params params = {
            /*.mem_size   =*/ 2*ggml_tensor_overhead(),
            /*.mem_buffer =*/ nullptr,
            /*.no_alloc   =*/ true,
        };
        result->ctx = ggml_init(params);
    }

    result->data = ggml_new_tensor_2d(result->ctx, GGML_TYPE_F32, ne_datapoint, ndata);
    result->nbs_data = ggml_nbytes(result->data) * ndata_shard/ndata;

    if (ne_label > 0) {
        result->labels = ggml_new_tensor_2d(result->ctx, GGML_TYPE_F32, ne_label, ndata);
        result->nbs_labels = ggml_nbytes(result->labels) * ndata_shard/ndata;
    } else {
        result->labels = nullptr;
        result->nbs_labels = 0;
    }

    result->buf = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx, ggml_backend_cpu_buffer_type());

    const int64_t nshards = ndata/ndata_shard;
    result->permutation.resize(nshards);
    for (int64_t i = 0; i < nshards; ++i) {
        result->permutation[i] = i;
    }
    return result;
}

void ggml_opt_dataset_free(ggml_opt_dataset_t dataset) {
    ggml_backend_buffer_free(dataset->buf);
    ggml_free(dataset->ctx);
    delete dataset;
}

struct ggml_tensor * ggml_opt_dataset_data(ggml_opt_dataset_t dataset) {
    return dataset->data;
}

struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset) {
    return dataset->labels;
}

void ggml_opt_dataset_shuffle(ggml_opt_context_t opt_ctx, ggml_opt_dataset_t dataset, int64_t idata) {
    GGML_ASSERT(idata <= dataset->ndata);

    if (idata < 0) {
        std::shuffle(dataset->permutation.begin(), dataset->permutation.end(), opt_ctx->rng);
        return;
    }

    GGML_ASSERT(idata % dataset->ndata_shard == 0);
    const int64_t ishard_max = idata / dataset->ndata_shard;
    std::shuffle(dataset->permutation.begin(), dataset->permutation.begin() + ishard_max, opt_ctx->rng);
}

void ggml_opt_dataset_get_batch(ggml_opt_dataset_t dataset, struct ggml_tensor * data_batch, struct ggml_tensor * labels_batch, int64_t ibatch) {
    GGML_ASSERT(   data_batch && ggml_is_contiguous(data_batch));
    GGML_ASSERT(!labels_batch || ggml_is_contiguous(labels_batch));
    GGML_ASSERT((labels_batch == nullptr) == (dataset->labels == nullptr));

    const size_t nb_data_batch = ggml_nbytes(data_batch);
    GGML_ASSERT(nb_data_batch % dataset->nbs_data == 0);
    const int64_t shards_per_batch = nb_data_batch / dataset->nbs_data;

    if (labels_batch) {
        const size_t nb_labels_batch = ggml_nbytes(labels_batch);
        GGML_ASSERT(nb_labels_batch == shards_per_batch*dataset->nbs_labels);
    }

    GGML_ASSERT((ibatch + 1)*shards_per_batch <= int64_t(dataset->permutation.size()));

    for (int64_t ishard_batch = 0; ishard_batch < shards_per_batch; ++ishard_batch) {
        const int64_t ishard = dataset->permutation[ibatch*shards_per_batch + ishard_batch];

        const char * ptr_data = (const char *) dataset->data->data + ishard*dataset->nbs_data;
        ggml_backend_tensor_set(data_batch, ptr_data, ishard_batch*dataset->nbs_data, dataset->nbs_data);

        if (!labels_batch) {
            continue;
        }

        const char * ptr_labels = (const char *) dataset->labels->data + ishard*dataset->nbs_labels;
        ggml_backend_tensor_set(labels_batch, ptr_labels, ishard_batch*dataset->nbs_labels, dataset->nbs_labels);
    }
}

// ====== Model / Context ======

struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata) {
    GGML_UNUSED(userdata);

    ggml_opt_optimizer_params result;

    result.adamw.alpha = 0.001f;
    result.adamw.beta1 = 0.9f;
    result.adamw.beta2 = 0.999f;
    result.adamw.eps   = 1e-8f;
    result.adamw.wd    = 0.0f;

    return result;
}

struct ggml_opt_params ggml_opt_default_params(
        ggml_backend_sched_t      backend_sched,
        struct ggml_context     * ctx_compute,
        struct ggml_tensor      * inputs,
        struct ggml_tensor      * outputs,
        enum ggml_opt_loss_type   loss_type) {
    return {
        /*backend_sched   =*/ backend_sched,
        /*ctx_compute     =*/ ctx_compute,
        /*inputs          =*/ inputs,
        /*logits          =*/ outputs,
        /*loss_type       =*/ loss_type,
        /*build_type      =*/ GGML_OPT_BUILD_TYPE_OPT,
        /*opt_period      =*/ 1,
        /*get_opt_pars    =*/ ggml_opt_get_default_optimizer_params,
        /*get_opt_pars_ud =*/ nullptr,
    };
}

static ggml_tensor * map_tensor(std::map<ggml_tensor *, ggml_tensor *> & tensor_map, ggml_context * ctx, ggml_tensor * tensor) {
    if (!tensor) {
        return nullptr;
    }

    if (tensor_map.find(tensor) != tensor_map.end()) {
        return tensor_map[tensor];
    }

    ggml_tensor * new_tensor = ggml_dup_tensor(ctx, tensor);
    tensor_map[tensor] = new_tensor;

    new_tensor->op = tensor->op;
    for (int i = 0; i < GGML_MAX_DIMS; i++) {
        new_tensor->nb[i] = tensor->nb[i];
    }
    new_tensor->flags = tensor->flags;
    memcpy(new_tensor->op_params, tensor->op_params, sizeof(tensor->op_params));
    strcpy(new_tensor->name, tensor->name);
    new_tensor->data = tensor->data;
    new_tensor->buffer = tensor->buffer;
    new_tensor->extra = tensor->extra;
    new_tensor->view_offs = tensor->view_offs;
    new_tensor->view_src = map_tensor(tensor_map, ctx, tensor->view_src);
    for (int i = 0; i < GGML_MAX_SRC; i++) {
        new_tensor->src[i] = map_tensor(tensor_map, ctx, tensor->src[i]);
    }

    return new_tensor;
}

static ggml_cgraph * dup_graph(ggml_context * ctx, ggml_cgraph * src) {
    std::map<ggml_tensor *, ggml_tensor *> tensor_map;

    ggml_cgraph * dst = ggml_new_graph_custom(ctx, src->size, /*grads =*/ true);

    for (int i = 0; i < src->n_leafs; i++) {
        ggml_build_forward_expand(dst, map_tensor(tensor_map, ctx, src->leafs[i]));
    }
    GGML_ASSERT(dst->n_leafs == src->n_leafs);
    for (int i = 0; i < src->n_nodes; i++) {
        ggml_build_forward_expand(dst, map_tensor(tensor_map, ctx, src->nodes[i]));
    }
    GGML_ASSERT(dst->n_nodes == src->n_nodes);
    for (int i = 0; i < src->n_nodes; ++i) {
        const size_t igrad_src = ggml_hash_find(&src->visited_hash_set, src->nodes[i]);
        const size_t igrad_dst = ggml_hash_find(&dst->visited_hash_set, dst->nodes[i]);

        GGML_ASSERT(igrad_src != GGML_HASHSET_FULL);
        GGML_ASSERT(ggml_bitset_get(src->visited_hash_set.used, igrad_src));
        GGML_ASSERT(igrad_dst != GGML_HASHSET_FULL);
        GGML_ASSERT(ggml_bitset_get(dst->visited_hash_set.used, igrad_dst));

        dst->grads[igrad_dst]     = src->grads[igrad_src];
        dst->grad_accs[igrad_dst] = src->grad_accs[igrad_src];
    }

    return dst;
}

static void ggml_opt_alloc_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph) {
    GGML_ASSERT(graph);
    if (opt_ctx->allocated_graph == graph) {
        return;
    }

    ggml_backend_sched_reset(opt_ctx->backend_sched); // clear allocation of previous graph

    {
        ggml_init_params params = {
            /*.mem_size   =*/ ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE,
            /*.mem_buffer =*/ nullptr,
            /*.no_alloc   =*/ true,
        };
        ggml_free(opt_ctx->ctx_copy);
        opt_ctx->ctx_copy = ggml_init(params);
    }

    opt_ctx->allocated_graph_copy = dup_graph(opt_ctx->ctx_copy, graph);

    ggml_backend_sched_alloc_graph(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy);
    opt_ctx->allocated_graph = graph;
}

ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
    ggml_opt_context_t result = new struct ggml_opt_context;
    result->backend_sched   = params.backend_sched;
    result->ctx_compute     = params.ctx_compute;
    result->inputs          = params.inputs;
    result->outputs         = params.outputs;
    result->opt_period      = params.opt_period;
    result->get_opt_pars    = params.get_opt_pars;
    result->get_opt_pars_ud = params.get_opt_pars_ud;

    GGML_ASSERT(result->inputs->data && "the inputs must be allocated statically");
    GGML_ASSERT(result->opt_period >= 1);

    const bool accumulate = params.build_type == GGML_OPT_BUILD_TYPE_GRAD ||
        (params.build_type == GGML_OPT_BUILD_TYPE_OPT && result->opt_period > 1);

    ggml_set_input(result->inputs);
    ggml_set_output(result->outputs);

    result->gf = ggml_new_graph_custom(result->ctx_compute, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true); // Forward pass.
    ggml_build_forward_expand(result->gf, result->outputs);

    int n_param = 0;
    for (int i = 0; i < result->gf->n_nodes; ++i) {
        if (result->gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
            n_param++;
        }
    }

    {
        // The static context is used for:
        //   - gradients (1 tensor per param if using gradient accumulation)
        //   - optimizer momenta (2 tensors per param)
        //   - labels
        //   - loss + its gradient (up to 5 tensors)
        //   - pred
        //   - ncorrect (2 tensors).
        const size_t tensors_per_param = (accumulate ? 1 : 0) + (params.build_type == GGML_OPT_BUILD_TYPE_OPT ? 2 : 0);
        const size_t size_meta = (tensors_per_param*n_param + 9) * ggml_tensor_overhead();
        struct ggml_init_params params = {
            /*.mem_size   =*/ size_meta,
            /*.mem_buffer =*/ nullptr,
            /*.no_alloc   =*/ true,
        };
        result->ctx_static = ggml_init(params);
    }
    {
        // The static cpu context is used for:
        //   - optimizer parameters (1 for the entire context)
        const size_t size_meta = 1 * ggml_tensor_overhead();
        struct ggml_init_params params = {
            /*.mem_size   =*/ size_meta,
            /*.mem_buffer =*/ nullptr,
            /*.no_alloc   =*/ true,
        };
        result->ctx_static_cpu = ggml_init(params);
    }


    switch (params.loss_type) {
        case GGML_OPT_LOSS_TYPE_MEAN: {
            result->loss = ggml_sum(result->ctx_static, result->outputs);
            ggml_set_name(result->loss, "loss_sum");
            const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs));
            result->loss = ggml_scale(result->ctx_static, result->loss, scale);
            ggml_set_name(result->loss, "loss_mean");
            result->loss_per_datapoint = true;
            break;
        }
        case GGML_OPT_LOSS_TYPE_SUM: {
            result->loss = ggml_sum(result->ctx_static, result->outputs);
            ggml_set_name(result->loss, "loss_sum");
            result->loss_per_datapoint = false;
            break;
        }
        case GGML_OPT_LOSS_TYPE_CROSS_ENTROPY: {
            result->labels = ggml_dup_tensor(result->ctx_static, result->outputs);
            ggml_set_input(result->labels);
            ggml_set_name(result->labels, "labels");
            result->loss = ggml_cross_entropy_loss(result->ctx_static, result->outputs, result->labels);
            ggml_set_name(result->loss, "loss_cross_entropy");
            if (result->opt_period > 1) {
                result->loss = ggml_scale(result->ctx_static, result->loss, 1.0f / result->opt_period);
                ggml_set_name(result->loss, "loss_cross_entropy_scaled");
            }
            result->loss_per_datapoint = true;
            break;
        }
        case GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR: {
            result->labels = ggml_dup_tensor(result->ctx_static, result->outputs);
            ggml_set_input(result->labels);
            ggml_set_name(result->labels, "labels");
            result->loss = ggml_sub(result->ctx_static, result->outputs, result->labels);
            ggml_set_name(result->loss, "loss_error");
            result->loss = ggml_sqr(result->ctx_static, result->loss);
            ggml_set_name(result->loss, "loss_squared_error");
            result->loss = ggml_sum(result->ctx_static, result->loss);
            ggml_set_name(result->loss, "loss_sum_squared_error");
            const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs));
            result->loss = ggml_scale(result->ctx_static, result->loss, scale);
            ggml_set_name(result->loss, "loss_mean_squared_error");
            result->loss_per_datapoint = true;
            break;
        }
    }
    ggml_set_output(result->loss);
    ggml_set_loss(result->loss);
    ggml_build_forward_expand(result->gf, result->loss);

    result->pred = ggml_argmax(result->ctx_static, result->outputs);
    ggml_set_name(result->pred, "pred");
    ggml_set_output(result->pred);
    ggml_build_forward_expand(result->gf, result->pred);

    if (result->labels) {
        result->ncorrect = ggml_count_equal(result->ctx_static, result->pred, ggml_argmax(result->ctx_static, result->labels));
        ggml_set_name(result->ncorrect, "ncorrect");
        ggml_set_output(result->ncorrect);
        ggml_build_forward_expand(result->gf, result->ncorrect);
    } else {
        result->ncorrect = nullptr;
    }

    if (params.build_type == GGML_OPT_BUILD_TYPE_FORWARD) {
        result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));
        return result;
    }

    // gb_grad == graph backward gradients, forward pass, then backward pass to calculate gradients.
    result->gb_grad = ggml_graph_dup(result->ctx_compute, result->gf);
    ggml_build_backward_expand(result->ctx_static, result->ctx_compute, result->gb_grad, accumulate);

    if (params.build_type == GGML_OPT_BUILD_TYPE_GRAD) {
        result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));
        ggml_graph_reset(result->gb_grad);
        return result;
    }

    GGML_ASSERT(params.build_type == GGML_OPT_BUILD_TYPE_OPT);

    // gb_opt == graph backward optimize, forward pass, then backward pass to calculate gradients, then optimizer step.
    result->gb_opt = ggml_graph_dup(result->ctx_compute, result->gb_grad);

    result->adamw_params = ggml_new_tensor_1d(result->ctx_static_cpu, GGML_TYPE_F32, 7);
    ggml_set_input(result->adamw_params);
    ggml_set_name(result->adamw_params, "adamw_params");

    for (int i = result->gf->n_nodes-1; i >= 0; --i) {
        struct ggml_tensor * node = result->gb_opt->nodes[i];
        struct ggml_tensor * grad = ggml_graph_get_grad(result->gb_opt, node);

        if (node->flags & GGML_TENSOR_FLAG_PARAM) {
            struct ggml_tensor * m        = ggml_dup_tensor(result->ctx_static, node);
            struct ggml_tensor * v        = ggml_dup_tensor(result->ctx_static, node);
            struct ggml_tensor * opt_step = ggml_opt_step_adamw(result->ctx_compute, node, grad, m, v, result->adamw_params);
            ggml_build_forward_expand(result->gb_opt, opt_step);
        }
    }

    result->buf_static = ggml_backend_alloc_ctx_tensors(
        result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));

    result->buf_static_cpu = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx_static_cpu, ggml_backend_cpu_buffer_type());

    ggml_graph_reset(result->gb_opt);

    return result;
}

void ggml_opt_free(ggml_opt_context_t opt_ctx) {
    if (opt_ctx == nullptr) {
        return;
    }
    ggml_backend_buffer_free(opt_ctx->buf_static);
    ggml_backend_buffer_free(opt_ctx->buf_static_cpu);
    ggml_free(opt_ctx->ctx_static);
    ggml_free(opt_ctx->ctx_static_cpu);
    delete opt_ctx;
}

void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer) {
    if (optimizer) {
        ggml_graph_reset(opt_ctx->gb_opt);
        opt_ctx->iter = 1;
    } else {
        ggml_graph_reset(opt_ctx->gb_grad);
    }
}

struct ggml_tensor * ggml_opt_inputs(ggml_opt_context_t opt_ctx) {
    return opt_ctx->inputs;
}

struct ggml_tensor * ggml_opt_outputs(ggml_opt_context_t opt_ctx) {
    return opt_ctx->outputs;
}

struct ggml_tensor * ggml_opt_labels(ggml_opt_context_t opt_ctx) {
    return opt_ctx->labels;
}

struct ggml_tensor * ggml_opt_loss(ggml_opt_context_t opt_ctx) {
    return opt_ctx->loss;
}

struct ggml_tensor * ggml_opt_pred(ggml_opt_context_t opt_ctx) {
    return opt_ctx->pred;
}

struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx) {
    return opt_ctx->ncorrect;
}

struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node) {
    return ggml_graph_get_grad_acc(opt_ctx->gb_opt, node);
}

// ====== Optimization Result ======

ggml_opt_result_t ggml_opt_result_init() {
    return new ggml_opt_result;
}

void ggml_opt_result_free(ggml_opt_result_t result) {
    delete result;
}

void ggml_opt_result_reset(ggml_opt_result_t result) {
    result->ndata = 0;
    result->loss.clear();
    result->pred.clear();
    result->ncorrect = 0;
}

void ggml_opt_result_ndata(ggml_opt_result_t result, int64_t * ndata) {
    *ndata = result->ndata;
}

void ggml_opt_result_loss(ggml_opt_result_t result, double * loss, double * unc) {
    const int64_t nbatches = result->loss.size(); // Number of physical batches.

    if (nbatches == 0) {
        *loss = 0.0;
        *unc  = NAN;
        return;
    }

    double sum         = 0.0;
    double sum_squared = 0.0;

    for (const float & loss : result->loss) {
        // If the loss is per datapoint it was scaled by 1.0f/opt_period for each physical batch.
        const float loss_scaled = result->loss_per_datapoint ? loss*result->opt_period : loss;
        sum         += loss_scaled;
        sum_squared += loss_scaled*loss_scaled;
    }

    const double mean = sum/nbatches;
    *loss = result->loss_per_datapoint ? mean : sum;

    if (!unc) {
        return;
    }

    if (nbatches < 2) {
        *unc = NAN;
        return;
    }

    const double var_sum = sum_squared/nbatches - mean*mean; // variance without Bessel's correction, i.e. nbatches/(nbatches-1)
    *unc = result->loss_per_datapoint ? sqrt(var_sum / (nbatches - 1)) : sqrt(var_sum * nbatches/(nbatches - 1));
}

void ggml_opt_result_pred(ggml_opt_result_t result, int32_t * pred) {
    for (size_t i = 0; i < result->pred.size(); ++i) {
        pred[i] = result->pred[i];
    }
}

void ggml_opt_result_accuracy(ggml_opt_result_t result, double * accuracy, double * unc) {
    *accuracy = result->ncorrect >= 0 ? double(result->ncorrect) / double(result->ndata) : NAN;

    if (!unc) {
        return;
    }

    *unc = result->ncorrect >= 0 && result->ndata >= 2 ?
        sqrt((*accuracy) * (1.0 - (*accuracy)) / double(result->ndata - 1)) : NAN;
}

// ====== Computation ======

static void ggml_opt_eval_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph, ggml_opt_result * result) {
    if (graph != opt_ctx->gf) {
        struct ggml_opt_optimizer_params opt_pars = opt_ctx->get_opt_pars(opt_ctx->get_opt_pars_ud);

        GGML_ASSERT(opt_pars.adamw.alpha >  0.0f);
        GGML_ASSERT(opt_pars.adamw.beta1 >= 0.0f);
        GGML_ASSERT(opt_pars.adamw.beta1 <= 1.0f);
        GGML_ASSERT(opt_pars.adamw.beta2 >= 0.0f);
        GGML_ASSERT(opt_pars.adamw.beta2 <= 1.0f);
        GGML_ASSERT(opt_pars.adamw.eps   >= 0.0f);
        GGML_ASSERT(opt_pars.adamw.wd    >= 0.0f);
        GGML_ASSERT(opt_pars.adamw.wd    <= 1.0f);

        // beta1, beta2 after applying warmup
        const float beta1h = 1.0f/(1.0f - powf(opt_pars.adamw.beta1, opt_ctx->iter));
        const float beta2h = 1.0f/(1.0f - powf(opt_pars.adamw.beta2, opt_ctx->iter));

        float * adamw_par_data = ggml_get_data_f32(opt_ctx->adamw_params);
        adamw_par_data[0] = opt_pars.adamw.alpha;
        adamw_par_data[1] = opt_pars.adamw.beta1;
        adamw_par_data[2] = opt_pars.adamw.beta2;
        adamw_par_data[3] = opt_pars.adamw.eps;
        adamw_par_data[4] = opt_pars.adamw.wd;
        adamw_par_data[5] = beta1h;
        adamw_par_data[6] = beta2h;
    }

    ggml_opt_alloc_graph(opt_ctx, graph);
    ggml_backend_sched_graph_compute(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy);
    opt_ctx->iter += opt_ctx->allocated_graph == opt_ctx->gb_opt;

    if (!result) {
        return;
    }

    if (result->ndata == 0) {
        result->loss_per_datapoint = opt_ctx->loss_per_datapoint;
        result->opt_period         = opt_ctx->opt_period;
    } else {
        GGML_ASSERT(result->loss_per_datapoint == opt_ctx->loss_per_datapoint);
        GGML_ASSERT(result->opt_period         == opt_ctx->opt_period);
    }

    const int64_t ndata = opt_ctx->outputs->ne[1];
    GGML_ASSERT(result->ndata == ndata*int64_t(result->loss.size()) && "varying batch size not supported");
    result->ndata += ndata;

    GGML_ASSERT(ggml_is_scalar(opt_ctx->loss));
    GGML_ASSERT(opt_ctx->loss->type == GGML_TYPE_F32);
    float loss;
    ggml_backend_tensor_get(opt_ctx->loss, &loss, 0, ggml_nbytes(opt_ctx->loss));
    result->loss.push_back(loss);

    GGML_ASSERT(opt_ctx->pred->type == GGML_TYPE_I32);
    std::vector<int32_t> pred(ndata);
    ggml_backend_tensor_get(opt_ctx->pred, pred.data(), 0, ggml_nbytes(opt_ctx->pred));
    result->pred.insert(result->pred.end(), pred.begin(), pred.end());

    if (!opt_ctx->labels || result->ncorrect < 0) {
        result->ncorrect = -1;
        return;
    }

    GGML_ASSERT(ggml_is_scalar(opt_ctx->ncorrect));
    GGML_ASSERT(opt_ctx->ncorrect->type == GGML_TYPE_I64);
    int64_t ncorrect;
    ggml_backend_tensor_get(opt_ctx->ncorrect, &ncorrect, 0, ggml_nbytes(opt_ctx->ncorrect));
    result->ncorrect += ncorrect;
}

void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result * result) {
    ggml_opt_eval_graph(opt_ctx, opt_ctx->gf, result);
}

void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result * result) {
    if (opt_ctx->opt_period == 1) {
        ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_opt, result);
        return;
    }

    const int32_t opt_i_next = (opt_ctx->opt_i + 1) % opt_ctx->opt_period;
    if (opt_i_next == 0) {
        ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_opt, result);
        ggml_opt_reset(opt_ctx, /*optimizer =*/ false);
    } else {
        ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_grad, result);
    }
    opt_ctx->opt_i = opt_i_next;
}

// ====== High-Level Functions ======

void ggml_opt_epoch(
        ggml_opt_context_t      opt_ctx,
        ggml_opt_dataset_t      dataset,
        ggml_opt_result_t       result_train,
        ggml_opt_result_t       result_eval,
        int64_t                 idata_split,
        ggml_opt_epoch_callback callback_train,
        ggml_opt_epoch_callback callback_eval) {
    struct ggml_tensor * inputs = ggml_opt_inputs(opt_ctx);
    struct ggml_tensor * labels = ggml_opt_labels(opt_ctx);
    struct ggml_tensor * data   = ggml_opt_dataset_data(dataset);
    GGML_ASSERT(data->ne[0] == inputs->ne[0]);

    const int64_t ndata       =   data->ne[1];
    const int64_t ndata_batch = inputs->ne[1];

    GGML_ASSERT(data->ne[1] % inputs->ne[1] == 0);
    const int64_t nbatches = ndata/ndata_batch;

    idata_split = idata_split < 0 ? ndata : idata_split;
    GGML_ASSERT(idata_split % ndata_batch == 0);
    const int64_t ibatch_split = idata_split / ndata_batch;

    int64_t ibatch = 0;
    int64_t t_loop_start = ggml_time_us();
    for (; ibatch < ibatch_split; ++ibatch) {
        ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch);
        ggml_opt_forward_backward(opt_ctx, result_train);
        if (callback_train) {
            callback_train(true, opt_ctx, dataset, result_train, ibatch+1, ibatch_split, t_loop_start);
        }
    }
    t_loop_start = ggml_time_us();
    for (; ibatch < nbatches; ++ibatch) {
        ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch);
        ggml_opt_forward(opt_ctx, result_eval);
        if (callback_eval) {
            callback_eval(false, opt_ctx, dataset, result_eval, ibatch+1-ibatch_split, nbatches-ibatch_split, t_loop_start);
        }
    }
}

void ggml_opt_epoch_callback_progress_bar(
        bool               train,
        ggml_opt_context_t opt_ctx,
        ggml_opt_dataset_t dataset,
        ggml_opt_result_t  result,
        int64_t            ibatch,
        int64_t            ibatch_max,
        int64_t            t_start_us) {
    fprintf(stderr, "%s[", train ? "train: " : "val:   ");

    constexpr int64_t bar_length = 25;
    for (int64_t j = 0; j < bar_length; ++j) {
        const int64_t ibatch_j = ibatch_max * j/bar_length;
        if (ibatch_j < ibatch) {
            fprintf(stderr, "=");
        } else if (ibatch_max * (j - 1)/bar_length < ibatch) {
            fprintf(stderr, ">");
        } else {
            fprintf(stderr, " ");
        }
    }

    const int64_t batch_size = ggml_opt_inputs(opt_ctx)->ne[1];
    const int64_t idata      = ibatch*batch_size;
    const int64_t idata_max  = ibatch_max*batch_size;

    double loss;
    double loss_unc;
    ggml_opt_result_loss(result, &loss, &loss_unc);

    double accuracy;
    double accuracy_unc;
    ggml_opt_result_accuracy(result, &accuracy, &accuracy_unc);

    const int64_t t_ibatch_us = ggml_time_us() - t_start_us;
    int64_t t_ibatch_s = t_ibatch_us / 1000000;
    const int64_t t_ibatch_h = t_ibatch_s / 3600;
    t_ibatch_s -= t_ibatch_h * 3600;
    const int64_t t_ibatch_m = t_ibatch_s / 60;
    t_ibatch_s -= t_ibatch_m * 60;

    const int64_t t_eta_us = t_ibatch_us * (ibatch_max - ibatch)/ibatch;
    int64_t t_eta_s = t_eta_us / 1000000;
    const int64_t t_eta_h = t_eta_s / 3600;
    t_eta_s -= t_eta_h * 3600;
    const int64_t t_eta_m = t_eta_s / 60;
    t_eta_s -= t_eta_m * 60;

    fprintf(stderr, "| data=%06" PRId64 "/%06" PRId64 ", loss=%.6lf+-%.6lf, accuracy=%.2lf+-%.2lf%%, "
            "t=%02" PRId64 ":%02" PRId64 ":%02" PRId64 ", ETA=%02" PRId64 ":%02" PRId64 ":%02" PRId64 "]\r",
            idata, idata_max, loss, loss_unc, 100.0*accuracy, 100.0*accuracy_unc,
            t_ibatch_h, t_ibatch_m, t_ibatch_s, t_eta_h, t_eta_m, t_eta_s);
    if (ibatch == ibatch_max) {
        fprintf(stderr, "\n");
    }
    fflush(stderr);

    GGML_UNUSED(dataset);
}

void ggml_opt_fit(
        ggml_backend_sched_t            backend_sched,
        ggml_context                  * ctx_compute,
        ggml_tensor                   * inputs,
        ggml_tensor                   * outputs,
        ggml_opt_dataset_t              dataset,
        enum ggml_opt_loss_type         loss_type,
        ggml_opt_get_optimizer_params   get_opt_pars,
        int64_t                         nepoch,
        int64_t                         nbatch_logical,
        float                           val_split,
        bool                            silent) {
    ggml_time_init();
    const int64_t t_start_us = ggml_time_us();

    const int64_t ndata           = ggml_opt_dataset_data(dataset)->ne[1];
    const int64_t nbatch_physical = inputs->ne[1];
    GGML_ASSERT(ndata          % nbatch_logical  == 0);
    GGML_ASSERT(nbatch_logical % nbatch_physical == 0);

    const int64_t opt_period       = nbatch_logical / nbatch_physical;
    const int64_t nbatches_logical = ndata / nbatch_logical;

    GGML_ASSERT(val_split >= 0.0f);
    GGML_ASSERT(val_split <  1.0f);
    const int64_t ibatch_split = int64_t(((1.0f - val_split) * nbatches_logical)) * opt_period; // train <-> val split index (physical)
    const int64_t idata_split  = ibatch_split * nbatch_physical;

    int64_t epoch = 1;

    ggml_opt_params params = ggml_opt_default_params(backend_sched, ctx_compute, inputs, outputs, loss_type);
    params.opt_period      = opt_period;
    params.get_opt_pars    = get_opt_pars;
    params.get_opt_pars_ud = &epoch;
    ggml_opt_context_t opt_ctx = ggml_opt_init(params);

    // Shuffling the data is generally useful but there is only a point if not all data is used in a single batch.
    if (nbatch_logical < ndata) {
        ggml_opt_dataset_shuffle(opt_ctx, dataset, -1); // Shuffle all data (train + validation).
    }

    ggml_opt_result_t result_train = ggml_opt_result_init();
    ggml_opt_result_t result_val   = ggml_opt_result_init();

    ggml_opt_epoch_callback epoch_callback = silent ? nullptr : ggml_opt_epoch_callback_progress_bar;

    for (; epoch <= nepoch; ++epoch) {
        if (nbatch_logical < idata_split) {
            ggml_opt_dataset_shuffle(opt_ctx, dataset, idata_split);
        }

        ggml_opt_result_reset(result_train);
        ggml_opt_result_reset(result_val);

        if (!silent) {
            fprintf(stderr, "%s: epoch %04" PRId64 "/%04" PRId64 ":\n", __func__, epoch, nepoch);
        }
        ggml_opt_epoch(opt_ctx, dataset, result_train, result_val, idata_split, epoch_callback, epoch_callback);
        if (!silent) {
            fprintf(stderr, "\n");
        }
    }

    if (!silent) {
        int64_t t_total_s = (ggml_time_us() - t_start_us) / 1000000;
        const int64_t t_total_h = t_total_s / 3600;
        t_total_s -= t_total_h * 3600;
        const int64_t t_total_m = t_total_s / 60;
        t_total_s -= t_total_m * 60;
        fprintf(stderr, "%s: training took %02" PRId64 ":%02" PRId64 ":%02" PRId64 "\n", __func__, t_total_h, t_total_m, t_total_s);
    }

    ggml_opt_free(opt_ctx);
    ggml_opt_result_free(result_train);
    ggml_opt_result_free(result_val);
}