File size: 23,540 Bytes
61b850a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 |
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
#ifndef GGML_SYCL_COMMON_HPP
#define GGML_SYCL_COMMON_HPP
#include <fstream>
#include <iostream>
#include "dpct/helper.hpp"
#include "ggml-sycl.h"
#include "presets.hpp"
#if GGML_SYCL_DNNL
#include "dnnl.hpp"
#include "dnnl_sycl.hpp"
#endif
#define GGML_COMMON_DECL_SYCL
#define GGML_COMMON_IMPL_SYCL
/* suppress warning spam */
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wnested-anon-types"
#include "ggml-common.h"
#pragma clang diagnostic pop
void* ggml_sycl_host_malloc(size_t size);
void ggml_sycl_host_free(void* ptr);
static int g_ggml_sycl_debug = 0;
#define GGML_SYCL_DEBUG(...) \
do { \
if (g_ggml_sycl_debug) \
fprintf(stderr, __VA_ARGS__); \
} while (0)
#define CHECK_TRY_ERROR(expr) \
[&]() { \
try { \
expr; \
return dpct::success; \
} catch (std::exception const& e) { \
std::cerr << e.what() << "\nException caught at file:" << __FILE__ \
<< ", line:" << __LINE__ << ", func:" << __func__ \
<< std::endl; \
return dpct::default_error; \
} \
}()
#define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP
#define VER_4VEC 610 // todo for hardward optimize.
#define VER_GEN9 700 // todo for hardward optimize.
#define VER_GEN12 1000000 // todo for hardward optimize.
#define VER_GEN13 (VER_GEN12 + 1030) // todo for hardward optimize.
#define GGML_SYCL_MAX_NODES 8192 // TODO: adapt to hardwares
// define for XMX in Intel GPU
// TODO: currently, it's not used for XMX really.
#if !defined(GGML_SYCL_FORCE_MMQ)
#define SYCL_USE_XMX
#endif
// max batch size to use MMQ kernels when tensor cores are available
#define MMQ_MAX_BATCH_SIZE 32
#if defined(_MSC_VER)
#pragma warning(disable : 4244 4267) // possible loss of data
#endif
// dmmv = dequantize_mul_mat_vec
#ifndef GGML_SYCL_DMMV_X
#define GGML_SYCL_DMMV_X 32
#endif
#ifndef GGML_SYCL_MMV_Y
#define GGML_SYCL_MMV_Y 1
#endif
typedef sycl::queue *queue_ptr;
enum ggml_sycl_backend_gpu_mode {
SYCL_UNSET_GPU_MODE = -1,
SYCL_SINGLE_GPU_MODE = 0,
SYCL_MUL_GPU_MODE
};
static_assert(sizeof(sycl::half) == sizeof(ggml_fp16_t), "wrong fp16 size");
static void crash() {
int* ptr = NULL;
*ptr = 0;
}
[[noreturn]] static void ggml_sycl_error(
const char* stmt,
const char* func,
const char* file,
const int line,
const char* msg) {
fprintf(stderr, "SYCL error: %s: %s\n", stmt, msg);
fprintf(stderr, " in function %s at %s:%d\n", func, file, line);
GGML_ABORT("SYCL error");
}
#define SYCL_CHECK(err) \
do { \
auto err_ = (err); \
if (err_ != 0) \
ggml_sycl_error( \
#err, \
__func__, \
__FILE__, \
__LINE__, \
"Meet error in this line code!"); \
} while (0)
#if DPCT_COMPAT_RT_VERSION >= 11100
#define GGML_SYCL_ASSUME(x) __builtin_assume(x)
#else
#define GGML_SYCL_ASSUME(x)
#endif // DPCT_COMPAT_RT_VERSION >= 11100
#ifdef GGML_SYCL_F16
typedef sycl::half dfloat; // dequantize float
typedef sycl::half2 dfloat2;
#else
typedef float dfloat; // dequantize float
typedef sycl::float2 dfloat2;
#endif // GGML_SYCL_F16
#define MMVQ_MAX_BATCH_SIZE 8
static const int8_t kvalues_iq4nl[16]={-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
static int g_all_sycl_device_count = -1;
static bool g_ggml_backend_sycl_buffer_type_initialized = false;
static ggml_sycl_backend_gpu_mode g_ggml_sycl_backend_gpu_mode =
SYCL_UNSET_GPU_MODE;
static void* g_scratch_buffer = nullptr;
static size_t g_scratch_size = 0; // disabled by default
static size_t g_scratch_offset = 0;
[[noreturn]] static inline void bad_arch(const sycl::stream& stream_ct1) {
stream_ct1 << "ERROR: ggml-sycl was compiled without support for the "
"current GPU architecture.\n";
// __trap();
std::exit(1);
(void)bad_arch; // suppress unused function warning
}
int get_current_device_id();
inline dpct::err0 ggml_sycl_set_device(const int device) try {
int current_device_id;
SYCL_CHECK(CHECK_TRY_ERROR(current_device_id = get_current_device_id()));
// GGML_SYCL_DEBUG("ggml_sycl_set_device device_id=%d,
// current_device_id=%d\n", device, current_device);
if (device == current_device_id) {
return 0;
}
return CHECK_TRY_ERROR(dpct::select_device(device));
} catch (sycl::exception const& exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
crash();
std::exit(1);
}
//////////////////////
struct ggml_sycl_device_info {
int device_count;
struct sycl_device_info {
int cc; // compute capability
// int nsm; // number of streaming multiprocessors
// size_t smpb; // max. shared memory per block
bool vmm; // virtual memory support
size_t total_vram;
};
sycl_device_info devices[GGML_SYCL_MAX_DEVICES] = {};
std::array<float, GGML_SYCL_MAX_DEVICES> default_tensor_split = {};
int max_work_group_sizes[GGML_SYCL_MAX_DEVICES] = {0};
};
const ggml_sycl_device_info & ggml_sycl_info();
struct ggml_sycl_pool {
virtual ~ggml_sycl_pool() = default;
virtual void * alloc(size_t size, size_t * actual_size) = 0;
virtual void free(void * ptr, size_t size) = 0;
};
template<typename T>
struct ggml_sycl_pool_alloc {
ggml_sycl_pool * pool = nullptr;
T * ptr = nullptr;
size_t actual_size = 0;
explicit ggml_sycl_pool_alloc(ggml_sycl_pool & pool) : pool(&pool) {
}
ggml_sycl_pool_alloc(ggml_sycl_pool & pool, size_t size) : pool(&pool) {
alloc(size);
}
~ggml_sycl_pool_alloc() {
if (ptr != nullptr) {
pool->free(ptr, actual_size);
}
}
// size is in number of elements
T * alloc(size_t size) {
GGML_ASSERT(pool != nullptr);
GGML_ASSERT(ptr == nullptr);
ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
return ptr;
}
T * alloc(ggml_sycl_pool & pool, size_t size) {
this->pool = &pool;
return alloc(size);
}
T * get() {
return ptr;
}
ggml_sycl_pool_alloc() = default;
ggml_sycl_pool_alloc(const ggml_sycl_pool_alloc &) = delete;
ggml_sycl_pool_alloc(ggml_sycl_pool_alloc &&) = delete;
ggml_sycl_pool_alloc& operator=(const ggml_sycl_pool_alloc &) = delete;
ggml_sycl_pool_alloc& operator=(ggml_sycl_pool_alloc &&) = delete;
};
// backend interface
struct ggml_tensor_extra_gpu {
void* data_device[GGML_SYCL_MAX_DEVICES]; // 1 pointer for each device for split
// tensors
dpct::event_ptr events[GGML_SYCL_MAX_DEVICES]
[GGML_SYCL_MAX_STREAMS]; // events for synchronizing multiple GPUs
};
struct ggml_backend_sycl_context {
int device;
std::string name;
queue_ptr qptrs[GGML_SYCL_MAX_DEVICES][GGML_SYCL_MAX_STREAMS] = { { nullptr } };
explicit ggml_backend_sycl_context(int device) :
device(device),
name(GGML_SYCL_NAME + std::to_string(device)) {
}
queue_ptr stream(int device, int stream) {
if (qptrs[device][stream] == nullptr) {
qptrs[device][stream] = &(dpct::get_device(device).default_queue());
}
return qptrs[device][stream];
}
queue_ptr stream() {
return stream(device, 0);
}
#if GGML_SYCL_DNNL
dnnl::engine make_engine(sycl::queue* q) {
// Get the device associated with the queue
sycl::device dev = q->get_device();
// Get the context associated with the queue
sycl::context ctx = q->get_context();
const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx);
return eng;
}
std::unordered_map<sycl::queue*, dnnl::stream> stream_map;
std::unordered_map<sycl::queue*, dnnl::engine> engine_map;
dnnl::stream stream_dnnl(int device, int _stream) {
auto q = stream(device, _stream);
return stream_dnnl(q);
}
dnnl::engine engine_dnnl(sycl::queue* qptr) {
auto it = engine_map.find(qptr);
if (it == engine_map.end()) {
auto eng = make_engine(qptr);
engine_map[qptr] = eng;
return eng;
}
else
{
return it->second;
}
}
dnnl::stream stream_dnnl(sycl::queue* qptr) {
auto it = stream_map.find(qptr);
if (it == stream_map.end()) {
auto eng = engine_dnnl(qptr);
auto stream = dnnl::sycl_interop::make_stream(eng, *qptr);
stream_map[qptr] = stream;
return stream;
}
else
{
return it->second;
}
}
dnnl::stream stream_dnnl() {
return stream_dnnl(device, 0);
}
#endif
// pool
std::unique_ptr<ggml_sycl_pool> pools[GGML_SYCL_MAX_DEVICES];
std::unique_ptr<ggml_sycl_pool> host_pools[GGML_SYCL_MAX_DEVICES];
static std::unique_ptr<ggml_sycl_pool> new_pool_for_device(queue_ptr qptr, int device);
static std::unique_ptr<ggml_sycl_pool> new_pool_for_host(queue_ptr qptr, int device);
ggml_sycl_pool & pool(int device) {
if (pools[device] == nullptr) {
pools[device] = new_pool_for_device(stream(device,0), device);
}
return *pools[device];
}
ggml_sycl_pool & pool() {
return pool(device);
}
ggml_sycl_pool & host_pool(int device) {
if (host_pools[device] == nullptr) {
host_pools[device] = new_pool_for_host(stream(device, 0), device);
}
return *host_pools[device];
}
ggml_sycl_pool & host_pool() { return host_pool(device); }
};
// common device functions
static __dpct_inline__ float warp_reduce_sum(float x,
const sycl::nd_item<3>& item_ct1) {
#pragma unroll
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
/*
DPCT1096:98: The right-most dimension of the work-group used in the SYCL
kernel that calls this function may be less than "32". The function
"dpct::permute_sub_group_by_xor" may return an unexpected result on the
CPU device. Modify the size of the work-group to ensure that the value
of the right-most dimension is a multiple of "32".
*/
x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
}
return x;
}
static __dpct_inline__ sycl::float2
warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3>& item_ct1) {
#pragma unroll
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
mask);
a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
mask);
}
return a;
}
static __dpct_inline__ float warp_reduce_max(float x,
const sycl::nd_item<3>& item_ct1) {
#pragma unroll
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
/*
DPCT1096:97: The right-most dimension of the work-group used in the SYCL
kernel that calls this function may be less than "32". The function
"dpct::permute_sub_group_by_xor" may return an unexpected result on the
CPU device. Modify the size of the work-group to ensure that the value
of the right-most dimension is a multiple of "32".
*/
x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
item_ct1.get_sub_group(), x, mask));
}
return x;
}
// Helper for vec loading aligned data
template <typename Tp, int n>
inline sycl::vec<Tp, n> vec_aligned_load(const Tp* aligned_ptr) {
return *reinterpret_cast<const sycl::vec<Tp, n>*>(aligned_ptr);
}
// Helper for accessing pointers with no warnings
template <typename Tp, int dim>
static __dpct_inline__ Tp* get_pointer(sycl::local_accessor<Tp, dim> acc) {
return acc.template get_multi_ptr<sycl::access::decorated::no>().get();
}
int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size);
typedef void (*ggml_sycl_op_flatten_t)(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream);
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1));
const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) /
ne3;
const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) %
ne3;
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i_src0;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
for (int i0 = i0s; i0 < ne0;
i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
}
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i3 = i/(ne2*ne1*ne0);
const int i2 = (i/(ne1*ne0)) % ne2;
const int i1 = (i/ne0) % ne1;
const int i0 = i % ne0;
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i_src0;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
template<float (*bin_op)(const float, const float)>
struct bin_bcast_sycl {
template <typename src0_t, typename src1_t, typename dst_t>
void operator()(ggml_backend_sycl_context & ctx,
const struct ggml_tensor *src0,
const struct ggml_tensor *src1, struct ggml_tensor *dst,
const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
queue_ptr stream) {
GGML_TENSOR_BINARY_OP_LOCALS
int nr0 = ne10/ne0;
int nr1 = ne11/ne1;
int nr2 = ne12/ne2;
int nr3 = ne13/ne3;
int nr[4] = { nr0, nr1, nr2, nr3 };
// collapse dimensions until first broadcast dimension
int64_t cne0[] = {ne0, ne1, ne2, ne3};
int64_t cne1[] = {ne10, ne11, ne12, ne13};
size_t cnb0[] = {nb0, nb1, nb2, nb3};
size_t cnb1[] = {nb10, nb11, nb12, nb13};
auto collapse = [](int64_t cne[]) {
cne[0] *= cne[1];
cne[1] = cne[2];
cne[2] = cne[3];
cne[3] = 1;
};
auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
cnb[1] *= cne[1];
cnb[2] *= cne[2];
cnb[3] *= cne[3];
};
for (int i = 0; i < 4; i++) {
if (nr[i] != 1) {
break;
}
if (i > 0) {
collapse_nb(cnb0, cne0);
collapse_nb(cnb1, cne1);
collapse(cne0);
collapse(cne1);
}
}
{
int64_t ne0 = cne0[0];
int64_t ne1 = cne0[1];
int64_t ne2 = cne0[2];
int64_t ne3 = cne0[3];
int64_t ne10 = cne1[0];
int64_t ne11 = cne1[1];
int64_t ne12 = cne1[2];
int64_t ne13 = cne1[3];
size_t nb0 = cnb0[0];
size_t nb1 = cnb0[1];
size_t nb2 = cnb0[2];
size_t nb3 = cnb0[3];
size_t nb10 = cnb1[0];
size_t nb11 = cnb1[1];
size_t nb12 = cnb1[2];
size_t nb13 = cnb1[3];
size_t s0 = nb0 / sizeof(dst_t);
size_t s1 = nb1 / sizeof(dst_t);
size_t s2 = nb2 / sizeof(dst_t);
size_t s3 = nb3 / sizeof(dst_t);
size_t s10 = nb10 / sizeof(src1_t);
size_t s11 = nb11 / sizeof(src1_t);
size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t);
GGML_ASSERT(s0 == 1);
GGML_ASSERT(s10 == 1);
const int block_size = 128;
int64_t hne0 = std::max(ne0/2LL, 1LL);
sycl::range<3> block_dims(1, 1, 1);
block_dims[2] = std::min<unsigned int>(hne0, block_size);
block_dims[1] = std::min<unsigned int>(
ne1, block_size / (unsigned int)block_dims[2]);
block_dims[0] = std::min(
std::min<unsigned int>(
ne2 * ne3, block_size / (unsigned int)block_dims[2] /
(unsigned int)block_dims[1]),
64U);
sycl::range<3> block_nums(
(ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
(ne1 + block_dims[1] - 1) / block_dims[1],
(hne0 + block_dims[2] - 1) / block_dims[2]);
if (block_nums[0] > 65535) {
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
sycl::range<3>(1, 1, block_size),
sycl::range<3>(1, 1, block_size)),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast_unravel<bin_op>(
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12,
s13, item_ct1);
});
}
} else {
/*
DPCT1049:16: The work-group size passed to the SYCL kernel may
exceed the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if
needed.
*/
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
ne2, ne3, ne10, ne11, ne12, ne13,
s1, s2, s3, s11, s12, s13,
item_ct1);
});
}
}
GGML_UNUSED(ctx);
}
};
template <class op>
inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
op()(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd,
(sycl::half *)dst_dd, main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, dst_dd,
main_stream);
} else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
op()(ctx, src0, src1, dst, (const int32_t *)src0_dd, (const int32_t *)src1_dd, (int32_t *)dst_dd,
main_stream);
} else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
op()(ctx, src0, src1, dst, (const int16_t *)src0_dd, (const int16_t *)src1_dd, (int16_t *)dst_dd,
main_stream);
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ABORT("fatal error");
}
}
bool gpu_has_xmx(sycl::device &dev);
void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const ggml_sycl_op_flatten_t op);
#endif // GGML_SYCL_COMMON_HPP
|