File size: 4,839 Bytes
61b850a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#include <sycl/sycl.hpp>
#include "wkv6.hpp"

constexpr int WKV_BLOCK_SIZE = 64;  // Matching CUDA_WKV_BLOCK_SIZE

// Helper function for the main kernel
static void rwkv_wkv_f32_kernel(
    const int B, const int T, const int C, const int H,
    const float* k, const float* v, const float* r,
    const float* tf, const float* td, const float* s,
    float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) {

    const int tid = item_ct1.get_local_id(2);
    const int bid = item_ct1.get_group(2);

    const int head_size = WKV_BLOCK_SIZE;
    const int batch_i = bid / H;
    const int head_i = bid % H;
    const int state_size = C * head_size;
    const int n_seq_tokens = T / B;

    // Set up shared memory pointers
    float* _k = shared_mem;
    float* _r = _k + head_size;
    float* _tf = _r + head_size;
    float* _td = _tf + head_size;

    // Local state array
    float state[WKV_BLOCK_SIZE];

    // Load initial state
    #pragma unroll
    for (int i = 0; i < head_size; i++) {
        state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
    }

    // Sync threads before shared memory operations
    item_ct1.barrier(sycl::access::fence_space::local_space);

    // Load time-mixing parameters
    _tf[tid] = tf[head_i * head_size + tid];
    item_ct1.barrier(sycl::access::fence_space::local_space);

    // Main sequence processing loop
    for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
         t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid;
         t += C) {

        item_ct1.barrier(sycl::access::fence_space::local_space);

        // Load current timestep data to shared memory
        _k[tid] = k[t];
        _r[tid] = r[t];
        _td[tid] = td[t];

        item_ct1.barrier(sycl::access::fence_space::local_space);

        const float _v = v[t];
        float y = 0;

        // Process in chunks of 4 for better vectorization
        sycl::float4 k4, r4, tf4, td4, s4;
        #pragma unroll
        for (int j = 0; j < head_size; j += 4) {
            // Load data in vec4 chunks
            k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
            r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
            tf4 = sycl::float4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]);
            td4 = sycl::float4(_td[j], _td[j+1], _td[j+2], _td[j+3]);
            s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);

            // Compute key-value product
            sycl::float4 kv4 = k4 * _v;

            // Accumulate weighted sum
            y += sycl::dot(r4, tf4 * kv4 + s4);

            // Update state
            s4 = s4 * td4 + kv4;

            // Store updated state
            state[j] = s4.x();
            state[j+1] = s4.y();
            state[j+2] = s4.z();
            state[j+3] = s4.w();
        }

        dst[t] = y;
    }

    // Save final state
    #pragma unroll
    for (int i = 0; i < head_size; i++) {
        dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
    }
}

void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {

    const ggml_tensor *src0 = dst->src[0];
    const ggml_tensor *src1 = dst->src[1];

    const float* k_d = (const float*)dst->src[0]->data;
    const float* v_d = (const float*)dst->src[1]->data;
    const float* r_d = (const float*)dst->src[2]->data;
    const float* tf_d = (const float*)dst->src[3]->data;
    const float* td_d = (const float*)dst->src[4]->data;
    const float* s_d = (const float*)dst->src[5]->data;
    float* dst_d = (float*)dst->data;

    const int64_t B = dst->src[5]->ne[1];
    const int64_t T = dst->src[0]->ne[2];
    const int64_t C = dst->ne[0];
    const int64_t H = dst->src[0]->ne[1];

    GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
    GGML_ASSERT(C % H == 0);
    GGML_ASSERT(C / H == WKV_BLOCK_SIZE); // The current sycl kernel is designed for RWKV6, HEAD_SIZE == 64

    dpct::queue_ptr stream = ctx.stream();

    // Calculate execution configuration
    const size_t shared_mem_size = WKV_BLOCK_SIZE * 4 * sizeof(float); // For k, r, tf, td
    sycl::range<3> block_dims(1, 1, C / H);
    sycl::range<3> grid_dims(1, 1, B * H);

    // Submit kernel
    stream->submit([&](sycl::handler& cgh) {
        sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);

        cgh.parallel_for(
            sycl::nd_range<3>(grid_dims * block_dims, block_dims),
            [=](sycl::nd_item<3> item_ct1) {
                rwkv_wkv_f32_kernel(
                    B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d,
                    item_ct1, (float*)shared_mem_acc.get_multi_ptr<sycl::access::decorated::no>().get()
                );
            });
    });

    GGML_UNUSED(src0);
    GGML_UNUSED(src1);
}