Spaces:
Sleeping
Sleeping
File size: 45,023 Bytes
61b850a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 |
#include "ggml.h"
#include "ggml-backend.h"
#include "ggml-impl.h"
#include "gguf.h"
#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <map>
#include <new>
#include <stdexcept>
#include <string>
#include <vector>
template <typename T>
struct type_to_gguf_type;
template <>
struct type_to_gguf_type<uint8_t> {
static constexpr enum gguf_type value = GGUF_TYPE_UINT8;
};
template <>
struct type_to_gguf_type<int8_t> {
static constexpr enum gguf_type value = GGUF_TYPE_INT8;
};
template <>
struct type_to_gguf_type<uint16_t> {
static constexpr enum gguf_type value = GGUF_TYPE_UINT16;
};
template <>
struct type_to_gguf_type<int16_t> {
static constexpr enum gguf_type value = GGUF_TYPE_INT16;
};
template <>
struct type_to_gguf_type<uint32_t> {
static constexpr enum gguf_type value = GGUF_TYPE_UINT32;
};
template <>
struct type_to_gguf_type<int32_t> {
static constexpr enum gguf_type value = GGUF_TYPE_INT32;
};
template <>
struct type_to_gguf_type<float> {
static constexpr enum gguf_type value = GGUF_TYPE_FLOAT32;
};
template <>
struct type_to_gguf_type<bool> {
static constexpr enum gguf_type value = GGUF_TYPE_BOOL;
};
template <>
struct type_to_gguf_type<std::string> {
static constexpr enum gguf_type value = GGUF_TYPE_STRING;
};
template <>
struct type_to_gguf_type<uint64_t> {
static constexpr enum gguf_type value = GGUF_TYPE_UINT64;
};
template <>
struct type_to_gguf_type<int64_t> {
static constexpr enum gguf_type value = GGUF_TYPE_INT64;
};
template <>
struct type_to_gguf_type<double> {
static constexpr enum gguf_type value = GGUF_TYPE_FLOAT64;
};
static const std::map<gguf_type, size_t> GGUF_TYPE_SIZE = {
{GGUF_TYPE_UINT8, sizeof(uint8_t)},
{GGUF_TYPE_INT8, sizeof(int8_t)},
{GGUF_TYPE_UINT16, sizeof(uint16_t)},
{GGUF_TYPE_INT16, sizeof(int16_t)},
{GGUF_TYPE_UINT32, sizeof(uint32_t)},
{GGUF_TYPE_INT32, sizeof(int32_t)},
{GGUF_TYPE_FLOAT32, sizeof(float)},
{GGUF_TYPE_BOOL, sizeof(int8_t)},
{GGUF_TYPE_STRING, 0}, // undefined
{GGUF_TYPE_ARRAY, 0}, // undefined
{GGUF_TYPE_UINT64, sizeof(uint64_t)},
{GGUF_TYPE_INT64, sizeof(int64_t)},
{GGUF_TYPE_FLOAT64, sizeof(double)},
};
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
static const std::map<gguf_type, const char *> GGUF_TYPE_NAME = {
{GGUF_TYPE_UINT8, "u8"},
{GGUF_TYPE_INT8, "i8"},
{GGUF_TYPE_UINT16, "u16"},
{GGUF_TYPE_INT16, "i16"},
{GGUF_TYPE_UINT32, "u32"},
{GGUF_TYPE_INT32, "i32"},
{GGUF_TYPE_FLOAT32, "f32"},
{GGUF_TYPE_BOOL, "bool"},
{GGUF_TYPE_STRING, "str"},
{GGUF_TYPE_ARRAY, "arr"},
{GGUF_TYPE_UINT64, "u64"},
{GGUF_TYPE_INT64, "i64"},
{GGUF_TYPE_FLOAT64, "f64"},
};
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
size_t gguf_type_size(enum gguf_type type) {
auto it = GGUF_TYPE_SIZE.find(type);
return it == GGUF_TYPE_SIZE.end() ? 0 : it->second;
}
struct gguf_kv {
std::string key;
bool is_array;
enum gguf_type type;
std::vector<int8_t> data;
std::vector<std::string> data_string;
template <typename T>
gguf_kv(const std::string & key, const T value)
: key(key), is_array(false), type(type_to_gguf_type<T>::value) {
GGML_ASSERT(!key.empty());
data.resize(sizeof(T));
memcpy(data.data(), &value, sizeof(T));
}
template <typename T>
gguf_kv(const std::string & key, const std::vector<T> & value)
: key(key), is_array(true), type(type_to_gguf_type<T>::value) {
GGML_ASSERT(!key.empty());
data.resize(value.size()*sizeof(T));
for (size_t i = 0; i < value.size(); ++i) {
const T tmp = value[i];
memcpy(data.data() + i*sizeof(T), &tmp, sizeof(T));
}
}
gguf_kv(const std::string & key, const std::string & value)
: key(key), is_array(false), type(GGUF_TYPE_STRING) {
GGML_ASSERT(!key.empty());
data_string.push_back(value);
}
gguf_kv(const std::string & key, const std::vector<std::string> & value)
: key(key), is_array(true), type(GGUF_TYPE_STRING) {
GGML_ASSERT(!key.empty());
data_string = value;
}
const std::string & get_key() const {
return key;
}
const enum gguf_type & get_type() const {
return type;
}
size_t get_ne() const {
if (type == GGUF_TYPE_STRING) {
const size_t ne = data_string.size();
GGML_ASSERT(is_array || ne == 1);
return ne;
}
const size_t type_size = gguf_type_size(type);
GGML_ASSERT(data.size() % type_size == 0);
const size_t ne = data.size() / type_size;
GGML_ASSERT(is_array || ne == 1);
return ne;
}
template <typename T>
const T & get_val(const size_t i = 0) const {
GGML_ASSERT(type_to_gguf_type<T>::value == type);
if constexpr (std::is_same<T, std::string>::value) {
GGML_ASSERT(data_string.size() >= i+1);
return data_string[i];
}
const size_t type_size = gguf_type_size(type);
GGML_ASSERT(data.size() % type_size == 0);
GGML_ASSERT(data.size() >= (i+1)*type_size);
return reinterpret_cast<const T *>(data.data())[i];
}
void cast(const enum gguf_type new_type) {
const size_t new_type_size = gguf_type_size(new_type);
GGML_ASSERT(data.size() % new_type_size == 0);
type = new_type;
}
};
struct gguf_tensor_info {
struct ggml_tensor t; // for holding the equivalent info
uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
};
struct gguf_context {
uint32_t version = GGUF_VERSION;
std::vector<struct gguf_kv> kv;
std::vector<struct gguf_tensor_info> info;
size_t alignment = GGUF_DEFAULT_ALIGNMENT;
size_t offset = 0; // offset of `data` from beginning of file
size_t size = 0; // size of `data` in bytes
void * data = nullptr;
};
struct gguf_reader {
FILE * file;
gguf_reader(FILE * file) : file(file) {}
template <typename T>
bool read(T & dst) const {
return fread(&dst, 1, sizeof(dst), file) == sizeof(dst);
}
template <typename T>
bool read(std::vector<T> & dst, const size_t n) const {
dst.resize(n);
for (size_t i = 0; i < dst.size(); ++i) {
if constexpr (std::is_same<T, bool>::value) {
bool tmp;
if (!read(tmp)) {
return false;
}
dst[i] = tmp;
} else {
if (!read(dst[i])) {
return false;
}
}
}
return true;
}
bool read(bool & dst) const {
int8_t tmp = -1;
if (!read(tmp)) {
return false;
}
dst = tmp != 0;
return true;
}
bool read(enum ggml_type & dst) const {
int32_t tmp = -1;
if (!read(tmp)) {
return false;
}
dst = ggml_type(tmp);
return true;
}
bool read(enum gguf_type & dst) const {
int32_t tmp = -1;
if (!read(tmp)) {
return false;
}
dst = gguf_type(tmp);
return true;
}
bool read(std::string & dst) const {
uint64_t size = -1;
if (!read(size)) {
return false;
}
dst.resize(size);
return fread(dst.data(), 1, dst.length(), file) == dst.length();
}
bool read(void * dst, const size_t size) const {
return fread(dst, 1, size, file) == size;
}
};
struct gguf_context * gguf_init_empty(void) {
return new gguf_context;
}
template<typename T>
bool gguf_read_emplace_helper(const struct gguf_reader & gr, std::vector<struct gguf_kv> & kv, const std::string & key, const bool is_array, const size_t n) {
if (is_array) {
std::vector<T> value;
try {
if (!gr.read(value, n)) {
return false;
}
} catch (std::length_error &) {
fprintf(stderr, "%s: encountered length_error while reading value for key '%s'\n", __func__, key.c_str());
return false;
} catch (std::bad_alloc &) {
fprintf(stderr, "%s: encountered bad_alloc error while reading value for key '%s'\n", __func__, key.c_str());
return false;
}
kv.emplace_back(key, value);
} else {
T value;
if (!gr.read(value)) {
return false;
}
kv.emplace_back(key, value);
}
return true;
}
struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) {
const struct gguf_reader gr(file);
struct gguf_context * ctx = new gguf_context;
bool ok = true;
// file magic
{
std::vector<char> magic;
ok = ok && gr.read(magic, 4);
if (!ok) {
fprintf(stderr, "%s: failed to read magic\n", __func__);
gguf_free(ctx);
return nullptr;
}
for (uint32_t i = 0; i < magic.size(); i++) {
if (magic[i] != GGUF_MAGIC[i]) {
fprintf(stderr, "%s: invalid magic characters: '%c%c%c%c', expected 'GGUF'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
gguf_free(ctx);
return nullptr;
}
}
}
// header
int64_t n_kv = 0;
int64_t n_tensors = 0;
if (ok && gr.read(ctx->version)) {
if (ctx->version == 1) {
fprintf(stderr, "%s: GGUFv1 is no longer supported, please use a more up-to-date version\n", __func__);
ok = false;
}
if (ctx->version > GGUF_VERSION) {
fprintf(stderr, "%s: this GGUF file is version %" PRIu32 " but this software only supports up to version %d\n",
__func__, ctx->version, GGUF_VERSION);
ok = false;
}
} else {
ok = false;
}
if (ok && gr.read(n_tensors)) {
static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing");
if (n_tensors < 0 || n_tensors > int64_t(SIZE_MAX/sizeof(gguf_tensor_info))) {
fprintf(stderr, "%s: number of tensors is %" PRIi64 " but must be in [0, %zu]\n",
__func__, n_tensors, SIZE_MAX/sizeof(gguf_tensor_info));
ok = false;
}
} else {
ok = false;
}
if (ok && gr.read(n_kv)) {
static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing");
if (n_kv < 0 || n_kv > int64_t(SIZE_MAX/sizeof(gguf_kv))) {
fprintf(stderr, "%s: number of key value pairs is %" PRIi64 " but must be in [0, %zu]\n",
__func__, n_kv, SIZE_MAX/sizeof(gguf_kv));
ok = false;
}
} else {
ok = false;
}
if (!ok) {
fprintf(stderr, "%s: failed to read header\n", __func__);
gguf_free(ctx);
return nullptr;
}
// KV pairs
{
for (int64_t i = 0; ok && i < n_kv; ++i) {
std::string key;
gguf_type type = gguf_type(-1);
bool is_array = false;
uint64_t n = 1;
try {
ok = ok && gr.read(key);
} catch (std::length_error &) {
fprintf(stderr, "%s: encountered length_error while reading key %" PRIi64 "\n", __func__, i);
ok = false;
} catch (std::bad_alloc &) {
fprintf(stderr, "%s: encountered bad_alloc error while reading key %" PRIi64 "\n", __func__, i);
ok = false;
}
for (size_t j = 0; ok && j < ctx->kv.size(); ++j) {
if (key == ctx->kv[j].key) {
fprintf(stderr, "%s: duplicate key '%s' for tensors %zu and %" PRIi64 " \n", __func__, key.c_str(), j, i);
ok = false;
}
}
if (!ok) {
break;
}
ok = ok && gr.read(type);
if (type == GGUF_TYPE_ARRAY) {
is_array = true;
ok = ok && gr.read(type);
ok = ok && gr.read(n);
}
if (!ok) {
break;
}
switch (type) {
case GGUF_TYPE_UINT8: ok = ok && gguf_read_emplace_helper<uint8_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_INT8: ok = ok && gguf_read_emplace_helper<int8_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_UINT16: ok = ok && gguf_read_emplace_helper<uint16_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_INT16: ok = ok && gguf_read_emplace_helper<int16_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_UINT32: ok = ok && gguf_read_emplace_helper<uint32_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_INT32: ok = ok && gguf_read_emplace_helper<int32_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_FLOAT32: ok = ok && gguf_read_emplace_helper<float> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_BOOL: ok = ok && gguf_read_emplace_helper<bool> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_STRING: ok = ok && gguf_read_emplace_helper<std::string>(gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_UINT64: ok = ok && gguf_read_emplace_helper<uint64_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_INT64: ok = ok && gguf_read_emplace_helper<int64_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_FLOAT64: ok = ok && gguf_read_emplace_helper<double> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_ARRAY:
default:
{
fprintf(stderr, "%s: key '%s' has invalid GGUF type %d\n", __func__, key.c_str(), type);
ok = false;
} break;
}
}
if (!ok) {
fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
gguf_free(ctx);
return nullptr;
}
GGML_ASSERT(int64_t(ctx->kv.size()) == n_kv);
const int alignment_idx = gguf_find_key(ctx, GGUF_KEY_GENERAL_ALIGNMENT);
ctx->alignment = alignment_idx == -1 ? GGUF_DEFAULT_ALIGNMENT : gguf_get_val_u32(ctx, alignment_idx);
if (ctx->alignment == 0 || (ctx->alignment & (ctx->alignment - 1)) != 0) {
fprintf(stderr, "%s: alignment %zu is not a power of 2\n", __func__, ctx->alignment);
gguf_free(ctx);
return nullptr;
}
}
// read the tensor info
for (int64_t i = 0; ok && i < n_tensors; ++i) {
struct gguf_tensor_info info;
// tensor name
{
std::string name;
try {
ok = ok && gr.read(name);
} catch (std::length_error &) {
fprintf(stderr, "%s: encountered length_error while reading tensor name %" PRIi64 "\n", __func__, i);
ok = false;
} catch (std::bad_alloc &) {
fprintf(stderr, "%s: encountered bad_alloc error while reading tensor name %" PRIi64 "\n", __func__, i);
ok = false;
}
if (name.length() >= GGML_MAX_NAME) {
fprintf(stderr, "%s: tensor name %" PRIi64 " is too long: %zu >= %d\n", __func__, i, name.length(), GGML_MAX_NAME);
ok = false;
break;
}
ggml_set_name(&info.t, name.c_str());
// make sure there are no duplicate tensor names
for (int64_t j = 0; ok && j < i; ++j) {
if (strcmp(info.t.name, ctx->info[j].t.name) == 0) {
fprintf(stderr, "%s: duplicate tensor name '%s' for tensors %" PRIi64 " and %" PRIi64 "\n", __func__, info.t.name, j, i);
ok = false;
break;
}
}
}
if (!ok) {
break;
}
// tensor shape
{
uint32_t n_dims = -1;
ok = ok && gr.read(n_dims);
if (n_dims > GGML_MAX_DIMS) {
fprintf(stderr, "%s: tensor '%s' has invalid number of dimensions: %" PRIu32 " > %" PRIu32 "\n",
__func__, info.t.name, n_dims, GGML_MAX_DIMS);
ok = false;
break;
}
for (uint32_t j = 0; ok && j < GGML_MAX_DIMS; ++j) {
info.t.ne[j] = 1;
if (j < n_dims) {
ok = ok && gr.read(info.t.ne[j]);
}
// check that all ne are non-negative
if (info.t.ne[j] < 0) {
fprintf(stderr, "%s: tensor '%s' dimension %" PRIu32 " has invalid number of elements: %" PRIi64 " < 0\n",
__func__, info.t.name, j, info.t.ne[j]);
ok = false;
break;
}
}
// check that the total number of elements is representable
if (ok && ((INT64_MAX/info.t.ne[1] <= info.t.ne[0]) ||
(INT64_MAX/info.t.ne[2] <= info.t.ne[0]*info.t.ne[1]) ||
(INT64_MAX/info.t.ne[3] <= info.t.ne[0]*info.t.ne[1]*info.t.ne[2]))) {
fprintf(stderr, "%s: total number of elements in tensor '%s' with shape "
"(%" PRIi64 ", %" PRIi64 ", %" PRIi64 ", %" PRIi64 ") is >= %" PRIi64 "\n",
__func__, info.t.name, info.t.ne[0], info.t.ne[1], info.t.ne[2], info.t.ne[3], INT64_MAX);
ok = false;
break;
}
}
if (!ok) {
break;
}
// tensor type
{
ok = ok && gr.read(info.t.type);
// check that tensor type is within defined range
if (info.t.type < 0 || info.t.type >= GGML_TYPE_COUNT) {
fprintf(stderr, "%s: tensor '%s' has invalid ggml type %d (%s)\n",
__func__, info.t.name, info.t.type, ggml_type_name(info.t.type));
ok = false;
break;
}
const size_t type_size = ggml_type_size(info.t.type);
const int64_t blck_size = ggml_blck_size(info.t.type);
// check that row size is divisible by block size
if (blck_size == 0 || info.t.ne[0] % blck_size != 0) {
fprintf(stderr, "%s: tensor '%s' of type %d (%s) has %" PRId64 " elements per row, "
"not a multiple of block size (%" PRId64 ")\n",
__func__, info.t.name, (int) info.t.type, ggml_type_name(info.t.type), info.t.ne[0], blck_size);
ok = false;
break;
}
// calculate byte offsets given the tensor shape and type
info.t.nb[0] = type_size;
info.t.nb[1] = info.t.nb[0]*(info.t.ne[0]/blck_size);
for (int j = 2; j < GGML_MAX_DIMS; ++j) {
info.t.nb[j] = info.t.nb[j - 1]*info.t.ne[j - 1];
}
}
if (!ok) {
break;
}
// tensor data offset within buffer
ok = ok && gr.read(info.offset);
ctx->info.push_back(info);
}
if (!ok) {
fprintf(stderr, "%s: failed to read tensor info\n", __func__);
gguf_free(ctx);
return nullptr;
}
GGML_ASSERT(int64_t(ctx->info.size()) == n_tensors);
// we require the data section to be aligned, so take into account any padding
if (fseek(file, GGML_PAD(ftell(file), ctx->alignment), SEEK_SET) != 0) {
fprintf(stderr, "%s: failed to seek to beginning of data section\n", __func__);
gguf_free(ctx);
return nullptr;
}
// store the current file offset - this is where the data section starts
ctx->offset = ftell(file);
// compute the total size of the data section, taking into account the alignment
{
ctx->size = 0;
for (size_t i = 0; i < ctx->info.size(); ++i) {
const gguf_tensor_info & ti = ctx->info[i];
if (ti.offset != ctx->size) {
fprintf(stderr, "%s: tensor '%s' has offset %" PRIu64 ", expected %zu\n",
__func__, ti.t.name, ti.offset, ctx->size);
fprintf(stderr, "%s: failed to read tensor data\n", __func__);
gguf_free(ctx);
return nullptr;
}
ctx->size += GGML_PAD(ggml_nbytes(&ti.t), ctx->alignment);
}
}
// load the tensor data only if requested
if (params.ctx != nullptr) {
// if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
// otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
// the ggml_tensor structs to the appropriate locations in the binary blob
// compute the exact size needed for the new ggml_context
const size_t mem_size =
params.no_alloc ?
(n_tensors )*ggml_tensor_overhead() :
(n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
struct ggml_init_params pdata = {
/*mem_size =*/ mem_size,
/*mem_buffer =*/ nullptr,
/*no_alloc =*/ params.no_alloc,
};
*params.ctx = ggml_init(pdata);
if (*params.ctx == nullptr) {
fprintf(stderr, "%s: failed to initialize ggml context for storing tensors\n", __func__);
gguf_free(ctx);
return nullptr;
}
struct ggml_context * ctx_data = *params.ctx;
struct ggml_tensor * data = nullptr;
if (!params.no_alloc) {
data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
ok = ok && data != nullptr;
if (ok) {
ggml_set_name(data, "GGUF tensor data binary blob");
}
// read the binary blob with the tensor data
ok = ok && gr.read(data->data, ctx->size);
if (!ok) {
fprintf(stderr, "%s: failed to read tensor data binary blob\n", __func__);
ggml_free(ctx_data);
*params.ctx = nullptr;
gguf_free(ctx);
return nullptr;
}
ctx->data = data->data;
}
ggml_set_no_alloc(ctx_data, true);
// create the tensors
for (size_t i = 0; i < ctx->info.size(); ++i) {
const struct gguf_tensor_info & info = ctx->info[i];
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, info.t.type, GGML_MAX_DIMS, info.t.ne);
ok = ok && cur != nullptr;
if (!ok) {
break;
}
ggml_set_name(cur, info.t.name);
// point the data member to the appropriate location in the binary blob using the tensor info
if (!params.no_alloc) {
cur->data = (char *) data->data + info.offset;
}
}
if (!ok) {
fprintf(stderr, "%s: failed to create tensors\n", __func__);
ggml_free(ctx_data);
*params.ctx = nullptr;
gguf_free(ctx);
return nullptr;
}
ggml_set_no_alloc(ctx_data, params.no_alloc);
}
return ctx;
}
struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
FILE * file = ggml_fopen(fname, "rb");
if (!file) {
fprintf(stderr, "%s: failed to open GGUF file '%s'\n", __func__, fname);
return nullptr;
}
struct gguf_context * result = gguf_init_from_file_impl(file, params);
fclose(file);
return result;
}
void gguf_free(struct gguf_context * ctx) {
if (ctx == nullptr) {
return;
}
delete ctx;
}
const char * gguf_type_name(enum gguf_type type) {
auto it = GGUF_TYPE_NAME.find(type);
return it == GGUF_TYPE_NAME.end() ? nullptr : it->second;
}
uint32_t gguf_get_version(const struct gguf_context * ctx) {
return ctx->version;
}
size_t gguf_get_alignment(const struct gguf_context * ctx) {
return ctx->alignment;
}
size_t gguf_get_data_offset(const struct gguf_context * ctx) {
return ctx->offset;
}
int64_t gguf_get_n_kv(const struct gguf_context * ctx) {
return ctx->kv.size();
}
int64_t gguf_find_key(const struct gguf_context * ctx, const char * key) {
// return -1 if key not found
int64_t keyfound = -1;
const int64_t n_kv = gguf_get_n_kv(ctx);
for (int64_t i = 0; i < n_kv; ++i) {
if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
keyfound = i;
break;
}
}
return keyfound;
}
const char * gguf_get_key(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
return ctx->kv[key_id].get_key().c_str();
}
enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
return ctx->kv[key_id].is_array ? GGUF_TYPE_ARRAY : ctx->kv[key_id].get_type();
}
enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].is_array);
return ctx->kv[key_id].get_type();
}
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
return ctx->kv[key_id].data_string[i].c_str();
}
size_t gguf_get_arr_n(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
if (ctx->kv[key_id].type == GGUF_TYPE_STRING) {
return ctx->kv[key_id].data_string.size();
}
const size_t type_size = gguf_type_size(ctx->kv[key_id].type);
GGML_ASSERT(ctx->kv[key_id].data.size() % type_size == 0);
return ctx->kv[key_id].data.size() / type_size;
}
uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<uint8_t>();
}
int8_t gguf_get_val_i8(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<int8_t>();
}
uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<uint16_t>();
}
int16_t gguf_get_val_i16(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<int16_t>();
}
uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<uint32_t>();
}
int32_t gguf_get_val_i32(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<int32_t>();
}
float gguf_get_val_f32(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<float>();
}
uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<uint64_t>();
}
int64_t gguf_get_val_i64(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<int64_t>();
}
double gguf_get_val_f64(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<double>();
}
bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<bool>();
}
const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<std::string>().c_str();
}
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}
int64_t gguf_get_n_tensors(const struct gguf_context * ctx) {
return ctx->info.size();
}
int64_t gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
// return -1 if tensor not found
int64_t tensor_id = -1;
const int64_t n_tensors = gguf_get_n_tensors(ctx);
for (int64_t i = 0; i < n_tensors; ++i) {
if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
tensor_id = i;
break;
}
}
return tensor_id;
}
size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id) {
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
return ctx->info[tensor_id].offset;
}
const char * gguf_get_tensor_name(const struct gguf_context * ctx, int64_t tensor_id) {
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
return ctx->info[tensor_id].t.name;
}
enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int64_t tensor_id) {
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
return ctx->info[tensor_id].t.type;
}
size_t gguf_get_tensor_size(const struct gguf_context * ctx, int64_t tensor_id) {
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
return ggml_nbytes(&ctx->info[tensor_id].t);
}
int64_t gguf_remove_key(struct gguf_context * ctx, const char * key) {
const int64_t key_id = gguf_find_key(ctx, key);
if (key_id >= 0) {
ctx->kv.erase(ctx->kv.begin() + key_id);
}
return key_id;
}
template<typename T>
static void gguf_check_reserved_keys(const std::string & key, const T val) {
if (key == GGUF_KEY_GENERAL_ALIGNMENT) {
if constexpr (std::is_same<T, uint32_t>::value) {
GGML_ASSERT(val > 0 && (val & (val - 1)) == 0 && GGUF_KEY_GENERAL_ALIGNMENT " must be power of 2");
} else {
GGML_ABORT(GGUF_KEY_GENERAL_ALIGNMENT " must be type u32");
}
}
}
void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, std::string(val));
}
void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n) {
gguf_check_reserved_keys(key, data);
gguf_remove_key(ctx, key);
const size_t nbytes = n*gguf_type_size(type);
std::vector<int8_t> tmp(nbytes);
if (!tmp.empty()) {
memcpy(tmp.data(), data, nbytes);
}
ctx->kv.emplace_back(key, tmp);
ctx->kv.back().cast(type);
}
void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, size_t n) {
gguf_check_reserved_keys(key, data);
gguf_remove_key(ctx, key);
std::vector<std::string> tmp(n);
for (size_t i = 0; i < n; ++i) {
tmp[i] = data[i];
}
ctx->kv.emplace_back(key, tmp);
}
// set or add KV pairs from another context
void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src) {
const int64_t n_kv = gguf_get_n_kv(src);
for (int64_t i = 0; i < n_kv; ++i) {
const struct gguf_kv & kv = src->kv[i];
if (!kv.is_array) {
switch (kv.get_type()) {
case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, kv.get_key().c_str(), kv.get_val<uint8_t>()); break;
case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, kv.get_key().c_str(), kv.get_val<int8_t>()); break;
case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, kv.get_key().c_str(), kv.get_val<uint16_t>()); break;
case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, kv.get_key().c_str(), kv.get_val<int16_t>()); break;
case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, kv.get_key().c_str(), kv.get_val<uint32_t>()); break;
case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, kv.get_key().c_str(), kv.get_val<int32_t>()); break;
case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, kv.get_key().c_str(), kv.get_val<float>()); break;
case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, kv.get_key().c_str(), kv.get_val<uint64_t>()); break;
case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, kv.get_key().c_str(), kv.get_val<int64_t>()); break;
case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, kv.get_key().c_str(), kv.get_val<double>()); break;
case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, kv.get_key().c_str(), kv.get_val<bool>()); break;
case GGUF_TYPE_STRING: gguf_set_val_str (ctx, kv.get_key().c_str(), kv.get_val<std::string>().c_str()); break;
case GGUF_TYPE_ARRAY:
default: GGML_ABORT("invalid type");
}
continue;
}
const size_t ne = kv.get_ne();
switch (kv.get_type()) {
case GGUF_TYPE_UINT8:
case GGUF_TYPE_INT8:
case GGUF_TYPE_UINT16:
case GGUF_TYPE_INT16:
case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32:
case GGUF_TYPE_FLOAT32:
case GGUF_TYPE_UINT64:
case GGUF_TYPE_INT64:
case GGUF_TYPE_FLOAT64:
case GGUF_TYPE_BOOL: {
gguf_set_arr_data(ctx, kv.get_key().c_str(), kv.get_type(), kv.data.data(), ne);
} break;
case GGUF_TYPE_STRING: {
std::vector<const char *> tmp(ne);
for (size_t j = 0; j < ne; ++j) {
tmp[j] = kv.data_string[j].c_str();
}
gguf_set_arr_str(ctx, kv.get_key().c_str(), tmp.data(), ne);
} break;
case GGUF_TYPE_ARRAY:
default: GGML_ABORT("invalid type");
}
}
}
void gguf_add_tensor(
struct gguf_context * ctx,
const struct ggml_tensor * tensor) {
GGML_ASSERT(tensor);
if (gguf_find_tensor(ctx, tensor->name) != -1) {
GGML_ABORT("duplicate tensor name: %s", tensor->name);
}
struct gguf_tensor_info ti;
ti.t = *tensor;
ti.offset = ctx->info.empty() ? 0 :
ctx->info.back().offset + GGML_PAD(ggml_nbytes(&ctx->info.back().t), ctx->alignment);
ctx->info.push_back(ti);
}
void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
const int64_t tensor_id = gguf_find_tensor(ctx, name);
if (tensor_id < 0) {
GGML_ABORT("tensor not found: %s", name);
}
struct ggml_tensor * tensor = &ctx->info[tensor_id].t;
const size_t type_size = ggml_type_size(type);
const int64_t blck_size = ggml_blck_size(type);
tensor->type = type;
GGML_ASSERT(tensor->ne[0] % blck_size == 0 && "tensor row size not divisible by block size of new type");
tensor->nb[0] = type_size;
tensor->nb[1] = tensor->nb[0]*(tensor->ne[0]/blck_size);
for (int i = 2; i < GGML_MAX_DIMS; i++) {
tensor->nb[i] = tensor->nb[i - 1]*tensor->ne[i - 1];
}
// update offsets
const int64_t n_tensors = gguf_get_n_tensors(ctx);
for (int64_t i = tensor_id + 1; i < n_tensors; ++i) {
ctx->info[i].offset = ctx->info[i - 1].offset + GGML_PAD(ggml_nbytes(&ctx->info[i - 1].t), ctx->alignment);
}
}
void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data) {
const int64_t tensor_id = gguf_find_tensor(ctx, name);
if (tensor_id < 0) {
GGML_ABORT("tensor not found: %s", name);
}
ctx->info[tensor_id].t.data = (void *)(uintptr_t)data; // double cast suppresses warning about casting away const
}
struct gguf_writer {
std::vector<int8_t> & buf;
gguf_writer(std::vector<int8_t> & buf) : buf(buf) {}
template <typename T>
void write(const T & val) const {
for (size_t i = 0; i < sizeof(val); ++i) {
buf.push_back(reinterpret_cast<const int8_t *>(&val)[i]);
}
}
void write(const std::vector<int8_t> & val) const {
buf.insert(buf.end(), val.begin(), val.end());
}
void write(const bool & val) const {
const int8_t val8 = val ? 1 : 0;
write(val8);
}
void write(const std::string & val) const {
{
const uint64_t n = val.length();
write(n);
}
for (size_t i = 0; i < val.length(); ++i) {
buf.push_back(reinterpret_cast<const int8_t *>(val.data())[i]);
}
}
void write(const char * val) const {
write(std::string(val));
}
void write(const enum ggml_type & val) const {
write(int32_t(val));
}
void write(const enum gguf_type & val) const {
write(int32_t(val));
}
void write(const struct gguf_kv & kv) const {
const uint64_t ne = kv.get_ne();
write(kv.get_key());
if (kv.is_array) {
write(GGUF_TYPE_ARRAY);
write(kv.get_type());
write(ne);
} else {
write(kv.get_type());
}
switch (kv.get_type()) {
case GGUF_TYPE_UINT8:
case GGUF_TYPE_INT8:
case GGUF_TYPE_UINT16:
case GGUF_TYPE_INT16:
case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32:
case GGUF_TYPE_FLOAT32:
case GGUF_TYPE_UINT64:
case GGUF_TYPE_INT64:
case GGUF_TYPE_FLOAT64: {
write(kv.data);
} break;
case GGUF_TYPE_BOOL: {
for (size_t i = 0; i < ne; ++i) {
write(kv.get_val<bool>(i));
}
} break;
case GGUF_TYPE_STRING: {
for (size_t i = 0; i < ne; ++i) {
write(kv.get_val<std::string>(i));
}
} break;
case GGUF_TYPE_ARRAY:
default: GGML_ABORT("invalid type");
}
}
void write_tensor_meta(const struct gguf_tensor_info & info) const {
write(info.t.name);
const uint32_t n_dims = ggml_n_dims(&info.t);
write(n_dims);
for (uint32_t j = 0; j < n_dims; ++j) {
write(info.t.ne[j]);
}
write(info.t.type);
write(info.offset);
}
void pad(const size_t alignment) const {
while (buf.size() % alignment != 0) {
const int8_t zero = 0;
write(zero);
}
}
void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) const {
GGML_ASSERT(buf.size() - offset_data == info.offset);
GGML_ASSERT(ggml_is_contiguous(&info.t));
const size_t offset = buf.size();
const size_t nbytes = ggml_nbytes(&info.t);
buf.resize(offset + nbytes);
if (info.t.buffer) {
ggml_backend_tensor_get(&info.t, buf.data() + offset, 0, nbytes);
} else {
GGML_ASSERT(info.t.data);
memcpy(buf.data() + offset, info.t.data, nbytes);
}
pad(alignment);
}
};
void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta) {
const struct gguf_writer gw(buf);
const int64_t n_kv = gguf_get_n_kv(ctx);
const int64_t n_tensors = gguf_get_n_tensors(ctx);
// write header
gw.write(GGUF_MAGIC[0]);
gw.write(GGUF_MAGIC[1]);
gw.write(GGUF_MAGIC[2]);
gw.write(GGUF_MAGIC[3]);
gw.write(ctx->version);
gw.write(n_tensors);
gw.write(n_kv);
// write key-value pairs
for (int64_t i = 0; i < n_kv; ++i) {
gw.write(ctx->kv[i]);
}
// write tensor info
for (int64_t i = 0; i < n_tensors; ++i) {
gw.write_tensor_meta(ctx->info[i]);
}
// we require the data section to be aligned
gw.pad(ctx->alignment);
if (only_meta) {
return;
}
const size_t offset_data = gw.buf.size();
// write tensor data
for (int64_t i = 0; i < n_tensors; ++i) {
gw.write_tensor_data(ctx->info[i], offset_data, ctx->alignment);
}
}
bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
FILE * file = ggml_fopen(fname, "wb");
if (!file) {
fprintf(stderr, "%s: failed to open file '%s' for writing GGUF data\n", __func__, fname);
return false;
}
std::vector<int8_t> buf;
gguf_write_to_buf(ctx, buf, only_meta);
const bool ok = fwrite(buf.data(), 1, buf.size(), file) == buf.size();
fclose(file);
return ok;
}
size_t gguf_get_meta_size(const struct gguf_context * ctx) {
// only return size
std::vector<int8_t> buf;
gguf_write_to_buf(ctx, buf, /*only_meta =*/ true);
return buf.size();
}
void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
std::vector<int8_t> buf;
gguf_write_to_buf(ctx, buf, /*only_meta =*/ true);
memcpy(data, buf.data(), buf.size());
}
|