|
#include "ggml.h" |
|
#include "gguf.h" |
|
|
|
#include "llama.h" |
|
#include "common.h" |
|
#include "log.h" |
|
|
|
#include <unordered_map> |
|
#include <vector> |
|
#include <cassert> |
|
#include <climits> |
|
#include <cstring> |
|
#include <cstdarg> |
|
#include <cinttypes> |
|
#include <ctime> |
|
#include <random> |
|
#include <stdexcept> |
|
#include <sstream> |
|
#include <algorithm> |
|
#include <string> |
|
|
|
|
|
|
|
#define KV_GENERAL_ARCHITECTURE "general.architecture" |
|
#define KV_GENERAL_NAME "general.name" |
|
|
|
#define KV_TOKENIZER_MODEL "tokenizer.ggml.model" |
|
#define KV_TOKENIZER_LIST "tokenizer.ggml.tokens" |
|
#define KV_TOKENIZER_TOKEN_TYPE "tokenizer.ggml.token_type" |
|
#define KV_TOKENIZER_SCORES "tokenizer.ggml.scores" |
|
#define KV_TOKENIZER_BOS_ID "tokenizer.ggml.bos_token_id" |
|
#define KV_TOKENIZER_EOS_ID "tokenizer.ggml.eos_token_id" |
|
#define KV_TOKENIZER_UNK_ID "tokenizer.ggml.unknown_token_id" |
|
#define KV_TOKENIZER_SEP_ID "tokenizer.ggml.seperator_token_id" |
|
#define KV_TOKENIZER_PAD_ID "tokenizer.ggml.padding_token_id" |
|
#define KV_TOKENIZER_HF_JSON "tokenizer.huggingface.json" |
|
|
|
#define KV_CONTEXT_LENGTH "llama.context_length" |
|
#define KV_EMBEDDING_LENGTH "llama.embedding_length" |
|
#define KV_BLOCK_COUNT "llama.block_count" |
|
#define KV_FEED_FORWARD_LENGTH "llama.feed_forward_length" |
|
#define KV_ATTENTION_HEAD_COUNT "llama.attention.head_count" |
|
#define KV_ATTENTION_HEAD_COUNT_KV "llama.attention.head_count_kv" |
|
#define KV_ATTENTION_LAYERNORM_RMS_EPS "llama.attention.layer_norm_rms_epsilon" |
|
#define KV_ROPE_DIMENSION_COUNT "llama.rope.dimension_count" |
|
|
|
#define TN_TOKEN_EMBD "token_embd.weight" |
|
#define TN_OUTPUT_NORM "output_norm.weight" |
|
#define TN_OUTPUT "output.weight" |
|
#define TN_ATTN_NORM "blk.%d.attn_norm.weight" |
|
#define TN_ATTN_Q "blk.%d.attn_q.weight" |
|
#define TN_ATTN_K "blk.%d.attn_k.weight" |
|
#define TN_ATTN_V "blk.%d.attn_v.weight" |
|
#define TN_ATTN_OUTPUT "blk.%d.attn_output.weight" |
|
#define TN_FFN_NORM "blk.%d.ffn_norm.weight" |
|
#define TN_FFN_GATE "blk.%d.ffn_gate.weight" |
|
#define TN_FFN_DOWN "blk.%d.ffn_down.weight" |
|
#define TN_FFN_UP "blk.%d.ffn_up.weight" |
|
|
|
#if defined(_MSC_VER) |
|
#pragma warning(disable: 4244 4267) |
|
#endif |
|
|
|
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u |
|
#define LLAMA_FILE_VERSION_GGJT_V3 3 |
|
|
|
#define TOKENIZER_NAME "llama" |
|
#define UNKNOWN_TOKEN_ID 0 |
|
#define BOS_TOKEN_ID 1 |
|
#define EOS_TOKEN_ID 2 |
|
|
|
|
|
typedef struct { |
|
int dim; |
|
int hidden_dim; |
|
int n_layers; |
|
int n_heads; |
|
int n_kv_heads; |
|
int vocab_size; |
|
int seq_len; |
|
} Config; |
|
|
|
struct TransformerWeights { |
|
|
|
std::vector<float> token_embedding_table; |
|
|
|
std::vector<float> rms_att_weight; |
|
std::vector<float> rms_ffn_weight; |
|
|
|
std::vector<float> wq; |
|
std::vector<float> wk; |
|
std::vector<float> wv; |
|
std::vector<float> wo; |
|
|
|
std::vector<float> w1; |
|
std::vector<float> w2; |
|
std::vector<float> w3; |
|
|
|
std::vector<float> rms_final_weight; |
|
|
|
|
|
|
|
|
|
std::vector<float> wcls; |
|
}; |
|
|
|
static void alloc_weights(TransformerWeights * w, const Config * p, bool shared_weights) { |
|
const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads; |
|
try { |
|
w->token_embedding_table.resize(p->vocab_size * p->dim); |
|
LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim); |
|
|
|
w->rms_att_weight.resize(p->n_layers * p->dim); |
|
LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim); |
|
|
|
w->rms_ffn_weight.resize(p->n_layers * p->dim); |
|
LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim); |
|
|
|
w->wq.resize(p->n_layers * p->dim * p->dim); |
|
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); |
|
|
|
w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries); |
|
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries); |
|
|
|
w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries); |
|
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries); |
|
|
|
w->wo.resize(p->n_layers * p->dim * p->dim); |
|
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); |
|
|
|
w->w1.resize(p->n_layers * p->hidden_dim * p->dim); |
|
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); |
|
|
|
w->w2.resize(p->n_layers * p->hidden_dim * p->dim); |
|
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim); |
|
|
|
w->w3.resize(p->n_layers * p->hidden_dim * p->dim); |
|
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); |
|
|
|
w->rms_final_weight.resize(p->dim); |
|
LOG_INF("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim); |
|
|
|
if (shared_weights) { |
|
w->wcls = {}; |
|
} else { |
|
w->wcls.resize(p->vocab_size * p->dim); |
|
LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim); |
|
} |
|
} |
|
catch (std::length_error &) { |
|
die("Invalid configuration. Failed to allocate memory for weights"); |
|
} |
|
} |
|
|
|
static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FILE * f, bool shared_weights) { |
|
if (fread(w->token_embedding_table.data(), sizeof(float), w->token_embedding_table.size(), f) != w->token_embedding_table.size()) return 1; |
|
if (fread(w->rms_att_weight.data(), sizeof(float), w->rms_att_weight.size(), f) != w->rms_att_weight.size()) return 1; |
|
if (fread(w->wq.data(), sizeof(float), w->wq.size(), f) != w->wq.size()) return 1; |
|
if (fread(w->wk.data(), sizeof(float), w->wk.size(), f) != w->wk.size()) return 1; |
|
if (fread(w->wv.data(), sizeof(float), w->wv.size(), f) != w->wv.size()) return 1; |
|
if (fread(w->wo.data(), sizeof(float), w->wo.size(), f) != w->wo.size()) return 1; |
|
if (fread(w->rms_ffn_weight.data(), sizeof(float), w->rms_ffn_weight.size(), f) != w->rms_ffn_weight.size()) return 1; |
|
if (fread(w->w1.data(), sizeof(float), w->w1.size(), f) != w->w1.size()) return 1; |
|
if (fread(w->w2.data(), sizeof(float), w->w2.size(), f) != w->w2.size()) return 1; |
|
if (fread(w->w3.data(), sizeof(float), w->w3.size(), f) != w->w3.size()) return 1; |
|
if (fread(w->rms_final_weight.data(), sizeof(float), w->rms_final_weight.size(), f) != w->rms_final_weight.size()) return 1; |
|
|
|
|
|
int head_size = p->dim / p->n_heads; |
|
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR); |
|
|
|
if (!shared_weights && fread(w->wcls.data(), sizeof(float), w->wcls.size(), f) != w->wcls.size()) return 1; |
|
|
|
|
|
auto curr = ftell(f); |
|
fseek(f, 0, SEEK_END); |
|
auto end = ftell(f); |
|
if (curr != end) { |
|
LOG_ERR("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", __func__, curr, end); |
|
return 1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void print_sample_weights(TransformerWeights *w){ |
|
LOG_INF("----- Quick print of first of the weight vales of all the variables\n"); |
|
LOG_INF("%f\n", w->token_embedding_table[0]); |
|
LOG_INF("%f\n", w->rms_att_weight[0]); |
|
LOG_INF("%f\n", w->rms_ffn_weight[0]); |
|
|
|
LOG_INF("%f\n", w->wq[0]); |
|
LOG_INF("%f\n", w->wk[0]); |
|
LOG_INF("%f\n", w->wv[0]); |
|
LOG_INF("%f\n", w->wo[0]); |
|
LOG_INF("%f\n", w->w1[0]); |
|
LOG_INF("%f\n", w->w2[0]); |
|
LOG_INF("%f\n", w->w3[0]); |
|
LOG_INF("%f\n", w->rms_att_weight[0]); |
|
if (!w->wcls.empty()) LOG_INF("%f\n", w->wcls[0]); |
|
} |
|
|
|
|
|
|
|
|
|
struct my_llama_vocab { |
|
using id = int32_t; |
|
using token = std::string; |
|
using ttype = llama_token_type; |
|
|
|
struct token_data { |
|
token text; |
|
float score; |
|
ttype type; |
|
}; |
|
|
|
std::unordered_map<token, id> token_to_id; |
|
std::vector<token_data> id_to_token; |
|
}; |
|
|
|
struct my_llama_hparams { |
|
uint32_t n_vocab = 32000; |
|
uint32_t n_ctx = 512; |
|
uint32_t n_embd = 4096; |
|
uint32_t n_ff = 11008; |
|
uint32_t n_mult = 4; |
|
uint32_t n_head = 32; |
|
uint32_t n_head_kv = 32; |
|
uint32_t n_layer = 32; |
|
uint32_t n_rot = 64; |
|
|
|
bool operator!=(const my_llama_hparams& other) const { |
|
return memcmp(this, &other, sizeof(my_llama_hparams)); |
|
} |
|
}; |
|
|
|
struct my_llama_layer { |
|
|
|
struct ggml_tensor * attention_norm; |
|
|
|
|
|
struct ggml_tensor * wq; |
|
struct ggml_tensor * wk; |
|
struct ggml_tensor * wv; |
|
struct ggml_tensor * wo; |
|
|
|
|
|
struct ggml_tensor * ffn_norm; |
|
|
|
|
|
struct ggml_tensor * w1; |
|
struct ggml_tensor * w2; |
|
struct ggml_tensor * w3; |
|
}; |
|
|
|
struct my_llama_model { |
|
struct ggml_context * ctx = NULL; |
|
|
|
std::string name; |
|
|
|
my_llama_hparams hparams; |
|
|
|
struct ggml_tensor * tok_embeddings; |
|
|
|
struct ggml_tensor * norm; |
|
struct ggml_tensor * output; |
|
|
|
std::vector<my_llama_layer> layers; |
|
|
|
uint32_t train_its = 0; |
|
uint32_t train_samples = 0; |
|
uint32_t train_tokens = 0; |
|
}; |
|
|
|
struct train_params { |
|
const char * fn_vocab_model; |
|
const char * fn_llama2c_model; |
|
const char * fn_llama2c_output_model; |
|
const char * fn_train_data; |
|
const char * fn_checkpoint_in; |
|
const char * fn_checkpoint_out; |
|
const char * fn_model_out; |
|
|
|
uint32_t seed; |
|
|
|
int n_ctx; |
|
int n_embd; |
|
int n_mult; |
|
int n_head; |
|
int n_layer; |
|
int n_rotmax; |
|
|
|
int n_threads; |
|
int n_batch; |
|
int n_examples; |
|
int n_predict; |
|
|
|
int print_info_interval; |
|
int print_details_interval; |
|
|
|
bool samples_start_after_nl; |
|
bool use_adam; |
|
bool use_flash; |
|
bool use_scratch; |
|
|
|
|
|
int warmup; |
|
int cos_decay_steps; |
|
float cos_decay_restart; |
|
float cos_decay_alpha; |
|
|
|
int lbfgs_n_iter; |
|
int adam_n_iter; |
|
float adam_alpha; |
|
float adam_decay; |
|
|
|
int mem_model_gb; |
|
int mem_compute_gb; |
|
int mem_compute0_gb; |
|
int mem_compute1_gb; |
|
}; |
|
|
|
static void print_params(struct my_llama_hparams * params) { |
|
LOG_INF("%s: n_vocab: %u\n", __func__, params->n_vocab); |
|
LOG_INF("%s: n_ctx: %u\n", __func__, params->n_ctx); |
|
LOG_INF("%s: n_embd: %u\n", __func__, params->n_embd); |
|
LOG_INF("%s: n_mult: %u\n", __func__, params->n_mult); |
|
LOG_INF("%s: n_head: %u\n", __func__, params->n_head); |
|
LOG_INF("%s: n_head_kv: %u\n", __func__, params->n_head_kv); |
|
LOG_INF("%s: n_ff: %u\n", __func__, params->n_ff); |
|
LOG_INF("%s: n_layer: %u\n", __func__, params->n_layer); |
|
LOG_INF("%s: n_rot: %u\n", __func__, params->n_rot); |
|
} |
|
|
|
static void print_tensor_info(const struct ggml_context * ctx) { |
|
for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
LOG_INF("%s: Allocating ", __func__); |
|
int64_t total = 1; |
|
int i = 0; |
|
for (; i < ggml_n_dims(t); ++i) { |
|
if (i > 0) LOG("x "); |
|
LOG("[%" PRId64 "] ", t->ne[i]); |
|
total *= t->ne[i]; |
|
} |
|
if (i > 1) LOG("= [%" PRId64 "] ", total); |
|
LOG("float space for %s\n", ggml_get_name(t)); |
|
} |
|
} |
|
|
|
static void init_model(struct my_llama_model * model) { |
|
const auto & hparams = model->hparams; |
|
|
|
const uint32_t n_embd = hparams.n_embd; |
|
const uint32_t n_layer = hparams.n_layer; |
|
const uint32_t n_vocab = hparams.n_vocab; |
|
|
|
const uint32_t n_multiqueries = hparams.n_head_kv <= 0 || hparams.n_head_kv >= hparams.n_head ? 1 : hparams.n_head / hparams.n_head_kv; |
|
|
|
const uint32_t n_ff = hparams.n_ff; |
|
struct ggml_context * ctx = model->ctx; |
|
|
|
model->train_its = 0; |
|
model->train_samples = 0; |
|
model->train_tokens = 0; |
|
|
|
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); |
|
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); |
|
|
|
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight"); |
|
ggml_set_name(model->norm, "norm.weight"); |
|
ggml_set_name(model->output, "output.weight"); |
|
|
|
model->layers.resize(n_layer); |
|
for (uint32_t i = 0; i < n_layer; ++i) { |
|
auto & layer = model->layers[i]; |
|
|
|
std::string layers_i = "layers." + std::to_string(i); |
|
|
|
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
|
|
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); |
|
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries); |
|
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries); |
|
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); |
|
|
|
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
|
|
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); |
|
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); |
|
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); |
|
|
|
ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str()); |
|
|
|
ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str()); |
|
ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str()); |
|
ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str()); |
|
ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str()); |
|
|
|
ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str()); |
|
|
|
ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str()); |
|
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str()); |
|
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str()); |
|
} |
|
|
|
print_tensor_info(ctx); |
|
} |
|
|
|
static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { |
|
float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); |
|
return *ptr; |
|
} |
|
|
|
static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { |
|
int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); |
|
return *ptr; |
|
} |
|
|
|
static void print_row(struct ggml_tensor * probs, int i) { |
|
for (int k = 0; k < probs->ne[0]; ++k) { |
|
float p = get_f32_2d(probs, k, i); |
|
LOG(" %f", p); |
|
} |
|
LOG("\n"); |
|
} |
|
|
|
static void print_matrix(struct ggml_tensor * probs) { |
|
assert(ggml_is_matrix(probs)); |
|
for (int i = 0; i < probs->ne[1]; ++i) { |
|
for (int k = 0; k < probs->ne[0]; ++k) { |
|
float p = get_f32_2d(probs, k, i); |
|
LOG(" %.2f", p); |
|
} |
|
LOG("\n"); |
|
} |
|
} |
|
|
|
struct my_llama_file { |
|
|
|
FILE * fp; |
|
size_t size; |
|
|
|
my_llama_file(const char * fname, const char * mode) { |
|
fp = std::fopen(fname, mode); |
|
if (fp == NULL) { |
|
size = 0; |
|
} else { |
|
seek(0, SEEK_END); |
|
size = tell(); |
|
seek(0, SEEK_SET); |
|
} |
|
} |
|
|
|
size_t tell() const { |
|
#ifdef _WIN32 |
|
__int64 ret = _ftelli64(fp); |
|
#else |
|
long ret = std::ftell(fp); |
|
#endif |
|
GGML_ASSERT(ret != -1); |
|
return (size_t) ret; |
|
} |
|
|
|
void seek(size_t offset, int whence) { |
|
#ifdef _WIN32 |
|
int ret = _fseeki64(fp, (__int64) offset, whence); |
|
#else |
|
int ret = std::fseek(fp, (long) offset, whence); |
|
#endif |
|
GGML_ASSERT(ret == 0); |
|
} |
|
|
|
void read_raw(void * ptr, size_t size) { |
|
if (size == 0) { |
|
return; |
|
} |
|
errno = 0; |
|
std::size_t ret = std::fread(ptr, size, 1, fp); |
|
if (ferror(fp)) { |
|
die_fmt("fread failed: %s", strerror(errno)); |
|
} |
|
if (ret != 1) { |
|
die("unexpectedly reached end of file"); |
|
} |
|
} |
|
|
|
std::uint32_t read_u32() { |
|
std::uint32_t ret; |
|
read_raw(&ret, sizeof(ret)); |
|
return ret; |
|
} |
|
std::float_t read_f32() { |
|
std::float_t ret; |
|
read_raw(&ret, sizeof(ret)); |
|
return ret; |
|
} |
|
|
|
std::string read_string(std::uint32_t len) { |
|
std::vector<char> chars(len); |
|
read_raw(chars.data(), len); |
|
return std::string(chars.data(), len); |
|
} |
|
|
|
~my_llama_file() { |
|
if (fp) { |
|
std::fclose(fp); |
|
} |
|
} |
|
}; |
|
|
|
static bool is_ggml_file(const char * filename) { |
|
my_llama_file file(filename, "rb"); |
|
if (file.size < 4) { |
|
return false; |
|
} |
|
std::string magic = file.read_string(4); |
|
return magic == GGUF_MAGIC; |
|
} |
|
|
|
static std::string llama_escape_whitespaces(const std::string & text) { |
|
std::ostringstream out; |
|
for (char c : text) { |
|
if (c == ' ') out << "\xe2\x96\x81"; |
|
else out << c; |
|
} |
|
return out.str(); |
|
} |
|
|
|
static void load_vocab(const char * filename, const Config * config, struct my_llama_vocab * vocab) { |
|
if (is_ggml_file(filename)) { |
|
LOG_INF("%s: Loading vocabulary from gguf file %s\n", __func__, filename); |
|
struct ggml_context * ctx_data = NULL; |
|
|
|
struct gguf_init_params params = { |
|
false, |
|
&ctx_data, |
|
}; |
|
|
|
struct gguf_context * ctx = gguf_init_from_file(filename, params); |
|
GGML_ASSERT(ctx != NULL); |
|
|
|
const int model_idx = gguf_find_key(ctx, KV_TOKENIZER_MODEL); |
|
GGML_ASSERT(model_idx >= 0); |
|
std::string tokenizer_name = gguf_get_val_str(ctx, model_idx); |
|
GGML_ASSERT(tokenizer_name == TOKENIZER_NAME); |
|
|
|
const int token_idx = gguf_find_key(ctx, KV_TOKENIZER_LIST); |
|
GGML_ASSERT(token_idx >= 0); |
|
|
|
const int score_idx = gguf_find_key(ctx, KV_TOKENIZER_SCORES); |
|
GGML_ASSERT(score_idx >= 0); |
|
const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx); |
|
|
|
const int toktype_idx = gguf_find_key(ctx, KV_TOKENIZER_TOKEN_TYPE); |
|
GGML_ASSERT(toktype_idx >= 0); |
|
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); |
|
|
|
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx); |
|
if (n_vocab != static_cast<uint32_t>(config->vocab_size)) { |
|
die_fmt("vocab size mismatch: (gguf) %u != (llama2c) %d", n_vocab, config->vocab_size); |
|
} |
|
|
|
vocab->id_to_token.resize(n_vocab); |
|
|
|
for (uint32_t i = 0; i < n_vocab; i++) { |
|
std::string word = gguf_get_arr_str(ctx, token_idx, i); |
|
|
|
vocab->token_to_id[word] = i; |
|
|
|
auto & token_data = vocab->id_to_token[i]; |
|
token_data.text = std::move(word); |
|
token_data.score = scores[i]; |
|
token_data.type = (llama_token_type) toktypes[i]; |
|
} |
|
ggml_free(ctx_data); |
|
gguf_free(ctx); |
|
} else { |
|
|
|
LOG_INF("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename); |
|
my_llama_file file(filename, "rb"); |
|
if (!file.fp) { |
|
die_fmt("%s: %s", strerror(errno), filename); |
|
} |
|
const int n_vocab = config->vocab_size; |
|
file.read_u32(); |
|
vocab->id_to_token.resize(n_vocab); |
|
for (my_llama_vocab::id id=0; id<n_vocab; ++id) { |
|
float_t score = file.read_f32(); |
|
uint32_t len = file.read_u32(); |
|
std::string text = file.read_string(len); |
|
|
|
unsigned char byte_val; |
|
my_llama_vocab::ttype type = LLAMA_TOKEN_TYPE_NORMAL; |
|
if (id == UNKNOWN_TOKEN_ID) { |
|
text = "<unk>"; |
|
type = LLAMA_TOKEN_TYPE_UNKNOWN; |
|
} else if (id == BOS_TOKEN_ID) { |
|
text = "<s>"; |
|
type = LLAMA_TOKEN_TYPE_CONTROL; |
|
} else if (id == EOS_TOKEN_ID) { |
|
text = "</s>"; |
|
type = LLAMA_TOKEN_TYPE_CONTROL; |
|
} else if (text.empty()) { |
|
type = LLAMA_TOKEN_TYPE_CONTROL; |
|
} else if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) { |
|
|
|
type = LLAMA_TOKEN_TYPE_BYTE; |
|
} else { |
|
type = LLAMA_TOKEN_TYPE_NORMAL; |
|
} |
|
text = llama_escape_whitespaces(text); |
|
|
|
vocab->id_to_token[id].text = text; |
|
vocab->id_to_token[id].score = score; |
|
vocab->id_to_token[id].type = type; |
|
vocab->token_to_id.emplace(text, id); |
|
} |
|
} |
|
} |
|
|
|
static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) { |
|
int size = 1; |
|
for (int dim = 0; dim < ggml_n_dims(gg_weights); ++dim) { |
|
size *= gg_weights->ne[dim]; |
|
} |
|
for (int ct = 0; ct < size; ++ct) { |
|
int64_t i0 = 0; int64_t i1 = 0; |
|
int64_t i2 = 0; int64_t i3 = 0; |
|
ggml_unravel_index(gg_weights, ct, &i0, &i1, &i2, &i3); |
|
ggml_set_f32_nd(gg_weights, i0, i1, i2, i3, karpathy_weights[ct]); |
|
} |
|
} |
|
|
|
static void save_as_llama_model( |
|
struct my_llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename |
|
) { |
|
|
|
|
|
|
|
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table.data()); |
|
convert_weights_ak_to_gg(model->output, !w->wcls.empty() ? w->wcls.data() : w->token_embedding_table.data()); |
|
|
|
convert_weights_ak_to_gg(model->norm, w->rms_final_weight.data()); |
|
|
|
|
|
|
|
int row_length = model->hparams.n_embd; |
|
int n_ff = model->hparams.n_ff; |
|
|
|
const uint32_t n_multiqueries = model->hparams.n_head_kv <= 0 || model->hparams.n_head_kv >= model->hparams.n_head ? 1 : model->hparams.n_head / model->hparams.n_head_kv; |
|
|
|
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){ |
|
auto & layer = model->layers[i]; |
|
|
|
convert_weights_ak_to_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]); |
|
convert_weights_ak_to_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]); |
|
|
|
|
|
convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]); |
|
convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]); |
|
|
|
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length/n_multiqueries]); |
|
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length/n_multiqueries]); |
|
|
|
convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]); |
|
convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]); |
|
convert_weights_ak_to_gg(layer.w3 , &w->w3[i*row_length*n_ff]); |
|
} |
|
|
|
struct gguf_context * ctx = gguf_init_empty(); |
|
|
|
std::vector<const char*> tokens; |
|
std::vector<float> scores; |
|
std::vector<llama_token_type> token_types; |
|
for (const my_llama_vocab::token_data & token_data : vocab->id_to_token) { |
|
tokens.push_back(token_data.text.c_str()); |
|
scores.push_back(token_data.score); |
|
token_types.push_back(token_data.type); |
|
} |
|
gguf_set_arr_str(ctx, KV_TOKENIZER_LIST, tokens.data(), tokens.size()); |
|
gguf_set_arr_data(ctx, KV_TOKENIZER_SCORES, GGUF_TYPE_FLOAT32, scores.data(), scores.size()); |
|
gguf_set_arr_data(ctx, KV_TOKENIZER_TOKEN_TYPE, GGUF_TYPE_INT32, token_types.data(), token_types.size()); |
|
|
|
gguf_set_val_str(ctx, KV_TOKENIZER_MODEL, TOKENIZER_NAME); |
|
|
|
gguf_set_val_str(ctx, KV_GENERAL_ARCHITECTURE, "llama"); |
|
gguf_set_val_str(ctx, KV_GENERAL_NAME, "llama"); |
|
|
|
|
|
gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID); |
|
gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID); |
|
gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID); |
|
gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, LLAMA_TOKEN_NULL); |
|
gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, LLAMA_TOKEN_NULL); |
|
|
|
gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx); |
|
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd); |
|
gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff); |
|
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head); |
|
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head); |
|
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, model->hparams.n_head_kv); |
|
gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer); |
|
gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot); |
|
gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f); |
|
|
|
|
|
ggml_set_name(model->tok_embeddings, TN_TOKEN_EMBD); |
|
gguf_add_tensor(ctx, model->tok_embeddings); |
|
|
|
ggml_set_name(model->norm, TN_OUTPUT_NORM); |
|
gguf_add_tensor(ctx, model->norm); |
|
|
|
ggml_set_name(model->output, TN_OUTPUT); |
|
gguf_add_tensor(ctx, model->output); |
|
|
|
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { |
|
auto & layer = model->layers[i]; |
|
|
|
ggml_format_name(layer.wq, TN_ATTN_Q, i); |
|
gguf_add_tensor(ctx, layer.wq); |
|
|
|
ggml_format_name(layer.wk, TN_ATTN_K, i); |
|
gguf_add_tensor(ctx, layer.wk); |
|
|
|
ggml_format_name(layer.wv, TN_ATTN_V, i); |
|
gguf_add_tensor(ctx, layer.wv); |
|
|
|
ggml_format_name(layer.wo, TN_ATTN_OUTPUT, i); |
|
gguf_add_tensor(ctx, layer.wo); |
|
|
|
ggml_format_name(layer.attention_norm, TN_ATTN_NORM, i); |
|
gguf_add_tensor(ctx, layer.attention_norm); |
|
|
|
ggml_format_name(layer.w1, TN_FFN_GATE, i); |
|
gguf_add_tensor(ctx, layer.w1); |
|
|
|
ggml_format_name(layer.w2, TN_FFN_DOWN, i); |
|
gguf_add_tensor(ctx, layer.w2); |
|
|
|
ggml_format_name(layer.w3, TN_FFN_UP, i); |
|
gguf_add_tensor(ctx, layer.w3); |
|
|
|
ggml_format_name(layer.ffn_norm, TN_FFN_NORM, i); |
|
gguf_add_tensor(ctx, layer.ffn_norm); |
|
} |
|
|
|
gguf_write_to_file(ctx, filename, false); |
|
gguf_free(ctx); |
|
} |
|
|
|
static struct train_params get_default_train_params() { |
|
struct train_params params; |
|
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf"; |
|
params.fn_llama2c_output_model = "ak_llama_model.bin"; |
|
params.fn_train_data = "shakespeare.txt"; |
|
params.fn_checkpoint_in = "checkpoint.bin"; |
|
params.fn_checkpoint_out = "checkpoint.bin"; |
|
params.fn_model_out = "ggml-checkpoint-f32.bin"; |
|
|
|
params.seed = -1; |
|
|
|
params.n_ctx = 128; |
|
params.n_embd = 256; |
|
params.n_mult = 256; |
|
params.n_head = 8; |
|
params.n_layer = 16; |
|
params.n_rotmax = 64; |
|
|
|
params.n_threads = 6; |
|
params.n_batch = 8; |
|
params.n_examples = 8; |
|
params.n_predict = 1024; |
|
|
|
params.print_info_interval = 1; |
|
params.print_details_interval = 2; |
|
|
|
params.samples_start_after_nl = false; |
|
params.use_adam = true; |
|
params.use_flash = false; |
|
params.use_scratch = true; |
|
|
|
|
|
params.warmup = 100; |
|
params.cos_decay_steps = 1000; |
|
params.cos_decay_restart = 1.1f; |
|
params.cos_decay_alpha = 0.0f; |
|
|
|
params.lbfgs_n_iter = 16; |
|
params.adam_n_iter = 16; |
|
params.adam_alpha = 1e-3f; |
|
params.adam_decay = 1e-3f; |
|
|
|
params.mem_model_gb = 2; |
|
params.mem_compute_gb = 24; |
|
params.mem_compute0_gb = 8; |
|
params.mem_compute1_gb = 2; |
|
|
|
return params; |
|
} |
|
|
|
static void print_usage(int , char ** argv, const struct train_params * params) { |
|
fprintf(stderr, "usage: %s [options]\n", argv[0]); |
|
fprintf(stderr, "\n"); |
|
fprintf(stderr, "options:\n"); |
|
fprintf(stderr, " -h, --help show this help message and exit\n"); |
|
fprintf(stderr, " --copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default '%s')\n", params->fn_vocab_model); |
|
fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n"); |
|
fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model); |
|
fprintf(stderr, "\n"); |
|
} |
|
|
|
static bool params_parse(int argc, char ** argv, struct train_params * params) { |
|
bool invalid_param = false; |
|
bool reqd_param_found = false; |
|
std::string arg; |
|
struct train_params default_params = get_default_train_params(); |
|
const std::string arg_prefix = "--"; |
|
|
|
for (int i = 1; i < argc; i++) { |
|
arg = argv[i]; |
|
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { |
|
std::replace(arg.begin(), arg.end(), '_', '-'); |
|
} |
|
|
|
if (arg == "--copy-vocab-from-model") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
params->fn_vocab_model = argv[i]; |
|
} else if (arg == "--llama2c-model") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
reqd_param_found = true; |
|
params->fn_llama2c_model = argv[i]; |
|
} else if (arg == "--llama2c-output-model") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
params->fn_llama2c_output_model = argv[i]; |
|
} else if (arg == "-h" || arg == "--help") { |
|
print_usage(argc, argv, &default_params); |
|
exit(0); |
|
} else { |
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); |
|
print_usage(argc, argv, &default_params); |
|
exit(1); |
|
} |
|
} |
|
if (invalid_param) { |
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); |
|
print_usage(argc, argv, &default_params); |
|
exit(1); |
|
} |
|
if (!reqd_param_found){ |
|
fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n"); |
|
print_usage(argc, argv, &default_params); |
|
exit(1); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static std::string basename(const std::string &path) { |
|
size_t pos = path.find_last_of("/\\"); |
|
if (pos == std::string::npos) { |
|
return path; |
|
} |
|
return path.substr(pos + 1); |
|
} |
|
|
|
int main(int argc, char ** argv) { |
|
common_init(); |
|
|
|
struct train_params params = get_default_train_params(); |
|
if (!params_parse(argc, argv, ¶ms)) { |
|
return 1; |
|
} |
|
|
|
Config config; |
|
TransformerWeights weights = {}; |
|
{ |
|
LOG_INF("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model); |
|
FILE * file = fopen(params.fn_llama2c_model, "rb"); |
|
if (!file) { |
|
LOG_ERR("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model); |
|
return 1; |
|
} |
|
|
|
if (fread(&config, sizeof(Config), 1, file) != 1) { |
|
LOG_ERR("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model); |
|
return 1; |
|
} |
|
auto shared_weights = config.vocab_size > 0; |
|
config.vocab_size = abs(config.vocab_size); |
|
|
|
|
|
alloc_weights(&weights, &config, shared_weights); |
|
if (checkpoint_init_weights(&weights, &config, file, shared_weights)) { |
|
LOG_ERR("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model); |
|
return 1; |
|
} |
|
fclose(file); |
|
} |
|
|
|
struct my_llama_vocab vocab; |
|
load_vocab(params.fn_vocab_model, &config, &vocab); |
|
|
|
struct my_llama_model model; |
|
model.hparams.n_vocab = config.vocab_size; |
|
model.hparams.n_ctx = params.n_ctx; |
|
model.hparams.n_embd = config.dim; |
|
model.hparams.n_ff = config.hidden_dim; |
|
model.hparams.n_mult = 32; |
|
model.hparams.n_head = config.n_heads; |
|
model.hparams.n_head_kv = config.n_kv_heads; |
|
model.hparams.n_layer = config.n_layers; |
|
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head); |
|
|
|
print_params(&model.hparams); |
|
|
|
struct ggml_init_params lcparams; |
|
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb); |
|
lcparams.mem_buffer = NULL; |
|
lcparams.no_alloc = false; |
|
|
|
model.ctx = ggml_init(lcparams); |
|
|
|
init_model(&model); |
|
model.name = basename(params.fn_llama2c_model); |
|
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model); |
|
|
|
LOG_INF("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model); |
|
|
|
ggml_free(model.ctx); |
|
return 0; |
|
} |
|
|