|
#include <algorithm> |
|
#include <cstdint> |
|
|
|
#include "argmax.cuh" |
|
#include "common.cuh" |
|
#include "sum.cuh" |
|
|
|
static __global__ void argmax_f32(const float * __restrict__ x, int32_t * __restrict__ dst, const int64_t ncols) { |
|
const int64_t row = blockIdx.x; |
|
|
|
float maxval = -FLT_MAX; |
|
int argmax = -1; |
|
const float * rowx = x + row * ncols; |
|
|
|
for (int32_t col = threadIdx.x; col < ncols; col += blockDim.x) { |
|
const float val = rowx[col]; |
|
if (val > maxval) { |
|
maxval = val; |
|
argmax = col; |
|
} |
|
} |
|
|
|
#pragma unroll |
|
for (int offset = 16; offset > 0; offset >>= 1) { |
|
const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, offset, WARP_SIZE); |
|
const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, offset, WARP_SIZE); |
|
if (val > maxval) { |
|
maxval = val; |
|
argmax = col; |
|
} |
|
} |
|
|
|
const int n_warps = blockDim.x / WARP_SIZE; |
|
const int lane_id = threadIdx.x % WARP_SIZE; |
|
const int warp_id = threadIdx.x / WARP_SIZE; |
|
if (n_warps > 1) { |
|
constexpr int max_warps = 1024 / WARP_SIZE; |
|
__shared__ float shared_maxval[max_warps]; |
|
__shared__ int shared_argmax[max_warps]; |
|
if (lane_id == 0) { |
|
shared_maxval[warp_id] = maxval; |
|
shared_argmax[warp_id] = argmax; |
|
} |
|
|
|
__syncthreads(); |
|
|
|
if (warp_id == 0) { |
|
if (lane_id < n_warps) { |
|
maxval = shared_maxval[lane_id]; |
|
argmax = shared_argmax[lane_id]; |
|
} |
|
#pragma unroll |
|
for (int offset = 16; offset > 0; offset >>= 1) { |
|
const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, offset, WARP_SIZE); |
|
const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, offset, WARP_SIZE); |
|
if (val > maxval) { |
|
maxval = val; |
|
argmax = col; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (warp_id == 0 && lane_id == 0) { |
|
dst[row] = argmax; |
|
} |
|
} |
|
|
|
void ggml_cuda_argmax(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { |
|
const ggml_tensor * src0 = dst->src[0]; |
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32); |
|
GGML_ASSERT( dst->type == GGML_TYPE_I32); |
|
|
|
GGML_ASSERT(ggml_is_contiguous(src0)); |
|
|
|
const int64_t ne00 = src0->ne[0]; |
|
const int64_t nrows = ggml_nrows(src0); |
|
|
|
const float * src0_d = (const float *) src0->data; |
|
int32_t * dst_d = (int32_t *) dst->data; |
|
|
|
cudaStream_t stream = ctx.stream(); |
|
|
|
const int64_t num_blocks = nrows; |
|
const int64_t num_threads = std::min<int64_t>(1024, (ne00 + WARP_SIZE - 1) / WARP_SIZE * WARP_SIZE); |
|
const dim3 blocks_dim(num_threads, 1, 1); |
|
const dim3 blocks_num(num_blocks, 1, 1); |
|
|
|
argmax_f32<<<blocks_num, blocks_dim, 0, stream>>>(src0_d, dst_d, ne00); |
|
} |
|
|