|
#include "common.cuh" |
|
#include "fattn-common.cuh" |
|
#include "fattn-tile-f32.cuh" |
|
|
|
#define FATTN_KQ_STRIDE_TILE_F32 32 |
|
|
|
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> |
|
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) |
|
__launch_bounds__(nwarps*WARP_SIZE, 1) |
|
#endif |
|
static __global__ void flash_attn_tile_ext_f32( |
|
const char * __restrict__ Q, |
|
const char * __restrict__ K, |
|
const char * __restrict__ V, |
|
const char * __restrict__ mask, |
|
float * __restrict__ dst, |
|
float2 * __restrict__ dst_meta, |
|
const float scale, |
|
const float max_bias, |
|
const float m0, |
|
const float m1, |
|
const uint32_t n_head_log2, |
|
const float logit_softcap, |
|
const int ne00, |
|
const int ne01, |
|
const int ne02, |
|
const int ne03, |
|
const int ne10, |
|
const int ne11, |
|
const int ne12, |
|
const int ne13, |
|
const int ne31, |
|
const int nb31, |
|
const int nb01, |
|
const int nb02, |
|
const int nb03, |
|
const int nb11, |
|
const int nb12, |
|
const int nb13, |
|
const int nb21, |
|
const int nb22, |
|
const int nb23, |
|
const int ne0, |
|
const int ne1, |
|
const int ne2, |
|
const int ne3) { |
|
#ifndef FLASH_ATTN_AVAILABLE |
|
NO_DEVICE_CODE; |
|
return; |
|
#endif |
|
|
|
|
|
#ifdef FP16_MMA_AVAILABLE |
|
NO_DEVICE_CODE; |
|
return; |
|
#endif |
|
if (use_logit_softcap && !(D == 128 || D == 256)) { |
|
NO_DEVICE_CODE; |
|
return; |
|
} |
|
|
|
|
|
|
|
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; |
|
const int ip = blockIdx.x % parallel_blocks; |
|
|
|
const int gqa_ratio = ne02 / ne12; |
|
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0); |
|
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio)); |
|
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); |
|
const half * maskh = (const half *) mask + ne11*ic0; |
|
|
|
const int stride_KV2 = nb11 / sizeof(half2); |
|
|
|
const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1); |
|
|
|
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); |
|
|
|
__shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32]; |
|
|
|
__shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1]; |
|
float2 * KV_tmp2 = (float2 *) KV_tmp; |
|
|
|
float kqmax[ncols/nwarps]; |
|
#pragma unroll |
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) { |
|
kqmax[j0/nwarps] = -FLT_MAX/2.0f; |
|
} |
|
float kqsum[ncols/nwarps] = {0.0f}; |
|
|
|
float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}}; |
|
|
|
|
|
__shared__ float Q_f[ncols][D]; |
|
#pragma unroll |
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) { |
|
const int j = j0 + threadIdx.y; |
|
|
|
#pragma unroll |
|
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) { |
|
float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f); |
|
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale; |
|
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale; |
|
} |
|
} |
|
|
|
__syncthreads(); |
|
|
|
const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F32; |
|
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F32) { |
|
|
|
|
|
float kqmax_new[ncols/nwarps]; |
|
#pragma unroll |
|
for (int j = 0; j < ncols/nwarps; ++j) { |
|
kqmax_new[j] = kqmax[j]; |
|
} |
|
|
|
#pragma unroll |
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += nwarps) { |
|
const int i_KQ = i_KQ_0 + threadIdx.y; |
|
|
|
#pragma unroll |
|
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) { |
|
const half2 tmp = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x]; |
|
KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp); |
|
KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp); |
|
} |
|
} |
|
|
|
__syncthreads(); |
|
|
|
float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}}; |
|
|
|
#pragma unroll |
|
for (int k_KQ = 0; k_KQ < D; ++k_KQ) { |
|
float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE]; |
|
float Q_k[ncols/nwarps]; |
|
|
|
#pragma unroll |
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) { |
|
const int i_KQ = i_KQ_0 + threadIdx.x; |
|
|
|
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ]; |
|
} |
|
#pragma unroll |
|
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { |
|
const int j_KQ = j_KQ_0 + threadIdx.y; |
|
|
|
Q_k[j_KQ_0/nwarps] = Q_f[j_KQ][k_KQ]; |
|
} |
|
|
|
#pragma unroll |
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) { |
|
#pragma unroll |
|
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { |
|
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE] * Q_k[j_KQ_0/nwarps]; |
|
} |
|
} |
|
} |
|
|
|
#pragma unroll |
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) { |
|
const int i_KQ = i_KQ_0 + threadIdx.x; |
|
|
|
#pragma unroll |
|
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { |
|
const int j_KQ = j_KQ_0 + threadIdx.y; |
|
|
|
if (use_logit_softcap) { |
|
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] = logit_softcap * tanhf(sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]); |
|
} |
|
|
|
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f; |
|
|
|
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]); |
|
|
|
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F32 + i_KQ] = sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]; |
|
} |
|
} |
|
|
|
__syncthreads(); |
|
|
|
#pragma unroll |
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) { |
|
const int j = j0 + threadIdx.y; |
|
|
|
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]); |
|
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]); |
|
kqmax[j0/nwarps] = kqmax_new[j0/nwarps]; |
|
|
|
float kqsum_add = 0.0f; |
|
#pragma unroll |
|
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F32; i0 += WARP_SIZE) { |
|
const int i = i0 + threadIdx.x; |
|
|
|
const float diff = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] - kqmax[j0/nwarps]; |
|
const float val = expf(diff); |
|
kqsum_add += val; |
|
KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] = val; |
|
} |
|
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add; |
|
|
|
#pragma unroll |
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { |
|
VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale; |
|
VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale; |
|
} |
|
} |
|
|
|
__syncthreads(); |
|
|
|
#pragma unroll |
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F32; k0 += nwarps) { |
|
const int k = k0 + threadIdx.y; |
|
|
|
#pragma unroll |
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { |
|
const int i = i0 + threadIdx.x; |
|
|
|
KV_tmp2[k*(D/2) + i].x = __low2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]); |
|
KV_tmp2[k*(D/2) + i].y = __high2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]); |
|
} |
|
} |
|
|
|
__syncthreads(); |
|
|
|
#pragma unroll |
|
for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) { |
|
float2 V_k[(D/2)/WARP_SIZE]; |
|
float KQ_k[ncols/nwarps]; |
|
|
|
#pragma unroll |
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { |
|
const int i = i0 + threadIdx.x; |
|
|
|
V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i]; |
|
} |
|
#pragma unroll |
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) { |
|
const int j = j0 + threadIdx.y; |
|
|
|
KQ_k[j0/nwarps] = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + k]; |
|
} |
|
|
|
#pragma unroll |
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { |
|
#pragma unroll |
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) { |
|
VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps]; |
|
VKQ[j0/nwarps][i0/WARP_SIZE].y += V_k[i0/WARP_SIZE].y*KQ_k[j0/nwarps]; |
|
} |
|
} |
|
} |
|
|
|
__syncthreads(); |
|
} |
|
|
|
#pragma unroll |
|
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) { |
|
const int j_VKQ = j_VKQ_0 + threadIdx.y; |
|
|
|
if (ic0 + j_VKQ >= ne01) { |
|
return; |
|
} |
|
|
|
float kqsum_j = kqsum[j_VKQ_0/nwarps]; |
|
kqsum_j = warp_reduce_sum(kqsum_j); |
|
|
|
#pragma unroll |
|
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) { |
|
const int i0 = i00 + 2*threadIdx.x; |
|
|
|
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)]; |
|
if (parallel_blocks == 1) { |
|
dst_val.x /= kqsum_j; |
|
dst_val.y /= kqsum_j; |
|
} |
|
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; |
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = dst_val.x; |
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = dst_val.y; |
|
} |
|
|
|
if (parallel_blocks != 1 && threadIdx.x == 0) { |
|
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j); |
|
} |
|
} |
|
} |
|
|
|
template <int cols_per_block, int parallel_blocks, bool use_logit_softcap> |
|
void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { |
|
const ggml_tensor * Q = dst->src[0]; |
|
switch (Q->ne[0]) { |
|
case 64: { |
|
constexpr int D = 64; |
|
constexpr int nwarps = 8; |
|
constexpr size_t nbytes_shared = 0; |
|
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>; |
|
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, true, true); |
|
} break; |
|
case 128: { |
|
constexpr int D = 128; |
|
constexpr int nwarps = 8; |
|
constexpr size_t nbytes_shared = 0; |
|
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>; |
|
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, true, true); |
|
} break; |
|
default: { |
|
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128."); |
|
} break; |
|
} |
|
} |
|
|
|
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { |
|
const ggml_tensor * KQV = dst; |
|
const ggml_tensor * Q = dst->src[0]; |
|
|
|
float logit_softcap; |
|
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float)); |
|
|
|
if (Q->ne[1] <= 16) { |
|
constexpr int cols_per_block = 16; |
|
constexpr int parallel_blocks = 4; |
|
if (logit_softcap == 0.0f) { |
|
constexpr bool use_logit_softcap = false; |
|
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); |
|
} else { |
|
constexpr bool use_logit_softcap = true; |
|
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); |
|
} |
|
return; |
|
} |
|
|
|
if (Q->ne[1] <= 32) { |
|
constexpr int cols_per_block = 32; |
|
constexpr int parallel_blocks = 4; |
|
if (logit_softcap == 0.0f) { |
|
constexpr bool use_logit_softcap = false; |
|
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); |
|
} else { |
|
constexpr bool use_logit_softcap = true; |
|
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); |
|
} |
|
return; |
|
} |
|
|
|
constexpr int cols_per_block = 32; |
|
constexpr int parallel_blocks = 1; |
|
if (logit_softcap == 0.0f) { |
|
constexpr bool use_logit_softcap = false; |
|
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); |
|
} else { |
|
constexpr bool use_logit_softcap = true; |
|
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); |
|
} |
|
} |
|
|