|
#include "ggml-impl.h" |
|
#include "ggml-backend.h" |
|
#include "ggml-backend-impl.h" |
|
#include "ggml-kompute.h" |
|
|
|
|
|
#include "shaderop_scale.h" |
|
#include "shaderop_scale_8.h" |
|
#include "shaderop_add.h" |
|
#include "shaderop_addrow.h" |
|
#include "shaderop_mul.h" |
|
#include "shaderop_silu.h" |
|
#include "shaderop_relu.h" |
|
#include "shaderop_gelu.h" |
|
#include "shaderop_softmax.h" |
|
#include "shaderop_norm.h" |
|
#include "shaderop_rmsnorm.h" |
|
#include "shaderop_diagmask.h" |
|
#include "shaderop_mul_mat_f16.h" |
|
#include "shaderop_mul_mat_q8_0.h" |
|
#include "shaderop_mul_mat_q4_0.h" |
|
#include "shaderop_mul_mat_q4_1.h" |
|
#include "shaderop_mul_mat_q4_k.h" |
|
#include "shaderop_mul_mat_q6_k.h" |
|
#include "shaderop_mul_mat_mat_f32.h" |
|
#include "shaderop_getrows_f32.h" |
|
#include "shaderop_getrows_f16.h" |
|
#include "shaderop_getrows_q4_0.h" |
|
#include "shaderop_getrows_q4_1.h" |
|
#include "shaderop_getrows_q6_k.h" |
|
#include "shaderop_rope_norm_f16.h" |
|
#include "shaderop_rope_norm_f32.h" |
|
#include "shaderop_rope_neox_f16.h" |
|
#include "shaderop_rope_neox_f32.h" |
|
#include "shaderop_cpy_f16_f16.h" |
|
#include "shaderop_cpy_f16_f32.h" |
|
#include "shaderop_cpy_f32_f16.h" |
|
#include "shaderop_cpy_f32_f32.h" |
|
|
|
#include <algorithm> |
|
#include <array> |
|
#include <cassert> |
|
#include <cstdint> |
|
#include <cstdio> |
|
#include <cstring> |
|
#include <iostream> |
|
#include <memory> |
|
#include <mutex> |
|
#include <stdexcept> |
|
#include <string> |
|
#include <unordered_map> |
|
#include <utility> |
|
#include <vector> |
|
|
|
#include <kompute/Kompute.hpp> |
|
#include <vulkan/vulkan.hpp> |
|
|
|
#ifdef __linux__ |
|
#include <cstdlib> |
|
#endif |
|
|
|
#define QK4_0 32 |
|
#define QR4_0 2 |
|
#define QK4_1 32 |
|
#define QK_NL 16 |
|
|
|
typedef ggml_fp16_t half; |
|
|
|
static std::string ggml_kompute_format_name(int device) { |
|
return "Kompute" + std::to_string(device); |
|
} |
|
|
|
struct ggml_kompute_context { |
|
int device; |
|
std::string name; |
|
std::shared_ptr<vk::DescriptorPool> pool; |
|
|
|
ggml_kompute_context(int device) |
|
: device(device), name(ggml_kompute_format_name(device)) {} |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
static ggml_kompute_context *s_kompute_context = nullptr; |
|
|
|
class kompute_manager { |
|
kp::Manager *s_mgr = nullptr; |
|
|
|
public: |
|
kp::Manager *operator()() { |
|
if (s_mgr && !s_mgr->hasInstance()) { |
|
destroy(); |
|
} |
|
if (!s_mgr) { |
|
s_mgr = new kp::Manager; |
|
} |
|
return s_mgr; |
|
} |
|
|
|
void destroy() { |
|
delete s_mgr; |
|
s_mgr = nullptr; |
|
} |
|
}; |
|
|
|
static kompute_manager komputeManager; |
|
|
|
struct ggml_vk_memory { |
|
void *data = nullptr; |
|
size_t size = 0; |
|
vk::DeviceMemory *primaryMemory = nullptr; |
|
vk::Buffer *primaryBuffer = nullptr; |
|
vk::DeviceMemory *stagingMemory = nullptr; |
|
vk::Buffer *stagingBuffer = nullptr; |
|
}; |
|
|
|
#ifdef __linux__ |
|
__attribute__((constructor)) |
|
static void enable_sam() { |
|
setenv("RADV_PERFTEST", "sam", false); |
|
} |
|
#endif |
|
|
|
static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) { |
|
vk::PhysicalDeviceFeatures availableFeatures; |
|
physical_device.getFeatures(&availableFeatures); |
|
|
|
if (!availableFeatures.shaderInt16) |
|
return false; |
|
|
|
vk::PhysicalDeviceVulkan11Features availableFeatures11; |
|
vk::PhysicalDeviceVulkan12Features availableFeatures12; |
|
|
|
availableFeatures11.pNext = &availableFeatures12; |
|
availableFeatures12.pNext = nullptr; |
|
|
|
vk::PhysicalDeviceFeatures2 features2; |
|
features2.pNext = &availableFeatures11; |
|
|
|
physical_device.getFeatures2(&features2); |
|
|
|
if (!availableFeatures11.uniformAndStorageBuffer16BitAccess || |
|
!availableFeatures11.storageBuffer16BitAccess) { |
|
return false; |
|
} |
|
|
|
if (!availableFeatures12.storageBuffer8BitAccess || |
|
!availableFeatures12.uniformAndStorageBuffer8BitAccess || |
|
!availableFeatures12.shaderFloat16 || |
|
!availableFeatures12.shaderInt8) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static const char * ggml_vk_getVendorName(uint32_t vendorID) { |
|
switch (vendorID) { |
|
case 0x10DE: |
|
return "nvidia"; |
|
case 0x1002: |
|
return "amd"; |
|
case 0x8086: |
|
return "intel"; |
|
default: |
|
return "unknown"; |
|
} |
|
} |
|
|
|
static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t memoryRequired) { |
|
std::vector<ggml_vk_device> results; |
|
if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance()) |
|
return results; |
|
|
|
std::vector<vk::PhysicalDevice> physical_devices; |
|
try { |
|
physical_devices = komputeManager()->listDevices(); |
|
} catch (vk::SystemError & err) { |
|
std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n"; |
|
return results; |
|
} |
|
|
|
uint32_t deviceCount = physical_devices.size(); |
|
if (deviceCount == 0) |
|
return results; |
|
|
|
std::unordered_map<std::string, size_t> count_by_name; |
|
|
|
for (uint32_t i = 0; i < deviceCount; i++) { |
|
const auto & physical_device = physical_devices[i]; |
|
|
|
VkPhysicalDeviceProperties dev_props = physical_device.getProperties(); |
|
VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties(); |
|
const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion); |
|
const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion); |
|
if (major < 1 || minor < 2) |
|
continue; |
|
|
|
if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device)) |
|
continue; |
|
|
|
size_t heapSize = 0; |
|
for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) { |
|
VkMemoryHeap heap = memoryProperties.memoryHeaps[j]; |
|
if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) { |
|
heapSize = heap.size; |
|
break; |
|
} |
|
} |
|
|
|
if (heapSize < memoryRequired) |
|
continue; |
|
|
|
auto ext_props = physical_device.enumerateDeviceExtensionProperties(); |
|
bool has_maintenance4 = false; |
|
|
|
|
|
for (const auto & properties : ext_props) { |
|
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) { |
|
has_maintenance4 = true; |
|
} |
|
} |
|
|
|
vk::PhysicalDeviceSubgroupProperties subgroup_props; |
|
vk::PhysicalDeviceProperties2 dev_props2; |
|
vk::PhysicalDeviceMaintenance3Properties dev_props3; |
|
vk::PhysicalDeviceMaintenance4Properties dev_props4; |
|
dev_props2.pNext = &dev_props3; |
|
dev_props3.pNext = &subgroup_props; |
|
if (has_maintenance4) { |
|
subgroup_props.pNext = &dev_props4; |
|
} |
|
physical_device.getProperties2(&dev_props2); |
|
|
|
if (subgroup_props.subgroupSize < 32) |
|
continue; |
|
|
|
ggml_vk_device d; |
|
d.index = i; |
|
d.type = dev_props.deviceType; |
|
d.heapSize = heapSize; |
|
d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID)); |
|
d.subgroupSize = subgroup_props.subgroupSize; |
|
d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment; |
|
|
|
if (has_maintenance4) { |
|
d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize); |
|
} else { |
|
d.maxAlloc = dev_props3.maxMemoryAllocationSize; |
|
} |
|
|
|
std::string name(dev_props.deviceName); |
|
size_t n_idx = ++count_by_name[name]; |
|
if (n_idx > 1) { |
|
name += " (" + std::to_string(n_idx) + ")"; |
|
} |
|
d.name = strdup(name.c_str()); |
|
|
|
results.push_back(d); |
|
} |
|
|
|
std::stable_sort(results.begin(), results.end(), |
|
[](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool { |
|
if (lhs.type != rhs.type) { |
|
if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true; |
|
if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false; |
|
|
|
if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true; |
|
if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false; |
|
} |
|
return lhs.heapSize < rhs.heapSize; |
|
} |
|
); |
|
|
|
return results; |
|
} |
|
|
|
static std::vector<ggml_vk_device>& ggml_vk_available_devices() { |
|
static std::vector<ggml_vk_device> devices = ggml_vk_available_devices_internal(0); |
|
return devices; |
|
} |
|
|
|
static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) { |
|
devices.erase( |
|
std::remove_if(devices.begin(), devices.end(), |
|
[&targetVendor](const ggml_vk_device& device) { |
|
return device.vendor != targetVendor; |
|
}), |
|
devices.end() |
|
); |
|
} |
|
|
|
static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) { |
|
devices.erase( |
|
std::remove_if(devices.begin(), devices.end(), |
|
[&targetName](const ggml_vk_device& device) { |
|
return device.name != targetName; |
|
}), |
|
devices.end() |
|
); |
|
} |
|
|
|
static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) { |
|
if (name.empty()) |
|
return false; |
|
|
|
auto devices = ggml_vk_available_devices_internal(memoryRequired); |
|
if (name == "amd" || name == "nvidia" || name == "intel") { |
|
ggml_vk_filterByVendor(devices, name); |
|
} else if (name != "gpu") { |
|
ggml_vk_filterByName(devices, name); |
|
} |
|
|
|
if (devices.empty()) |
|
return false; |
|
|
|
*device = devices.front(); |
|
return true; |
|
} |
|
|
|
bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) { |
|
return ggml_vk_get_device(device, memoryRequired, std::string(name)); |
|
} |
|
|
|
bool ggml_vk_has_vulkan() { |
|
return komputeManager()->hasVulkan(); |
|
} |
|
|
|
bool ggml_vk_has_device() { |
|
return komputeManager()->hasDevice(); |
|
} |
|
|
|
ggml_vk_device ggml_vk_current_device() { |
|
if (!komputeManager()->hasDevice()) |
|
return ggml_vk_device(); |
|
|
|
auto devices = ggml_vk_available_devices(); |
|
ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data()); |
|
GGML_ASSERT(!devices.empty()); |
|
return devices.front(); |
|
} |
|
|
|
static |
|
void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) { |
|
std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = { |
|
vk::DescriptorPoolSize( |
|
vk::DescriptorType::eStorageBuffer, |
|
4 * size |
|
) |
|
}; |
|
|
|
vk::DescriptorPoolCreateInfo descriptorPoolInfo( |
|
vk::DescriptorPoolCreateFlags(), |
|
size, |
|
static_cast<uint32_t>(descriptorPoolSizes.size()), |
|
descriptorPoolSizes.data()); |
|
|
|
ctx->pool = std::make_shared<vk::DescriptorPool>(); |
|
vk::Result r = komputeManager()->device()->createDescriptorPool( |
|
&descriptorPoolInfo, nullptr, ctx->pool.get()); |
|
if (r != vk::Result::eSuccess) |
|
std::cerr << "Error allocating descriptor pool" << vk::to_string(r); |
|
} |
|
|
|
static |
|
void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) { |
|
if (ctx->pool) { |
|
komputeManager()->device()->destroy( |
|
*ctx->pool, |
|
(vk::Optional<const vk::AllocationCallbacks>)nullptr); |
|
ctx->pool = nullptr; |
|
} |
|
} |
|
|
|
static |
|
vk::Buffer *ggml_vk_allocate_buffer(size_t size) { |
|
vk::BufferCreateInfo bufferCreateInfo; |
|
bufferCreateInfo.size = size; |
|
bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer | |
|
vk::BufferUsageFlagBits::eTransferSrc | |
|
vk::BufferUsageFlagBits::eTransferDst; |
|
bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive; |
|
|
|
vk::Buffer *vkBuffer = new vk::Buffer; |
|
vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer); |
|
if (r != vk::Result::eSuccess) |
|
std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl; |
|
return vkBuffer; |
|
} |
|
|
|
static |
|
vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) { |
|
|
|
uint32_t memoryTypeIndex = -1; |
|
bool memoryTypeIndexFound = false; |
|
vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties(); |
|
for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) { |
|
const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i]; |
|
const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex]; |
|
if (memoryHeap.size < size) { |
|
continue; |
|
} |
|
|
|
if (requirements.memoryTypeBits & (1 << i)) { |
|
if (((memoryProperties.memoryTypes[i]).propertyFlags & |
|
flags) == flags) { |
|
memoryTypeIndex = i; |
|
memoryTypeIndexFound = true; |
|
if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) { |
|
*isHostVisible = true; |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
if (!memoryTypeIndexFound) { |
|
throw std::runtime_error( |
|
"Memory type index for buffer creation not found"); |
|
} |
|
|
|
vk::MemoryAllocateInfo allocInfo; |
|
allocInfo.allocationSize = size; |
|
allocInfo.memoryTypeIndex = memoryTypeIndex; |
|
vk::DeviceMemory *vkDeviceMemory = new vk::DeviceMemory; |
|
vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory); |
|
if (r != vk::Result::eSuccess) { |
|
std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl; |
|
throw std::runtime_error("Error allocating vulkan memory."); |
|
} |
|
return vkDeviceMemory; |
|
} |
|
|
|
static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) { |
|
size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer); |
|
|
|
|
|
if (offset % minStorageBufferOffsetAlignment == 0) { |
|
return offset; |
|
} |
|
|
|
|
|
return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment; |
|
} |
|
|
|
static ggml_vk_memory ggml_vk_allocate(size_t size) { |
|
ggml_vk_memory memory; |
|
bool isHostVisible = false; |
|
{ |
|
memory.primaryBuffer = ggml_vk_allocate_buffer(size); |
|
vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer); |
|
vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal; |
|
memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible); |
|
komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0); |
|
if (isHostVisible) { |
|
vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data); |
|
if (r != vk::Result::eSuccess) |
|
std::cerr << "Error mapping memory" << vk::to_string(r); |
|
} |
|
} |
|
|
|
if (!isHostVisible) { |
|
memory.stagingBuffer = ggml_vk_allocate_buffer(size); |
|
vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer); |
|
vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible | |
|
vk::MemoryPropertyFlagBits::eHostCoherent | |
|
vk::MemoryPropertyFlagBits::eHostCached; |
|
memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible); |
|
komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0); |
|
vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data); |
|
if (r != vk::Result::eSuccess) |
|
std::cerr << "Error mapping memory" << vk::to_string(r); |
|
} |
|
|
|
memory.size = size; |
|
return memory; |
|
} |
|
|
|
static void ggml_vk_free_memory(ggml_vk_memory &memory) |
|
{ |
|
komputeManager()->device()->destroy( |
|
*memory.primaryBuffer, |
|
(vk::Optional<const vk::AllocationCallbacks>)nullptr); |
|
if (memory.stagingBuffer) { |
|
komputeManager()->device()->destroy( |
|
*memory.stagingBuffer, |
|
(vk::Optional<const vk::AllocationCallbacks>)nullptr); |
|
} |
|
komputeManager()->device()->freeMemory( |
|
*memory.primaryMemory, |
|
(vk::Optional<const vk::AllocationCallbacks>)nullptr); |
|
if (memory.stagingMemory) { |
|
komputeManager()->device()->freeMemory( |
|
*memory.stagingMemory, |
|
(vk::Optional<const vk::AllocationCallbacks>)nullptr); |
|
} |
|
} |
|
|
|
static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft); |
|
|
|
static |
|
ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) { |
|
ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer; |
|
|
|
|
|
GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name); |
|
|
|
ggml_vk_memory * buf_ctx = static_cast<ggml_vk_memory *>(buffer->context); |
|
|
|
const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data); |
|
|
|
GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size)); |
|
|
|
offset = uint64_t(ioffs); |
|
return buf_ctx; |
|
} |
|
|
|
static |
|
const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) { |
|
uint64_t originalOffset = 0; |
|
auto * res = ggml_vk_find_tensor(t, originalOffset); |
|
if (!res) { |
|
static std::shared_ptr<kp::Tensor> nullTensor = nullptr; |
|
return nullTensor; |
|
} |
|
|
|
|
|
const size_t nelements = ggml_nelements(t); |
|
size_t nbytes = ggml_nbytes(t); |
|
|
|
size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset); |
|
if (alignedOffset) { |
|
*alignedOffset = originalOffset - vulkanOffset; |
|
nbytes += *alignedOffset; |
|
} |
|
|
|
return komputeManager()->tensor( |
|
t->data, |
|
nelements, |
|
nbytes, kp::Tensor::TensorDataTypes::eFloat, |
|
res->primaryMemory, res->primaryBuffer, |
|
res->stagingMemory, res->stagingBuffer, |
|
vulkanOffset); |
|
} |
|
|
|
static std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) { |
|
if (size % sizeof(uint32_t) != 0) { |
|
throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)"); |
|
} |
|
|
|
const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData); |
|
size_t count = size / sizeof(uint32_t); |
|
return std::vector<uint32_t>(data_ptr, data_ptr + count); |
|
} |
|
|
|
inline static |
|
uint32_t safe_divide(uint32_t a, uint32_t b) { |
|
if (b <= 1) { |
|
return a; |
|
} |
|
if ((a % b) != 0) { |
|
fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b); |
|
GGML_ABORT("safe_divide result would've had remainder"); |
|
} |
|
return a / b; |
|
} |
|
|
|
static void ggml_vk_add( |
|
kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& inA, |
|
const std::shared_ptr<kp::Tensor>& inB, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, |
|
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, |
|
int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03, |
|
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, |
|
int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13, |
|
int32_t ne0, |
|
int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3 |
|
) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv, |
|
kp::shader_data::op_add_comp_spv_len); |
|
|
|
struct PushConstants { |
|
uint32_t inAOff, inBOff, outOff; |
|
int32_t ne00; |
|
int32_t nb00, nb01, nb02, nb03; |
|
int32_t ne10, ne11, ne12, ne13; |
|
int32_t nb10, nb11, nb12, nb13; |
|
int32_t ne0; |
|
int32_t nb0, nb1, nb2, nb3; |
|
} const pushConsts { |
|
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), |
|
ne00, |
|
nb00, nb01, nb02, nb03, |
|
ne10, ne11, ne12, ne13, |
|
nb10, nb11, nb12, nb13, |
|
ne0, |
|
nb0, nb1, nb2, nb3 |
|
}; |
|
|
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(__func__)) { |
|
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); |
|
} else { |
|
s_algo = komputeManager()->getAlgorithm(__func__); |
|
s_algo->setTensors({inA, inB, out}); |
|
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
static void ggml_vk_addrow(kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& inA, |
|
const std::shared_ptr<kp::Tensor>& inB, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, |
|
uint32_t size, uint32_t row = 0) { |
|
|
|
const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv, |
|
kp::shader_data::op_addrow_comp_spv_len); |
|
|
|
struct PushConstants { |
|
uint32_t inAOff, inBOff, outOff; |
|
uint32_t row; |
|
} const pushConsts { |
|
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), |
|
row |
|
}; |
|
|
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(__func__)) |
|
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); |
|
else { |
|
s_algo = komputeManager()->getAlgorithm(__func__); |
|
s_algo->setTensors({inA, inB, out}); |
|
s_algo->setWorkgroup({size}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
static void ggml_vk_mul( |
|
kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& inA, |
|
const std::shared_ptr<kp::Tensor>& inB, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, |
|
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, |
|
int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03, |
|
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, |
|
int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13, |
|
int32_t ne0, |
|
int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3 |
|
) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv, |
|
kp::shader_data::op_mul_comp_spv_len); |
|
|
|
struct PushConstants { |
|
uint32_t inAOff, inBOff, outOff; |
|
int32_t ne00; |
|
int32_t nb00, nb01, nb02, nb03; |
|
int32_t ne10, ne11, ne12, ne13; |
|
int32_t nb10, nb11, nb12, nb13; |
|
int32_t ne0; |
|
int32_t nb0, nb1, nb2, nb3; |
|
} const pushConsts { |
|
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), |
|
ne00, |
|
nb00, nb01, nb02, nb03, |
|
ne10, ne11, ne12, ne13, |
|
nb10, nb11, nb12, nb13, |
|
ne0, |
|
nb0, nb1, nb2, nb3 |
|
}; |
|
|
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(__func__)) { |
|
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); |
|
} else { |
|
s_algo = komputeManager()->getAlgorithm(__func__); |
|
s_algo->setTensors({inA, inB, out}); |
|
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
static void ggml_vk_scale(kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& in, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inOff, uint32_t outOff, |
|
uint32_t size, float scale) { |
|
const static auto spirv_1 = getSpirvShader( |
|
kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len |
|
); |
|
const static auto spirv_8 = getSpirvShader( |
|
kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len |
|
); |
|
|
|
struct PushConstants { |
|
uint32_t inOff, outOff; |
|
float scale; |
|
} const pushConsts { |
|
safe_divide(inOff, 4), safe_divide(outOff, 4), |
|
scale |
|
}; |
|
|
|
const auto * spirv = &spirv_1; |
|
std::string name(__func__); |
|
if (size % 8 == 0) { |
|
size /= 8; |
|
name += "_8"; |
|
spirv = &spirv_8; |
|
} |
|
|
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(name)) { |
|
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts}); |
|
} else { |
|
s_algo = komputeManager()->getAlgorithm(name); |
|
s_algo->setTensors({in, out}); |
|
s_algo->setWorkgroup({size}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
static void ggml_vk_xxlu( |
|
const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& in, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inOff, uint32_t outOff, |
|
uint32_t size |
|
) { |
|
struct PushConstants { |
|
uint32_t inOff, outOff; |
|
} const pushConsts { |
|
safe_divide(inOff, 4), safe_divide(outOff, 4), |
|
}; |
|
|
|
auto name = std::string(__func__) + "_" + suffix; |
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(name)) { |
|
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts}); |
|
} else { |
|
s_algo = komputeManager()->getAlgorithm(name); |
|
s_algo->setTensors({in, out}); |
|
s_algo->setWorkgroup({size}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_silu(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv, |
|
kp::shader_data::op_silu_comp_spv_len); |
|
|
|
ggml_vk_xxlu(spirv, "silu", std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_relu(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv, |
|
kp::shader_data::op_relu_comp_spv_len); |
|
|
|
ggml_vk_xxlu(spirv, "relu", std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_gelu(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv, |
|
kp::shader_data::op_gelu_comp_spv_len); |
|
|
|
ggml_vk_xxlu(spirv, "gelu", std::forward<Args>(args)...); |
|
} |
|
|
|
static void ggml_vk_soft_max( |
|
kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& inA, |
|
const std::shared_ptr<kp::Tensor>& inB, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, |
|
int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03, |
|
float scale, float max_bias, float m0, float m1, |
|
uint32_t n_head_log2 |
|
) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv, |
|
kp::shader_data::op_softmax_comp_spv_len); |
|
|
|
struct PushConstants { |
|
uint32_t inAOff, inBOff, outOff; |
|
int32_t ne00, ne01, ne02; |
|
float scale, max_bias, m0, m1; |
|
uint32_t n_head_log2; |
|
int32_t mask; |
|
} pushConsts { |
|
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), |
|
ne00, ne01, ne02, |
|
scale, max_bias, m0, m1, |
|
n_head_log2, |
|
bool(inB) |
|
}; |
|
|
|
auto & inB_ = inB ? inB : inA; |
|
|
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(__func__)) { |
|
|
|
const uint32_t local_x = 32; |
|
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts}); |
|
} else { |
|
s_algo = komputeManager()->getAlgorithm(__func__); |
|
s_algo->setTensors({inA, inB_, out}); |
|
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
static void ggml_vk_norm_( |
|
const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& in, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inOff, uint32_t outOff, |
|
int32_t ne00, int32_t nb01, |
|
int32_t nrows, float epsilon |
|
) { |
|
GGML_ASSERT(nb01%sizeof(float) == 0); |
|
GGML_ASSERT(ne00%sizeof(float) == 0); |
|
|
|
struct PushConstants { |
|
uint32_t inOff, outOff; |
|
uint32_t ne00, nb01; |
|
float eps; |
|
} pushConsts { |
|
safe_divide(inOff, 4), safe_divide(outOff, 4), |
|
(uint32_t)ne00, (uint32_t)nb01, epsilon |
|
}; |
|
|
|
auto name = std::string(__func__) + "_" + suffix; |
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(name)) { |
|
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts}); |
|
} else { |
|
s_algo = komputeManager()->getAlgorithm(name); |
|
s_algo->setTensors({in, out}); |
|
s_algo->setWorkgroup({(uint32_t)nrows}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_norm(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv, |
|
kp::shader_data::op_norm_comp_spv_len); |
|
|
|
ggml_vk_norm_(spirv, "norm", std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_rms_norm(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv, |
|
kp::shader_data::op_rmsnorm_comp_spv_len); |
|
|
|
ggml_vk_norm_(spirv, "rms", std::forward<Args>(args)...); |
|
} |
|
|
|
static void ggml_vk_diag_mask_inf(kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& in, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inOff, uint32_t outOff, |
|
uint32_t n_past, |
|
int32_t ne00, int32_t ne01, int32_t ne02) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv, |
|
kp::shader_data::op_diagmask_comp_spv_len); |
|
|
|
struct PushConstants { |
|
uint32_t inOff, outOff; |
|
uint32_t n_past; |
|
int32_t ne00, ne01; |
|
} pushConsts { |
|
safe_divide(inOff, 4), safe_divide(outOff, 4), |
|
n_past, |
|
ne00, ne01 |
|
}; |
|
|
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(__func__)) |
|
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts}); |
|
else { |
|
s_algo = komputeManager()->getAlgorithm(__func__); |
|
s_algo->setTensors({in, out}); |
|
s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
static void ggml_vk_mul_mat_f16( |
|
kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& inA, |
|
const std::shared_ptr<kp::Tensor>& inB, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, |
|
int32_t ne00, int32_t ne01, int32_t ne02, |
|
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03, |
|
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, |
|
uint32_t nb10, uint32_t nb11, uint32_t nb12, uint32_t nb13, |
|
int32_t ne0, int32_t ne1, |
|
uint32_t r2, uint32_t r3 |
|
) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv, |
|
kp::shader_data::op_mul_mat_f16_comp_spv_len); |
|
|
|
struct PushConstants { |
|
uint32_t inAOff, inBOff, outOff; |
|
int32_t ne00, ne01, ne02; |
|
uint32_t nb00, nb01, nb02, nb03; |
|
int32_t ne10, ne11, ne12; |
|
uint32_t nb10, nb11, nb12, nb13; |
|
int32_t ne0, ne1; |
|
uint32_t r2, r3; |
|
} pushConsts { |
|
safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4), |
|
ne00, ne01, ne02, |
|
nb00, nb01, nb02, nb03, |
|
ne10, ne11, ne12, |
|
nb10, nb11, nb12, nb13, |
|
ne0, ne1, |
|
r2, r3 |
|
}; |
|
|
|
const unsigned ny = unsigned((ne11 + 4 - 1)/4); |
|
|
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(__func__)) { |
|
const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; |
|
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts}); |
|
} else { |
|
s_algo = komputeManager()->getAlgorithm(__func__); |
|
s_algo->setTensors({inA, inB, out}); |
|
s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& inA, |
|
const std::shared_ptr<kp::Tensor>& inB, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, |
|
int32_t ne00, int32_t ne01, int32_t ne02, |
|
uint32_t nb01, uint32_t nb02, |
|
int32_t ne11, int32_t ne12, |
|
uint32_t nb11, uint32_t nb12, |
|
uint32_t nb1, uint32_t nb2) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv, |
|
kp::shader_data::op_mul_mat_mat_f32_comp_spv_len); |
|
|
|
struct PushConstants { |
|
uint32_t inAOff, inBOff, outOff; |
|
int32_t ne00, ne01, ne02, ne11, ne12; |
|
uint32_t nb01, nb02; |
|
uint32_t nb11, nb12; |
|
uint32_t nb1, nb2; |
|
} pushConsts { |
|
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), |
|
ne00, ne01, ne02, ne11, ne12, |
|
nb01, nb02, nb11, nb12, |
|
nb1, nb2 |
|
}; |
|
|
|
const uint32_t local_x = ggml_vk_current_device().subgroupSize; |
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(__func__)) { |
|
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), |
|
{inA, inB, out}, spirv, |
|
{unsigned(ne01), |
|
unsigned(ne11), |
|
unsigned(std::max(ne12, ne02)) |
|
}, |
|
{local_x}, |
|
{pushConsts}); |
|
} else { |
|
s_algo = komputeManager()->getAlgorithm(__func__); |
|
s_algo->setTensors({inA, inB, out}); |
|
s_algo->setWorkgroup({unsigned(ne01), |
|
unsigned(ne11), |
|
unsigned(std::max(ne12, ne02)), |
|
}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
static void ggml_vk_mul_mat_impl( |
|
const std::vector<uint32_t>& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& inA, |
|
const std::shared_ptr<kp::Tensor>& inB, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, |
|
int32_t ne00, int32_t ne01, int32_t ne02, |
|
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, |
|
int32_t ne0, int32_t ne1, |
|
uint32_t nb01, uint32_t nb02, uint32_t nb03, |
|
uint32_t nb11, uint32_t nb12, uint32_t nb13, |
|
uint32_t r2, uint32_t r3 |
|
) { |
|
struct PushConstants { |
|
uint32_t inAOff, inBOff, outOff; |
|
int32_t ne00, ne01, ne02; |
|
int32_t ne10, ne12; |
|
int32_t ne0, ne1; |
|
uint32_t nb01, nb02, nb03; |
|
uint32_t nb11, nb12, nb13; |
|
uint32_t r2, r3; |
|
} pushConsts { |
|
safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4), |
|
ne00, ne01, ne02, |
|
ne10, ne12, |
|
ne0, ne1, |
|
nb01, nb02, nb03, |
|
nb11, nb12, nb13, |
|
r2, r3 |
|
}; |
|
|
|
auto name = std::string(__func__) + "_" + suffix; |
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(name)) { |
|
const uint32_t local_x = (ggml_vk_current_device().subgroupSize * 2) / 8; |
|
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts}); |
|
} else { |
|
s_algo = komputeManager()->getAlgorithm(name); |
|
s_algo->setTensors({inA, inB, out}); |
|
s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_mul_mat_q4_0(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv, |
|
kp::shader_data::op_mul_mat_q4_0_comp_spv_len); |
|
|
|
ggml_vk_mul_mat_impl(spirv, "q4_0", 1, std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_mul_mat_q4_1(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv, |
|
kp::shader_data::op_mul_mat_q4_1_comp_spv_len); |
|
|
|
ggml_vk_mul_mat_impl(spirv, "q4_1", 1, std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_mul_mat_q8_0(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv, |
|
kp::shader_data::op_mul_mat_q8_0_comp_spv_len); |
|
|
|
ggml_vk_mul_mat_impl(spirv, "q8_0", 1, std::forward<Args>(args)...); |
|
} |
|
|
|
static void ggml_vk_mul_mat_q4_k( |
|
kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& inA, |
|
const std::shared_ptr<kp::Tensor>& inB, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, |
|
int32_t ne00, int32_t ne01, int32_t ne02, |
|
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, |
|
int32_t ne0, int32_t ne1, |
|
uint32_t nb01, uint32_t nb02, uint32_t nb03, |
|
uint32_t nb11, uint32_t nb12, uint32_t nb13, |
|
uint32_t r2, uint32_t r3 |
|
) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_k_comp_spv, |
|
kp::shader_data::op_mul_mat_q4_k_comp_spv_len); |
|
|
|
struct PushConstants { |
|
uint32_t inAOff, inBOff, outOff; |
|
int32_t ne00, ne10, ne0, ne1, ne01, ne02, ne12; |
|
uint32_t nb01, nb02, nb03, nb11, nb12, nb13; |
|
uint32_t r2, r3; |
|
} pushConsts { |
|
inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4), |
|
ne00, ne10, ne0, ne1, ne01, ne02, ne12, |
|
nb01, nb02, nb03, nb11, nb12, nb13, |
|
r2, r3 |
|
}; |
|
|
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(__func__)) { |
|
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 3)/4), unsigned(ne11), unsigned(ne12) * unsigned(ne13)}, {}, {pushConsts}); |
|
} else { |
|
s_algo = komputeManager()->getAlgorithm(__func__); |
|
s_algo->setTensors({inA, inB, out}); |
|
s_algo->setWorkgroup({unsigned((ne01 + 3)/4), unsigned(ne11), unsigned(ne12) * unsigned(ne13)}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
static void ggml_vk_mul_mat_q6_k( |
|
kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& inA, |
|
const std::shared_ptr<kp::Tensor>& inB, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, |
|
int32_t ne00, int32_t ne01, int32_t ne02, |
|
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, |
|
int32_t ne0, int32_t ne1, |
|
uint32_t nb01, uint32_t nb02, uint32_t nb03, |
|
uint32_t nb11, uint32_t nb12, uint32_t nb13, |
|
uint32_t r2, uint32_t r3 |
|
) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv, |
|
kp::shader_data::op_mul_mat_q6_k_comp_spv_len); |
|
|
|
struct PushConstants { |
|
uint32_t inAOff, inBOff, outOff; |
|
int32_t ne00, ne10, ne0, ne1, ne01, ne02, ne12; |
|
uint32_t nb01, nb02, nb03, nb11, nb12, nb13; |
|
uint32_t r2, r3; |
|
} pushConsts { |
|
inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4), |
|
ne00, ne10, ne0, ne1, ne01, ne02, ne12, |
|
nb01, nb02, nb03, nb11, nb12, nb13, |
|
r2, r3 |
|
}; |
|
|
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(__func__)) { |
|
const uint32_t local_x = 2; |
|
const uint32_t local_y = ggml_vk_current_device().subgroupSize; |
|
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)*unsigned(ne13)}, {local_x, local_y}, {pushConsts}); |
|
} else { |
|
s_algo = komputeManager()->getAlgorithm(__func__); |
|
s_algo->setTensors({inA, inB, out}); |
|
s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)*unsigned(ne13)}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
static void ggml_vk_get_rows( |
|
const std::vector<uint32_t>& spirv, |
|
const char * suffix, |
|
unsigned element_size, unsigned qk, |
|
kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& inA, |
|
const std::shared_ptr<kp::Tensor>& inB, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, |
|
int32_t ne00, int32_t nb01, int32_t nb1, |
|
uint32_t size |
|
) { |
|
GGML_ASSERT(nb01%element_size == 0); |
|
GGML_ASSERT(nb1%sizeof(float) == 0); |
|
if (qk) GGML_ASSERT(ne00%qk == 0); |
|
|
|
struct PushConstants { |
|
uint32_t inAOff, inBOff, outOff; |
|
int32_t ne00, nb01, nb1; |
|
} pushConsts { |
|
safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4), |
|
ne00, nb01, nb1 |
|
}; |
|
|
|
auto name = std::string(__func__) + "_" + suffix; |
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(name)) { |
|
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); |
|
} else { |
|
s_algo = komputeManager()->getAlgorithm(name); |
|
s_algo->setTensors({inA, inB, out}); |
|
s_algo->setWorkgroup({size}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_get_rows_f32(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f32_comp_spv, |
|
kp::shader_data::op_getrows_f32_comp_spv_len); |
|
|
|
ggml_vk_get_rows(spirv, "f32", sizeof(float), 0, std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_get_rows_f16(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv, |
|
kp::shader_data::op_getrows_f16_comp_spv_len); |
|
|
|
ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_get_rows_q4_0(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv, |
|
kp::shader_data::op_getrows_q4_0_comp_spv_len); |
|
|
|
ggml_vk_get_rows(spirv, "q4_0", 1, QK4_0, std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_get_rows_q4_1(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv, |
|
kp::shader_data::op_getrows_q4_1_comp_spv_len); |
|
|
|
ggml_vk_get_rows(spirv, "q4_1", 1, QK4_1, std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_get_rows_q6_k(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv, |
|
kp::shader_data::op_getrows_q6_k_comp_spv_len); |
|
ggml_vk_get_rows(spirv, "q6_k", 1, QK_NL, std::forward<Args>(args)...); |
|
} |
|
|
|
static void ggml_vk_rope( |
|
kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& inA, |
|
const std::shared_ptr<kp::Tensor>& inB, |
|
const std::shared_ptr<kp::Tensor>& inC, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inAOff, uint32_t inBOff, uint32_t inCOff, uint32_t outOff, |
|
ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_ctx_orig, |
|
float freq_base, float freq_scale, bool has_freq_factors, float ext_factor, float attn_factor, float beta_fast, float beta_slow, |
|
int32_t ne01, int32_t ne02, int32_t ne03, |
|
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03, |
|
int32_t ne0, |
|
uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3 |
|
) { |
|
GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32); |
|
|
|
static const auto spirv_norm_f16 = getSpirvShader( |
|
kp::shader_data::op_rope_norm_f16_comp_spv, kp::shader_data::op_rope_norm_f16_comp_spv_len |
|
); |
|
static const auto spirv_norm_f32 = getSpirvShader( |
|
kp::shader_data::op_rope_norm_f32_comp_spv, kp::shader_data::op_rope_norm_f32_comp_spv_len |
|
); |
|
static const auto spirv_neox_f16 = getSpirvShader( |
|
kp::shader_data::op_rope_neox_f16_comp_spv, kp::shader_data::op_rope_neox_f16_comp_spv_len |
|
); |
|
static const auto spirv_neox_f32 = getSpirvShader( |
|
kp::shader_data::op_rope_neox_f32_comp_spv, kp::shader_data::op_rope_neox_f32_comp_spv_len |
|
); |
|
|
|
int type_size = src0t == GGML_TYPE_F16 ? 2 : 4; |
|
|
|
GGML_ASSERT(nb03 % type_size == 0); |
|
GGML_ASSERT(nb02 % type_size == 0); |
|
GGML_ASSERT(nb01 % type_size == 0); |
|
GGML_ASSERT(nb00 % type_size == 0); |
|
GGML_ASSERT(nb3 % type_size == 0); |
|
GGML_ASSERT(nb2 % type_size == 0); |
|
GGML_ASSERT(nb1 % type_size == 0); |
|
GGML_ASSERT(nb0 % type_size == 0); |
|
|
|
struct PushConstants { |
|
uint32_t inAOff, inBOff, inCOff, outOff; |
|
int32_t n_dims, mode, n_ctx_orig; |
|
float freq_base, freq_scale; |
|
bool has_freq_factors; |
|
float ext_factor, attn_factor, beta_fast, beta_slow; |
|
uint32_t nb00, nb01, nb02, nb03; |
|
int32_t ne0; |
|
uint32_t nb0, nb1, nb2, nb3; |
|
} pushConsts { |
|
safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(inCOff, type_size), safe_divide(outOff, type_size), |
|
n_dims, mode, n_ctx_orig, |
|
freq_base, freq_scale, |
|
has_freq_factors, |
|
ext_factor, attn_factor, beta_fast, beta_slow, |
|
nb00, nb01, nb02, nb03, |
|
ne0, |
|
nb0, nb1, nb2, nb3 |
|
}; |
|
|
|
auto & inC_ = inC ? inC : inA; |
|
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; |
|
const bool is_f16 = src0t == GGML_TYPE_F16; |
|
|
|
auto name = std::string(__func__) + (is_neox ? "_neox" : "_norm") + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32"); |
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(name)) { |
|
auto & spirv = is_neox ? is_f16 ? spirv_neox_f16 : spirv_neox_f32 : is_f16 ? spirv_norm_f16 : spirv_norm_f32; |
|
s_algo = komputeManager()->algorithm<float, PushConstants>( |
|
name, s_kompute_context->pool.get(), {inA, inB, inC_, out}, spirv, |
|
{unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts} |
|
); |
|
} else { |
|
s_algo = komputeManager()->getAlgorithm(name); |
|
s_algo->setTensors({inA, inB, inC_, out}); |
|
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
static void ggml_vk_cpy( |
|
const std::vector<uint32_t>& spirv, |
|
uint32_t in_element_size, uint32_t out_element_size, |
|
kp::Sequence& seq, |
|
const std::shared_ptr<kp::Tensor>& in, |
|
const std::shared_ptr<kp::Tensor>& out, |
|
uint32_t inOff, uint32_t outOff, |
|
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, |
|
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03, |
|
int32_t ne0, int32_t ne1, int32_t ne2, |
|
uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3 |
|
) { |
|
struct PushConstants { |
|
uint32_t inOff, outOff; |
|
int32_t ne00, ne01, ne02; |
|
uint32_t nb00, nb01, nb02, nb03; |
|
int32_t ne0, ne1, ne2; |
|
uint32_t nb0, nb1, nb2, nb3; |
|
} pushConsts { |
|
safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size), |
|
ne00, ne01, ne02, |
|
nb00, nb01, nb02, nb03, |
|
ne0, ne1, ne2, |
|
nb0, nb1, nb2, nb3 |
|
}; |
|
|
|
std::string name = std::string(__func__) |
|
+ "_i_" + std::to_string(in_element_size) |
|
+ "_o_" + std::to_string(out_element_size); |
|
std::shared_ptr<kp::Algorithm> s_algo = nullptr; |
|
if (!komputeManager()->hasAlgorithm(name)) |
|
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); |
|
else { |
|
s_algo = komputeManager()->getAlgorithm(name); |
|
s_algo->setTensors({in, out}); |
|
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); |
|
s_algo->setPushConstants<PushConstants>({pushConsts}); |
|
s_algo->updateDescriptors(s_kompute_context->pool.get()); |
|
} |
|
seq.record<kp::OpAlgoDispatch>(s_algo); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_cpy_f32_f16(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv, |
|
kp::shader_data::op_cpy_f32_f16_comp_spv_len); |
|
ggml_vk_cpy(spirv, 4, 2, std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_cpy_f32_f32(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv, |
|
kp::shader_data::op_cpy_f32_f32_comp_spv_len); |
|
ggml_vk_cpy(spirv, 4, 4, std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_cpy_f16_f16(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv, |
|
kp::shader_data::op_cpy_f16_f16_comp_spv_len); |
|
ggml_vk_cpy(spirv, 2, 2, std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename... Args> |
|
static void ggml_vk_cpy_f16_f32(Args&&... args) { |
|
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv, |
|
kp::shader_data::op_cpy_f16_f32_comp_spv_len); |
|
ggml_vk_cpy(spirv, 2, 4, std::forward<Args>(args)...); |
|
} |
|
|
|
static bool ggml_backend_kompute_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) { |
|
int64_t n = ggml_nelements(op); |
|
switch (op->op) { |
|
case GGML_OP_UNARY: |
|
if (n % 4 != 0) return false; |
|
switch (ggml_get_unary_op(op)) { |
|
case GGML_UNARY_OP_GELU: |
|
if (n % 8 != 0) return false; |
|
|
|
case GGML_UNARY_OP_RELU: |
|
case GGML_UNARY_OP_SILU: |
|
return ggml_is_contiguous(op->src[0]); |
|
default: |
|
; |
|
} |
|
break; |
|
case GGML_OP_NONE: |
|
case GGML_OP_RESHAPE: |
|
case GGML_OP_VIEW: |
|
case GGML_OP_TRANSPOSE: |
|
case GGML_OP_PERMUTE: |
|
case GGML_OP_ADD: |
|
case GGML_OP_MUL: |
|
case GGML_OP_SCALE: |
|
case GGML_OP_SOFT_MAX: |
|
case GGML_OP_RMS_NORM: |
|
case GGML_OP_NORM: |
|
return true; |
|
case GGML_OP_ROPE: |
|
{ |
|
const int mode = ((const int32_t *) op->op_params)[2]; |
|
if (mode & GGML_ROPE_TYPE_MROPE) { |
|
return false; |
|
} |
|
if (mode & GGML_ROPE_TYPE_VISION) { |
|
return false; |
|
} |
|
return true; |
|
} |
|
case GGML_OP_DUP: |
|
case GGML_OP_CPY: |
|
case GGML_OP_CONT: |
|
switch (op->src[0]->type) { |
|
case GGML_TYPE_F32: |
|
case GGML_TYPE_F16: |
|
break; |
|
default: |
|
return false; |
|
} |
|
switch (op->type) { |
|
case GGML_TYPE_F32: |
|
case GGML_TYPE_F16: |
|
break; |
|
default: |
|
return false; |
|
} |
|
return true; |
|
case GGML_OP_DIAG_MASK_INF: |
|
return op->ne[3] == 1; |
|
case GGML_OP_GET_ROWS: |
|
switch (op->src[0]->type) { |
|
case GGML_TYPE_F32: |
|
case GGML_TYPE_F16: |
|
case GGML_TYPE_Q4_0: |
|
case GGML_TYPE_Q4_1: |
|
case GGML_TYPE_Q6_K: |
|
return op->ne[2] == 1 && op->ne[3] == 1; |
|
default: |
|
; |
|
} |
|
return false; |
|
case GGML_OP_MUL_MAT: |
|
if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1])) |
|
return false; |
|
|
|
switch (op->src[0]->type) { |
|
case GGML_TYPE_F32: |
|
return op->ne[3] == 1; |
|
case GGML_TYPE_Q6_K: |
|
case GGML_TYPE_F16: |
|
case GGML_TYPE_Q8_0: |
|
case GGML_TYPE_Q4_0: |
|
case GGML_TYPE_Q4_1: |
|
case GGML_TYPE_Q4_K: |
|
return true; |
|
default: |
|
; |
|
} |
|
default: |
|
; |
|
} |
|
return false; |
|
|
|
GGML_UNUSED(dev); |
|
} |
|
|
|
static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) { |
|
const int n_seq = 8; |
|
|
|
|
|
|
|
ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes); |
|
|
|
std::vector<std::shared_ptr<kp::Sequence>> sequences(n_seq); |
|
|
|
for (auto& sequence : sequences) { |
|
sequence = komputeManager()->sequence(); |
|
} |
|
for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) { |
|
const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq; |
|
|
|
auto& seq = *sequences[seq_idx]; |
|
|
|
const int node_start = (seq_idx + 0) * n_nodes_per_seq; |
|
const int node_end = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes); |
|
|
|
bool any_commands_recorded = false; |
|
|
|
for (int i = node_start; i < node_end; ++i) { |
|
struct ggml_tensor * src0 = gf->nodes[i]->src[0]; |
|
struct ggml_tensor * src1 = gf->nodes[i]->src[1]; |
|
struct ggml_tensor * src2 = gf->nodes[i]->src[2]; GGML_UNUSED(src2); |
|
struct ggml_tensor * dst = gf->nodes[i]; |
|
GGML_ASSERT(dst->data != nullptr); |
|
|
|
if (ggml_is_empty(dst)) { |
|
continue; |
|
} |
|
|
|
switch (dst->op) { |
|
case GGML_OP_NONE: |
|
case GGML_OP_RESHAPE: |
|
case GGML_OP_VIEW: |
|
case GGML_OP_TRANSPOSE: |
|
case GGML_OP_PERMUTE: |
|
continue; |
|
default: |
|
break; |
|
} |
|
|
|
any_commands_recorded = true; |
|
|
|
const int32_t ne00 = src0 ? src0->ne[0] : 0; |
|
const int32_t ne01 = src0 ? src0->ne[1] : 0; |
|
const int32_t ne02 = src0 ? src0->ne[2] : 0; |
|
const int32_t ne03 = src0 ? src0->ne[3] : 0; |
|
|
|
const uint32_t nb00 = src0 ? src0->nb[0] : 0; |
|
const uint32_t nb01 = src0 ? src0->nb[1] : 0; |
|
const uint32_t nb02 = src0 ? src0->nb[2] : 0; |
|
const uint32_t nb03 = src0 ? src0->nb[3] : 0; |
|
|
|
const int32_t ne10 = src1 ? src1->ne[0] : 0; |
|
const int32_t ne11 = src1 ? src1->ne[1] : 0; |
|
const int32_t ne12 = src1 ? src1->ne[2] : 0; |
|
const int32_t ne13 = src1 ? src1->ne[3] : 0; |
|
|
|
const uint32_t nb10 = src1 ? src1->nb[0] : 0; |
|
const uint32_t nb11 = src1 ? src1->nb[1] : 0; |
|
const uint32_t nb12 = src1 ? src1->nb[2] : 0; |
|
const uint32_t nb13 = src1 ? src1->nb[3] : 0; |
|
|
|
const int32_t ne0 = dst ? dst->ne[0] : 0; |
|
const int32_t ne1 = dst ? dst->ne[1] : 0; |
|
const int32_t ne2 = dst ? dst->ne[2] : 0; |
|
|
|
|
|
const uint32_t nb0 = dst ? dst->nb[0] : 0; |
|
const uint32_t nb1 = dst ? dst->nb[1] : 0; |
|
const uint32_t nb2 = dst ? dst->nb[2] : 0; |
|
const uint32_t nb3 = dst ? dst->nb[3] : 0; |
|
|
|
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; |
|
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; |
|
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; |
|
|
|
const static std::shared_ptr<kp::Tensor> nullTensor = nullptr; |
|
uint32_t off_src0 = 0; |
|
uint32_t off_src1 = 0; |
|
uint32_t off_src2 = 0; |
|
uint32_t off_dst = 0; |
|
const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor; |
|
const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor; |
|
const std::shared_ptr<kp::Tensor>& id_src2 = src2 ? ggml_vk_get_tensor(src2, &off_src2) : nullTensor; |
|
const std::shared_ptr<kp::Tensor>& id_dst = dst ? ggml_vk_get_tensor(dst, &off_dst) : nullTensor; |
|
|
|
switch (dst->op) { |
|
case GGML_OP_ADD: |
|
{ |
|
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { |
|
|
|
ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00); |
|
} else { |
|
ggml_vk_add( |
|
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, |
|
ne00, ne01, ne02, ne03, |
|
nb00, nb01, nb02, nb03, |
|
ne10, ne11, ne12, ne13, |
|
nb10, nb11, nb12, nb13, |
|
ne0, |
|
nb0, nb1, nb2, nb3 |
|
); |
|
} |
|
} break; |
|
case GGML_OP_MUL: |
|
{ |
|
ggml_vk_mul( |
|
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, |
|
ne00, ne01, ne02, ne03, |
|
nb00, nb01, nb02, nb03, |
|
ne10, ne11, ne12, ne13, |
|
nb10, nb11, nb12, nb13, |
|
ne0, |
|
nb0, nb1, nb2, nb3 |
|
); |
|
} break; |
|
case GGML_OP_SCALE: |
|
{ |
|
float scale; memcpy(&scale, dst->op_params, sizeof(float)); |
|
|
|
ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale); |
|
} break; |
|
case GGML_OP_UNARY: |
|
{ |
|
int64_t n = ggml_nelements(dst); |
|
GGML_ASSERT(n % 4 == 0); |
|
switch (ggml_get_unary_op(gf->nodes[i])) { |
|
case GGML_UNARY_OP_SILU: |
|
{ |
|
ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4); |
|
} break; |
|
case GGML_UNARY_OP_RELU: |
|
{ |
|
ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4); |
|
} break; |
|
case GGML_UNARY_OP_GELU: |
|
{ |
|
GGML_ASSERT(n % 8 == 0); |
|
ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8); |
|
} break; |
|
default: |
|
{ |
|
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); |
|
GGML_ABORT("fatal error"); |
|
} |
|
} |
|
} break; |
|
case GGML_OP_SOFT_MAX: |
|
{ |
|
float scale; |
|
float max_bias; |
|
|
|
memcpy(&scale, (float *)dst->op_params + 0, sizeof(float)); |
|
memcpy(&max_bias, (float *)dst->op_params + 1, sizeof(float)); |
|
|
|
#pragma message("TODO: add ggml_vk_soft_max() F16 src1 support") |
|
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021") |
|
GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32); |
|
|
|
const int64_t nrows_x = ggml_nrows(src0); |
|
const int64_t nrows_y = src0->ne[1]; |
|
|
|
const uint32_t n_head = nrows_x/nrows_y; |
|
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); |
|
|
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); |
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); |
|
|
|
ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale, max_bias, m0, m1, n_head_log2); |
|
} break; |
|
case GGML_OP_DIAG_MASK_INF: |
|
{ |
|
const int n_past = ((int32_t *)(dst->op_params))[0]; |
|
ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02); |
|
} break; |
|
case GGML_OP_NORM: |
|
{ |
|
float eps; |
|
memcpy(&eps, dst->op_params, sizeof(float)); |
|
ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps); |
|
} break; |
|
case GGML_OP_RMS_NORM: |
|
{ |
|
GGML_ASSERT(ne00 % 4 == 0); |
|
|
|
float eps; |
|
memcpy(&eps, dst->op_params, sizeof(float)); |
|
ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps); |
|
} break; |
|
case GGML_OP_MUL_MAT: |
|
{ |
|
GGML_ASSERT(ne00 == ne10); |
|
|
|
GGML_ASSERT(ne12 % ne02 == 0); |
|
GGML_ASSERT(ne13 % ne03 == 0); |
|
|
|
const uint32_t r2 = ne12/ne02; |
|
const uint32_t r3 = ne13/ne03; |
|
|
|
if (src1t != GGML_TYPE_F32) { |
|
fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); |
|
goto not_implemented; |
|
} |
|
|
|
if (ggml_is_transposed(src0) || |
|
ggml_is_transposed(src1)) { |
|
fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); |
|
goto not_implemented; |
|
} |
|
|
|
switch (src0t) { |
|
case GGML_TYPE_F32: |
|
ggml_vk_mul_mat_mat_f32( |
|
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, |
|
ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2 |
|
); |
|
break; |
|
case GGML_TYPE_F16: |
|
ggml_vk_mul_mat_f16( |
|
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, |
|
ne00, ne01, ne02, nb00, nb01, nb02, nb03, |
|
ne10, ne11, ne12, ne13, nb10, nb11, nb12, nb13, |
|
ne0, ne1, r2, r3 |
|
); |
|
break; |
|
case GGML_TYPE_Q8_0: |
|
ggml_vk_mul_mat_q8_0( |
|
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, |
|
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, |
|
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3 |
|
); |
|
break; |
|
case GGML_TYPE_Q4_0: |
|
ggml_vk_mul_mat_q4_0( |
|
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, |
|
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, |
|
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3 |
|
); |
|
break; |
|
case GGML_TYPE_Q4_1: |
|
ggml_vk_mul_mat_q4_1( |
|
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, |
|
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, |
|
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3 |
|
); |
|
break; |
|
case GGML_TYPE_Q4_K: |
|
ggml_vk_mul_mat_q4_k( |
|
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, |
|
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, |
|
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3 |
|
); |
|
break; |
|
case GGML_TYPE_Q6_K: |
|
ggml_vk_mul_mat_q6_k( |
|
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, |
|
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, |
|
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3 |
|
); |
|
break; |
|
default: { |
|
fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); |
|
goto not_implemented; |
|
} |
|
} |
|
|
|
} break; |
|
case GGML_OP_GET_ROWS: |
|
{ |
|
if (src0t == GGML_TYPE_F32) { |
|
ggml_vk_get_rows_f32(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); |
|
} else if (src0t == GGML_TYPE_F16) { |
|
ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); |
|
} else if (src0t == GGML_TYPE_Q4_0) { |
|
ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); |
|
} else if (src0t == GGML_TYPE_Q4_1) { |
|
ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); |
|
} else if (src0t == GGML_TYPE_Q6_K) { |
|
ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); |
|
} else { |
|
fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t); |
|
goto not_implemented; |
|
} |
|
} break; |
|
case GGML_OP_ROPE: |
|
{ |
|
GGML_ASSERT(ne10 == ne02); |
|
GGML_ASSERT(src0t == dstt); |
|
|
|
const int n_dims = ((int32_t *) dst->op_params)[1]; |
|
const int mode = ((int32_t *) dst->op_params)[2]; |
|
|
|
const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; |
|
|
|
const bool has_freq_factors = dst->src[2] != nullptr; |
|
|
|
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; |
|
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); |
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); |
|
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); |
|
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); |
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); |
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); |
|
ggml_vk_rope( |
|
seq, id_src0, id_src1, id_src2, id_dst, off_src0, off_src1, off_src2, off_dst, src0t, n_dims, mode, n_ctx_orig, |
|
freq_base, freq_scale, has_freq_factors, ext_factor, attn_factor, beta_fast, beta_slow, |
|
ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3 |
|
); |
|
} break; |
|
case GGML_OP_DUP: |
|
case GGML_OP_CPY: |
|
case GGML_OP_CONT: |
|
{ |
|
switch (src0t) { |
|
case GGML_TYPE_F32: |
|
{ |
|
switch (dstt) { |
|
case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; |
|
case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; |
|
default: goto not_implemented; |
|
} |
|
} break; |
|
case GGML_TYPE_F16: |
|
{ |
|
switch (dstt) { |
|
case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; |
|
case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; |
|
default: goto not_implemented; |
|
} break; |
|
default: goto not_implemented; |
|
} |
|
} |
|
} break; |
|
default: goto not_implemented; |
|
} |
|
continue; |
|
not_implemented: {} |
|
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); |
|
|
|
} |
|
|
|
|
|
if (any_commands_recorded) { |
|
seq.evalAsync(); |
|
} |
|
} |
|
|
|
|
|
for (auto& sequence : sequences) { |
|
if (sequence->isRunning()) |
|
sequence->evalAwait(); |
|
} |
|
|
|
ggml_vk_free_descriptor_pool(ctx); |
|
} |
|
|
|
template<> |
|
kp::Tensor::TensorDataTypes |
|
kp::TensorT<half>::dataType() |
|
{ |
|
return TensorDataTypes::eFloat; |
|
} |
|
|
|
template<> |
|
kp::Tensor::TensorDataTypes |
|
kp::TensorT<uint8_t>::dataType() |
|
{ |
|
return TensorDataTypes::eUnsignedInt; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
struct ggml_backend_kompute_buffer_type_context { |
|
int device; |
|
int device_ref = 0; |
|
uint64_t buffer_alignment; |
|
uint64_t max_alloc; |
|
std::string name; |
|
|
|
ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc) |
|
: device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {} |
|
}; |
|
|
|
static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) { |
|
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); |
|
|
|
if (!ctx->device_ref) { |
|
komputeManager()->initializeDevice( |
|
ctx->device, {}, { |
|
"VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage", |
|
"VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info" |
|
} |
|
); |
|
} |
|
|
|
assert(ggml_vk_has_device()); |
|
ctx->device_ref++; |
|
} |
|
|
|
static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) { |
|
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); |
|
|
|
assert(ctx->device_ref > 0); |
|
|
|
ctx->device_ref--; |
|
|
|
if (!ctx->device_ref) { |
|
komputeManager.destroy(); |
|
} |
|
} |
|
|
|
static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) { |
|
auto * memory = (ggml_vk_memory *)buffer->context; |
|
if (ggml_vk_has_device()) { |
|
ggml_vk_free_memory(*memory); |
|
} |
|
delete memory; |
|
} |
|
|
|
static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) { |
|
return ((ggml_vk_memory *)buffer->context)->data; |
|
} |
|
|
|
static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { |
|
GGML_UNUSED(buffer); |
|
|
|
const auto res = ggml_vk_get_tensor(tensor); |
|
GGML_ASSERT(res); |
|
|
|
memcpy((char *)tensor->data + offset, data, size); |
|
|
|
komputeManager()->sequence()->eval<kp::OpTensorSyncDevice>({res}); |
|
} |
|
|
|
static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { |
|
GGML_UNUSED(buffer); |
|
|
|
const auto res = ggml_vk_get_tensor(tensor); |
|
GGML_ASSERT(res); |
|
|
|
komputeManager()->sequence()->eval<kp::OpTensorSyncLocal>({res}); |
|
|
|
memcpy(data, (const char *)tensor->data + offset, size); |
|
} |
|
|
|
static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { |
|
auto * memory = (ggml_vk_memory *)buffer->context; |
|
memset(memory->data, value, buffer->size); |
|
|
|
if (memory->stagingBuffer) |
|
komputeManager()->sequence()->eval<kp::OpBufferSyncDevice>(memory->primaryBuffer, memory->stagingBuffer, memory->size); |
|
} |
|
|
|
static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = { |
|
ggml_backend_kompute_buffer_free_buffer, |
|
ggml_backend_kompute_buffer_get_base, |
|
NULL, |
|
NULL, |
|
ggml_backend_kompute_buffer_set_tensor, |
|
ggml_backend_kompute_buffer_get_tensor, |
|
NULL, |
|
ggml_backend_kompute_buffer_clear, |
|
NULL, |
|
}; |
|
|
|
|
|
|
|
static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) { |
|
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); |
|
return ctx->name.c_str(); |
|
} |
|
|
|
static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { |
|
ggml_backend_kompute_device_ref(buft); |
|
auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size)); |
|
return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size); |
|
} |
|
|
|
static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { |
|
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); |
|
return ctx->buffer_alignment; |
|
} |
|
|
|
static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { |
|
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); |
|
return ctx->max_alloc; |
|
} |
|
|
|
static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = { |
|
ggml_backend_kompute_buffer_type_get_name, |
|
ggml_backend_kompute_buffer_type_alloc_buffer, |
|
ggml_backend_kompute_buffer_type_get_alignment, |
|
ggml_backend_vk_buffer_type_get_max_size, |
|
NULL, |
|
NULL, |
|
}; |
|
|
|
ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) { |
|
static std::mutex mutex; |
|
std::lock_guard<std::mutex> lock(mutex); |
|
|
|
auto devices = ggml_vk_available_devices(); |
|
int32_t device_count = (int32_t) devices.size(); |
|
GGML_ASSERT(device < device_count); |
|
GGML_ASSERT(devices.size() <= GGML_KOMPUTE_MAX_DEVICES); |
|
|
|
static ggml_backend_buffer_type |
|
ggml_backend_kompute_buffer_types[GGML_KOMPUTE_MAX_DEVICES]; |
|
|
|
static bool ggml_backend_kompute_buffer_type_initialized = false; |
|
|
|
if (!ggml_backend_kompute_buffer_type_initialized) { |
|
for (int32_t i = 0; i < device_count; i++) { |
|
ggml_backend_kompute_buffer_types[i] = { |
|
ggml_backend_kompute_buffer_type_interface, |
|
ggml_backend_reg_dev_get(ggml_backend_kompute_reg(), i), |
|
new ggml_backend_kompute_buffer_type_context{ i, devices[i].bufferAlignment, devices[i].maxAlloc }, |
|
}; |
|
} |
|
ggml_backend_kompute_buffer_type_initialized = true; |
|
} |
|
|
|
return &ggml_backend_kompute_buffer_types[device]; |
|
} |
|
|
|
|
|
|
|
static const char * ggml_backend_kompute_name(ggml_backend_t backend) { |
|
auto * ctx = static_cast<ggml_kompute_context *>(backend->context); |
|
return ctx->name.c_str(); |
|
} |
|
|
|
static void ggml_backend_kompute_free(ggml_backend_t backend) { |
|
auto * ctx = static_cast<ggml_kompute_context *>(backend->context); |
|
|
|
assert(ctx == s_kompute_context); |
|
s_kompute_context = nullptr; |
|
if (ctx != nullptr) { |
|
delete ctx; |
|
} |
|
|
|
delete backend; |
|
} |
|
|
|
static ggml_status ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { |
|
auto * ctx = static_cast<ggml_kompute_context *>(backend->context); |
|
ggml_vk_graph_compute(ctx, cgraph); |
|
return GGML_STATUS_SUCCESS; |
|
} |
|
|
|
static struct ggml_backend_i kompute_backend_i = { |
|
ggml_backend_kompute_name, |
|
ggml_backend_kompute_free, |
|
NULL, |
|
NULL, |
|
NULL, |
|
NULL, |
|
NULL, |
|
NULL, |
|
NULL, |
|
NULL, |
|
ggml_backend_kompute_graph_compute, |
|
NULL, |
|
NULL, |
|
}; |
|
|
|
static ggml_guid_t ggml_backend_kompute_guid() { |
|
static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0xfb, 0x35, 0xfa, 0x9b, 0x18, 0x31, 0x1d, 0xca }; |
|
return &guid; |
|
} |
|
|
|
ggml_backend_t ggml_backend_kompute_init(int device) { |
|
GGML_ASSERT(s_kompute_context == nullptr); |
|
s_kompute_context = new ggml_kompute_context(device); |
|
|
|
ggml_backend_t kompute_backend = new ggml_backend { |
|
ggml_backend_kompute_guid(), |
|
kompute_backend_i, |
|
ggml_backend_reg_dev_get(ggml_backend_kompute_reg(), device), |
|
s_kompute_context, |
|
}; |
|
|
|
return kompute_backend; |
|
} |
|
|
|
bool ggml_backend_is_kompute(ggml_backend_t backend) { |
|
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid()); |
|
} |
|
|
|
static size_t ggml_backend_kompute_get_device_count() { |
|
auto devices = ggml_vk_available_devices(); |
|
return devices.size(); |
|
} |
|
|
|
static void ggml_backend_kompute_get_device_description(int device, char * description, size_t description_size) { |
|
auto devices = ggml_vk_available_devices(); |
|
GGML_ASSERT((size_t) device < devices.size()); |
|
snprintf(description, description_size, "%s", devices[device].name); |
|
} |
|
|
|
static void ggml_backend_kompute_get_device_memory(int device, size_t * free, size_t * total) { |
|
auto devices = ggml_vk_available_devices(); |
|
GGML_ASSERT((size_t) device < devices.size()); |
|
*total = devices[device].heapSize; |
|
*free = devices[device].heapSize; |
|
} |
|
|
|
|
|
|
|
struct ggml_backend_kompute_device_context { |
|
int device; |
|
std::string name; |
|
std::string description; |
|
}; |
|
|
|
static const char * ggml_backend_kompute_device_get_name(ggml_backend_dev_t dev) { |
|
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context; |
|
return ctx->name.c_str(); |
|
} |
|
|
|
static const char * ggml_backend_kompute_device_get_description(ggml_backend_dev_t dev) { |
|
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context; |
|
return ctx->description.c_str(); |
|
} |
|
|
|
static void ggml_backend_kompute_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { |
|
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context; |
|
ggml_backend_kompute_get_device_memory(ctx->device, free, total); |
|
} |
|
|
|
static ggml_backend_buffer_type_t ggml_backend_kompute_device_get_buffer_type(ggml_backend_dev_t dev) { |
|
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context; |
|
return ggml_backend_kompute_buffer_type(ctx->device); |
|
} |
|
|
|
static bool ggml_backend_kompute_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { |
|
if (buft->iface.get_name != ggml_backend_kompute_buffer_type_get_name) { |
|
return false; |
|
} |
|
|
|
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context; |
|
ggml_backend_kompute_buffer_type_context * buft_ctx = (ggml_backend_kompute_buffer_type_context *)buft->context; |
|
|
|
return buft_ctx->device == ctx->device; |
|
} |
|
|
|
static enum ggml_backend_dev_type ggml_backend_kompute_device_get_type(ggml_backend_dev_t dev) { |
|
GGML_UNUSED(dev); |
|
return GGML_BACKEND_DEVICE_TYPE_GPU; |
|
} |
|
|
|
static void ggml_backend_kompute_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) { |
|
props->name = ggml_backend_kompute_device_get_name(dev); |
|
props->description = ggml_backend_kompute_device_get_description(dev); |
|
props->type = ggml_backend_kompute_device_get_type(dev); |
|
ggml_backend_kompute_device_get_memory(dev, &props->memory_free, &props->memory_total); |
|
props->caps = { |
|
false, |
|
false, |
|
false, |
|
false, |
|
}; |
|
} |
|
|
|
static ggml_backend_t ggml_backend_kompute_device_init(ggml_backend_dev_t dev, const char * params) { |
|
GGML_UNUSED(params); |
|
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context; |
|
return ggml_backend_kompute_init(ctx->device); |
|
} |
|
|
|
static bool ggml_backend_kompute_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) { |
|
const int min_batch_size = 32; |
|
|
|
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) || |
|
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID); |
|
|
|
GGML_UNUSED(dev); |
|
} |
|
|
|
static const struct ggml_backend_device_i ggml_backend_kompute_device_i = { |
|
ggml_backend_kompute_device_get_name, |
|
ggml_backend_kompute_device_get_description, |
|
ggml_backend_kompute_device_get_memory, |
|
ggml_backend_kompute_device_get_type, |
|
ggml_backend_kompute_device_get_props, |
|
ggml_backend_kompute_device_init, |
|
ggml_backend_kompute_device_get_buffer_type, |
|
NULL, |
|
NULL, |
|
ggml_backend_kompute_device_supports_op, |
|
ggml_backend_kompute_device_supports_buft, |
|
ggml_backend_kompute_device_offload_op, |
|
NULL, |
|
NULL, |
|
NULL, |
|
}; |
|
|
|
static const char * ggml_backend_kompute_reg_get_name(ggml_backend_reg_t reg) { |
|
GGML_UNUSED(reg); |
|
return "Kompute"; |
|
} |
|
|
|
static size_t ggml_backend_kompute_reg_get_device_count(ggml_backend_reg_t reg) { |
|
GGML_UNUSED(reg); |
|
return ggml_backend_kompute_get_device_count(); |
|
} |
|
|
|
static ggml_backend_dev_t ggml_backend_kompute_reg_get_device(ggml_backend_reg_t reg, size_t device) { |
|
static std::vector<ggml_backend_dev_t> devices; |
|
|
|
static bool initialized = false; |
|
|
|
{ |
|
static std::mutex mutex; |
|
std::lock_guard<std::mutex> lock(mutex); |
|
if (!initialized) { |
|
for (size_t i = 0; i < ggml_backend_kompute_get_device_count(); i++) { |
|
ggml_backend_kompute_device_context * ctx = new ggml_backend_kompute_device_context; |
|
char desc[256]; |
|
ggml_backend_kompute_get_device_description(i, desc, sizeof(desc)); |
|
ctx->device = i; |
|
ctx->name = "Kompute" + std::to_string(i); |
|
ctx->description = desc; |
|
devices.push_back(new ggml_backend_device { |
|
ggml_backend_kompute_device_i, |
|
reg, |
|
ctx, |
|
}); |
|
} |
|
initialized = true; |
|
} |
|
} |
|
|
|
GGML_ASSERT(device < devices.size()); |
|
return devices[device]; |
|
} |
|
|
|
static const struct ggml_backend_reg_i ggml_backend_kompute_reg_i = { |
|
ggml_backend_kompute_reg_get_name, |
|
ggml_backend_kompute_reg_get_device_count, |
|
ggml_backend_kompute_reg_get_device, |
|
NULL, |
|
}; |
|
|
|
ggml_backend_reg_t ggml_backend_kompute_reg() { |
|
static ggml_backend_reg reg = { |
|
GGML_BACKEND_API_VERSION, |
|
ggml_backend_kompute_reg_i, |
|
nullptr, |
|
}; |
|
|
|
return ® |
|
} |
|
|
|
GGML_BACKEND_DL_IMPL(ggml_backend_kompute_reg) |
|
|