|
#include <sycl/sycl.hpp> |
|
|
|
#include "common.hpp" |
|
|
|
template <u_int HEAD_SIZE> |
|
static void gated_linear_attn_f32_kernel(const dpct::queue_ptr stream, u_int B, u_int T, u_int C, u_int H, float scale, |
|
const float * k, const float * v, const float * r, const float * td, |
|
const float * s, float * dst) { |
|
const u_int head_size = HEAD_SIZE; |
|
const u_int state_size = C * head_size; |
|
const u_int n_seq_tokens = T / B; |
|
sycl::range<1> block_dims((C / H)); |
|
sycl::range<1> grid_dims((B * H)); |
|
stream->submit([&](sycl::handler & cgh) { |
|
|
|
auto _k = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh); |
|
auto _r = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh); |
|
auto _td = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh); |
|
|
|
cgh.parallel_for(sycl::nd_range<1>(grid_dims * block_dims, block_dims), [=](sycl::nd_item<1> item) { |
|
u_int tid = item.get_local_id(0); |
|
u_int bid = item.get_group(0); |
|
|
|
u_int batch_i = bid / H; |
|
u_int head_i = bid % H; |
|
|
|
float state[head_size]; |
|
|
|
#pragma unroll |
|
for (u_int i = 0; i < head_size; i++) { |
|
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid]; |
|
} |
|
|
|
for (u_int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; |
|
t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) { |
|
|
|
item.barrier(sycl::access::fence_space::local_space); |
|
_k[tid] = k[t]; |
|
_r[tid] = r[t]; |
|
_td[tid] = td[t]; |
|
item.barrier(sycl::access::fence_space::local_space); |
|
|
|
const float _v = v[t]; |
|
float y = 0; |
|
|
|
for (u_int j = 0; j < head_size; j += 4) { |
|
const sycl::float4 & k = (sycl::float4 &) (_k[j]); |
|
const sycl::float4 & r = (sycl::float4 &) (_r[j]); |
|
const sycl::float4 & td = (sycl::float4 &) (_td[j]); |
|
sycl::float4 & s = (sycl::float4 &) (state[j]); |
|
sycl::float4 kv; |
|
|
|
kv.x() = k.x() * _v; |
|
kv.y() = k.y() * _v; |
|
kv.z() = k.z() * _v; |
|
kv.w() = k.w() * _v; |
|
|
|
s.x() = s.x() * td.x() + kv.x(); |
|
s.y() = s.y() * td.y() + kv.y(); |
|
s.z() = s.z() * td.z() + kv.z(); |
|
s.w() = s.w() * td.w() + kv.w(); |
|
|
|
y += r.x() * s.x(); |
|
y += r.y() * s.y(); |
|
y += r.z() * s.z(); |
|
y += r.w() * s.w(); |
|
} |
|
dst[t] = y * scale; |
|
} |
|
#pragma unroll |
|
for (u_int i = 0; i < head_size; i++) { |
|
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i]; |
|
} |
|
}); |
|
}); |
|
} |
|
|
|
void ggml_sycl_op_gated_linear_attn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { |
|
const float * k_d = static_cast<const float *>(dst->src[0]->data); |
|
const float * v_d = static_cast<const float *>(dst->src[1]->data); |
|
const float * r_d = static_cast<const float *>(dst->src[2]->data); |
|
const float * td_d = static_cast<const float *>(dst->src[3]->data); |
|
const float * s_d = static_cast<const float *>(dst->src[4]->data); |
|
|
|
const int64_t B = dst->src[4]->ne[1]; |
|
const int64_t T = dst->src[0]->ne[2]; |
|
const int64_t C = dst->ne[0]; |
|
const int64_t H = dst->src[0]->ne[1]; |
|
|
|
dpct::queue_ptr stream = ctx.stream(); |
|
GGML_ASSERT(dst->src[4]->type == GGML_TYPE_F32); |
|
GGML_ASSERT(C % H == 0); |
|
GGML_ASSERT(C / H == 64 || C / H == 128); |
|
|
|
float scale; |
|
memcpy(&scale, dst->op_params, sizeof(float)); |
|
|
|
float * dst_d = (float *) dst->data; |
|
|
|
if (C / H == 64) { |
|
gated_linear_attn_f32_kernel<64>(stream, B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d); |
|
} else { |
|
gated_linear_attn_f32_kernel<128>(stream, B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d); |
|
} |
|
} |
|
|