Steven10429's picture
llama.cpp
61b850a
#include "softmax.hpp"
template <bool vals_smem, int ncols_template, int block_size_template, typename T>
static void soft_max_f32(const float * x, const T * mask, float * dst, const int ncols_par,
const int nrows_y, const float scale, const float max_bias, const float m0,
const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
const int tid = item_ct1.get_local_id(2);
const int rowx = item_ct1.get_group(2);
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
const int nthreads = block_size;
const int nwarps = nthreads / WARP_SIZE;
size_t nreduce = nwarps / WARP_SIZE;
float slope = 1.0f;
// ALiBi
if (max_bias > 0.0f) {
const uint32_t h = rowx/nrows_y; // head index
const float base = h < n_head_log2 ? m0 : m1;
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
slope = sycl::pow(base, float(exp));
}
float *vals = vals_smem ? buf + sycl::max(nwarps, WARP_SIZE) : dst + rowx * ncols;
float max_val = -INFINITY;
for (int col0 = 0; col0 < ncols; col0 += block_size) {
const int col = col0 + tid;
if (ncols_template == 0 && col >= ncols) {
break;
}
const int ix = rowx*ncols + col;
const int iy = rowy*ncols + col;
const float val = x[ix]*scale + (mask ? slope*static_cast<float>(mask[iy]) : 0.0f);
vals[col] = val;
max_val = sycl::max(max_val, val);
}
// find the max value in the block
max_val = warp_reduce_max(max_val, item_ct1);
if (block_size > WARP_SIZE) {
if (warp_id == 0) {
buf[lane_id] = -INFINITY;
for (size_t i = 1; i < nreduce; i += 1) {
buf[lane_id + i * WARP_SIZE] = -INFINITY;
}
}
item_ct1.barrier(sycl::access::fence_space::local_space);
if (lane_id == 0) {
buf[warp_id] = max_val;
}
item_ct1.barrier(sycl::access::fence_space::local_space);
max_val = buf[lane_id];
for (size_t i = 1; i < nreduce; i += 1) {
max_val = sycl::max(max_val, buf[lane_id + i * WARP_SIZE]);
}
max_val = warp_reduce_max(max_val, item_ct1);
}
float tmp = 0.f;
#pragma unroll
for (int col0 = 0; col0 < ncols; col0 += block_size) {
const int col = col0 + tid;
if (ncols_template == 0 && col >= ncols) {
break;
}
const float val = sycl::native::exp(vals[col] - max_val);
tmp += val;
vals[col] = val;
}
// find the sum of exps in the block
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
item_ct1.barrier(sycl::access::fence_space::local_space);
if (warp_id == 0) {
buf[lane_id] = 0.f;
for (size_t i = 1; i < nreduce; i += 1) {
buf[lane_id + i * WARP_SIZE] = 0.f;
}
}
item_ct1.barrier(sycl::access::fence_space::local_space);
if (lane_id == 0) {
buf[warp_id] = tmp;
}
item_ct1.barrier(sycl::access::fence_space::local_space);
tmp = buf[lane_id];
for (size_t i = 1; i < nreduce; i += 1) {
tmp += buf[lane_id + i * WARP_SIZE];
}
tmp = warp_reduce_sum(tmp, item_ct1);
}
const float inv_sum = 1.f / tmp;
#pragma unroll
for (int col0 = 0; col0 < ncols; col0 += block_size) {
const int col = col0 + tid;
if (ncols_template == 0 && col >= ncols) {
return;
}
const int idst = rowx*ncols + col;
dst[idst] = vals[col] * inv_sum;
}
}
template <bool vals_smem, int ncols_template, int block_size_template, typename T>
static void soft_max_f32_submitter(const float * x, const T * mask, float * dst, const int ncols_par,
const int nrows_y, const float scale, const float max_bias, const float m0,
const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
const size_t n_local_scratch, queue_ptr stream) {
stream->submit([&](sycl::handler &cgh) {
sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
nrows_y, scale, max_bias, m0,
m1, n_head_log2, item_ct1,
get_pointer(local_buf_acc));
});
});
}
template<typename T>
static void soft_max_f32_sycl(const float * x, const T * mask,
float * dst, const int ncols_x, const int nrows_x,
const int nrows_y, const float scale, const float max_bias,
queue_ptr stream, int device) {
int nth = WARP_SIZE;
int max_block_size = ggml_sycl_info().max_work_group_sizes[device];
while (nth < ncols_x && nth < max_block_size) nth *= 2;
if (nth>max_block_size) nth = max_block_size;
const sycl::range<3> block_dims(1, 1, nth);
const sycl::range<3> block_nums(1, 1, nrows_x);
const size_t n_val_tmp = nth / WARP_SIZE;
const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + n_val_tmp);
const uint32_t n_head_kv = nrows_x/nrows_y;
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
if (n_local_scratch*sizeof(float) < local_mem_size) {
if (ncols_x > max_block_size) {
soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
return;
}
switch (ncols_x) {
case 32:
soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 64:
soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 128:
soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 256:
soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 512:
soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 1024:
soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 2048:
soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 4096:
soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
default:
soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
}
} else {
soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, WARP_SIZE, stream);
}
}
void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(!dst->src[1] || dst->src[1]->type == GGML_TYPE_F16 || dst->src[1]->type == GGML_TYPE_F32); // src1 contains mask and it is optional
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t nrows_x = ggml_nrows(dst->src[0]);
const int64_t nrows_y = dst->src[0]->ne[1];
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, dst->op_params + 0, sizeof(float));
memcpy(&max_bias, dst->op_params + 1, sizeof(float));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
ggml_sycl_set_device(ctx.device);
dpct::queue_ptr main_stream = ctx.stream();
if (dst->src[1] && dst->src[1]->type == GGML_TYPE_F16) {
const sycl::half * src1_dd = static_cast<sycl::half *>(dst->src[1]->data);
soft_max_f32_sycl<sycl::half>(src0_dd, src1_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias,
main_stream, ctx.device);
} else if (dst->src[1] && dst->src[1]->type == GGML_TYPE_F32) {
const float * src1_dd = static_cast<const float *>(dst->src[1]->data);
soft_max_f32_sycl<float>(src0_dd, src1_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
} else {
/* mask unavailable */
soft_max_f32_sycl<float>(src0_dd, nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
}
}