|
#define _CRT_SECURE_NO_DEPRECATE |
|
#define _USE_MATH_DEFINES |
|
|
|
#include "ggml-backend.h" |
|
#include "ggml-impl.h" |
|
#include "ggml-threading.h" |
|
#include "ggml.h" |
|
|
|
|
|
#include "ggml-quants.h" |
|
|
|
#ifdef GGML_USE_CPU_HBM |
|
#include <hbwmalloc.h> |
|
#endif |
|
|
|
#if defined(_MSC_VER) || defined(__MINGW32__) |
|
#include <malloc.h> |
|
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__) |
|
#include <alloca.h> |
|
#endif |
|
|
|
#include <assert.h> |
|
#include <errno.h> |
|
#include <time.h> |
|
#include <math.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include <stdint.h> |
|
#include <inttypes.h> |
|
#include <stdio.h> |
|
#include <float.h> |
|
#include <limits.h> |
|
#include <stdarg.h> |
|
#include <signal.h> |
|
#if defined(__gnu_linux__) |
|
#include <syscall.h> |
|
#endif |
|
|
|
#if defined(__APPLE__) |
|
#include <unistd.h> |
|
#include <mach/mach.h> |
|
#include <TargetConditionals.h> |
|
#endif |
|
|
|
#if defined(_WIN32) |
|
#define WIN32_LEAN_AND_MEAN |
|
#ifndef NOMINMAX |
|
#define NOMINMAX |
|
#endif |
|
#include <windows.h> |
|
#endif |
|
|
|
#define UNUSED GGML_UNUSED |
|
|
|
#if defined(_MSC_VER) |
|
#define m512bh(p) p |
|
#define m512i(p) p |
|
#else |
|
#define m512bh(p) (__m512bh)(p) |
|
#define m512i(p) (__m512i)(p) |
|
#endif |
|
|
|
|
|
float ggml_table_f32_f16[1 << 16]; |
|
|
|
#if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \ |
|
(!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH)) |
|
#include <unistd.h> |
|
#include <sys/types.h> |
|
#include <sys/stat.h> |
|
#include <sys/wait.h> |
|
|
|
#if defined(__ANDROID__) |
|
#include <unwind.h> |
|
#include <dlfcn.h> |
|
#include <stdio.h> |
|
|
|
struct backtrace_state { |
|
void ** current; |
|
void ** end; |
|
}; |
|
|
|
static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context* context, void* arg) { |
|
struct backtrace_state * state = (struct backtrace_state *)arg; |
|
uintptr_t pc = _Unwind_GetIP(context); |
|
if (pc) { |
|
if (state->current == state->end) { |
|
return _URC_END_OF_STACK; |
|
} else { |
|
*state->current++ = (void*)pc; |
|
} |
|
} |
|
return _URC_NO_REASON; |
|
} |
|
|
|
static void ggml_print_backtrace_symbols(void) { |
|
const int max = 100; |
|
void* buffer[max]; |
|
|
|
struct backtrace_state state = {buffer, buffer + max}; |
|
_Unwind_Backtrace(unwind_callback, &state); |
|
|
|
int count = state.current - buffer; |
|
|
|
for (int idx = 0; idx < count; ++idx) { |
|
const void * addr = buffer[idx]; |
|
const char * symbol = ""; |
|
|
|
Dl_info info; |
|
if (dladdr(addr, &info) && info.dli_sname) { |
|
symbol = info.dli_sname; |
|
} |
|
|
|
fprintf(stderr, "%d: %p %s\n", idx, addr, symbol); |
|
} |
|
} |
|
#elif defined(__linux__) && defined(__GLIBC__) |
|
#include <execinfo.h> |
|
static void ggml_print_backtrace_symbols(void) { |
|
void * trace[100]; |
|
int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0])); |
|
backtrace_symbols_fd(trace, nptrs, STDERR_FILENO); |
|
} |
|
#else |
|
static void ggml_print_backtrace_symbols(void) { |
|
|
|
} |
|
#endif |
|
|
|
static void ggml_print_backtrace(void) { |
|
const char * GGML_NO_BACKTRACE = getenv("GGML_NO_BACKTRACE"); |
|
if (GGML_NO_BACKTRACE) { |
|
return; |
|
} |
|
char attach[32]; |
|
snprintf(attach, sizeof(attach), "attach %d", getpid()); |
|
int pid = fork(); |
|
if (pid == 0) { |
|
|
|
execlp("gdb", "gdb", "--batch", |
|
"-ex", "set style enabled on", |
|
"-ex", attach, |
|
"-ex", "bt -frame-info source-and-location", |
|
"-ex", "detach", |
|
"-ex", "quit", |
|
(char *) NULL); |
|
|
|
execlp("lldb", "lldb", "--batch", |
|
"-o", "bt", |
|
"-o", "quit", |
|
"-p", attach, |
|
(char *) NULL); |
|
exit(EXIT_FAILURE); |
|
} else { |
|
int wstatus; |
|
waitpid(pid, &wstatus, 0); |
|
if (WIFEXITED(wstatus)) { |
|
if (WEXITSTATUS(wstatus) == EXIT_FAILURE) { |
|
|
|
ggml_print_backtrace_symbols(); |
|
} |
|
} |
|
} |
|
} |
|
#else |
|
static void ggml_print_backtrace(void) { |
|
|
|
} |
|
#endif |
|
|
|
void ggml_abort(const char * file, int line, const char * fmt, ...) { |
|
fflush(stdout); |
|
|
|
fprintf(stderr, "%s:%d: ", file, line); |
|
|
|
va_list args; |
|
va_start(args, fmt); |
|
vfprintf(stderr, fmt, args); |
|
va_end(args); |
|
|
|
fprintf(stderr, "\n"); |
|
|
|
ggml_print_backtrace(); |
|
abort(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
struct ggml_logger_state { |
|
ggml_log_callback log_callback; |
|
void * log_callback_user_data; |
|
}; |
|
static struct ggml_logger_state g_logger_state = {ggml_log_callback_default, NULL}; |
|
|
|
static void ggml_log_internal_v(enum ggml_log_level level, const char * format, va_list args) { |
|
if (format == NULL) { |
|
return; |
|
} |
|
va_list args_copy; |
|
va_copy(args_copy, args); |
|
char buffer[128]; |
|
int len = vsnprintf(buffer, 128, format, args); |
|
if (len < 128) { |
|
g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data); |
|
} else { |
|
char * buffer2 = (char *) calloc(len + 1, sizeof(char)); |
|
vsnprintf(buffer2, len + 1, format, args_copy); |
|
buffer2[len] = 0; |
|
g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data); |
|
free(buffer2); |
|
} |
|
va_end(args_copy); |
|
} |
|
|
|
void ggml_log_internal(enum ggml_log_level level, const char * format, ...) { |
|
va_list args; |
|
va_start(args, format); |
|
ggml_log_internal_v(level, format, args); |
|
va_end(args); |
|
} |
|
|
|
void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) { |
|
(void) level; |
|
(void) user_data; |
|
fputs(text, stderr); |
|
fflush(stderr); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
#ifdef GGML_USE_ACCELERATE |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
void * ggml_aligned_malloc(size_t size) { |
|
const int alignment = 64; |
|
|
|
#if defined(_MSC_VER) || defined(__MINGW32__) |
|
return _aligned_malloc(size, alignment); |
|
#else |
|
if (size == 0) { |
|
GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n"); |
|
return NULL; |
|
} |
|
void * aligned_memory = NULL; |
|
#ifdef GGML_USE_CPU_HBM |
|
int result = hbw_posix_memalign(&aligned_memory, alignment, size); |
|
#elif TARGET_OS_OSX |
|
GGML_UNUSED(alignment); |
|
kern_return_t alloc_status = vm_allocate((vm_map_t) mach_task_self(), (vm_address_t *) &aligned_memory, size, VM_FLAGS_ANYWHERE); |
|
int result = EFAULT; |
|
switch (alloc_status) { |
|
case KERN_SUCCESS: |
|
result = 0; |
|
break; |
|
case KERN_INVALID_ADDRESS: |
|
result = EINVAL; |
|
break; |
|
case KERN_NO_SPACE: |
|
result = ENOMEM; |
|
break; |
|
default: |
|
result = EFAULT; |
|
break; |
|
} |
|
#else |
|
int result = posix_memalign(&aligned_memory, alignment, size); |
|
#endif |
|
if (result != 0) { |
|
|
|
const char *error_desc = "unknown allocation error"; |
|
switch (result) { |
|
case EINVAL: |
|
error_desc = "invalid alignment value"; |
|
break; |
|
case ENOMEM: |
|
error_desc = "insufficient memory"; |
|
break; |
|
} |
|
GGML_LOG_ERROR("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0)); |
|
return NULL; |
|
} |
|
return aligned_memory; |
|
#endif |
|
} |
|
|
|
void ggml_aligned_free(void * ptr, size_t size) { |
|
GGML_UNUSED(size); |
|
#if defined(_MSC_VER) || defined(__MINGW32__) |
|
_aligned_free(ptr); |
|
#elif GGML_USE_CPU_HBM |
|
if (ptr != NULL) { |
|
hbw_free(ptr); |
|
} |
|
#elif TARGET_OS_OSX |
|
if (ptr != NULL) { |
|
vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ptr, size); |
|
} |
|
#else |
|
free(ptr); |
|
#endif |
|
} |
|
|
|
|
|
inline static void * ggml_malloc(size_t size) { |
|
if (size == 0) { |
|
GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n"); |
|
return NULL; |
|
} |
|
void * result = malloc(size); |
|
if (result == NULL) { |
|
GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0)); |
|
GGML_ABORT("fatal error"); |
|
} |
|
return result; |
|
} |
|
|
|
|
|
inline static void * ggml_calloc(size_t num, size_t size) { |
|
if (num == 0 || size == 0) { |
|
GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n"); |
|
return NULL; |
|
} |
|
void * result = calloc(num, size); |
|
if (result == NULL) { |
|
GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0)); |
|
GGML_ABORT("fatal error"); |
|
} |
|
return result; |
|
} |
|
|
|
#define GGML_MALLOC(size) ggml_malloc(size) |
|
#define GGML_CALLOC(num, size) ggml_calloc(num, size) |
|
|
|
#define GGML_FREE(ptr) free(ptr) |
|
|
|
const char * ggml_status_to_string(enum ggml_status status) { |
|
switch (status) { |
|
case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)"; |
|
case GGML_STATUS_FAILED: return "GGML status: error (operation failed)"; |
|
case GGML_STATUS_SUCCESS: return "GGML status: success"; |
|
case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)"; |
|
} |
|
|
|
return "GGML status: unknown"; |
|
} |
|
|
|
float ggml_fp16_to_fp32(ggml_fp16_t x) { |
|
#define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml |
|
return GGML_FP16_TO_FP32(x); |
|
} |
|
|
|
ggml_fp16_t ggml_fp32_to_fp16(float x) { |
|
#define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml |
|
return GGML_FP32_TO_FP16(x); |
|
} |
|
|
|
float ggml_bf16_to_fp32(ggml_bf16_t x) { |
|
#define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml |
|
return GGML_BF16_TO_FP32(x); |
|
} |
|
|
|
ggml_bf16_t ggml_fp32_to_bf16(float x) { |
|
#define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml |
|
return GGML_FP32_TO_BF16(x); |
|
} |
|
|
|
void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) { |
|
for (int64_t i = 0; i < n; i++) { |
|
y[i] = GGML_FP16_TO_FP32(x[i]); |
|
} |
|
} |
|
|
|
|
|
|
|
void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) { |
|
int64_t i = 0; |
|
#if defined(__F16C__) |
|
|
|
for (; i + 7 < n; i += 8) { |
|
__m256 x_vec = _mm256_loadu_ps(x + i); |
|
__m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); |
|
_mm_storeu_si128((__m128i *)(y + i), y_vec); |
|
} |
|
for(; i + 3 < n; i += 4) { |
|
__m128 x_vec = _mm_loadu_ps(x + i); |
|
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); |
|
_mm_storel_epi64((__m128i *)(y + i), y_vec); |
|
} |
|
|
|
#endif |
|
for (; i < n; i++) { |
|
y[i] = GGML_FP32_TO_FP16(x[i]); |
|
} |
|
} |
|
|
|
void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) { |
|
int64_t i = 0; |
|
#if defined(__AVX512F__) |
|
|
|
for (; i + 16 <= n; i += 16) { |
|
_mm512_storeu_ps(y + i, |
|
_mm512_castsi512_ps( |
|
_mm512_slli_epi32( |
|
_mm512_cvtepu16_epi32( |
|
_mm256_loadu_si256( |
|
(const __m256i *)(x + i))), |
|
16))); |
|
} |
|
|
|
#endif |
|
#if defined(__AVX2__) |
|
|
|
for (; i + 8 <= n; i += 8) { |
|
_mm256_storeu_ps(y + i, |
|
_mm256_castsi256_ps( |
|
_mm256_slli_epi32( |
|
_mm256_cvtepu16_epi32( |
|
_mm_loadu_si128( |
|
(const __m128i *)(x + i))), |
|
16))); |
|
} |
|
|
|
#endif |
|
for (; i < n; i++) { |
|
y[i] = GGML_BF16_TO_FP32(x[i]); |
|
} |
|
} |
|
|
|
void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) { |
|
for (int i = 0; i < n; i++) { |
|
y[i] = ggml_compute_fp32_to_bf16(x[i]); |
|
} |
|
} |
|
|
|
void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) { |
|
int i = 0; |
|
#if defined(__AVX512BF16__) |
|
|
|
for (; i + 32 <= n; i += 32) { |
|
_mm512_storeu_si512( |
|
(__m512i *)(y + i), |
|
m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16), |
|
_mm512_loadu_ps(x + i)))); |
|
} |
|
#endif |
|
for (; i < n; i++) { |
|
y[i] = GGML_FP32_TO_BF16(x[i]); |
|
} |
|
} |
|
|
|
bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) { |
|
return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
#if defined(_MSC_VER) || defined(__MINGW32__) |
|
static int64_t timer_freq, timer_start; |
|
void ggml_time_init(void) { |
|
LARGE_INTEGER t; |
|
QueryPerformanceFrequency(&t); |
|
timer_freq = t.QuadPart; |
|
|
|
|
|
|
|
|
|
QueryPerformanceCounter(&t); |
|
timer_start = t.QuadPart; |
|
} |
|
int64_t ggml_time_ms(void) { |
|
LARGE_INTEGER t; |
|
QueryPerformanceCounter(&t); |
|
return ((t.QuadPart-timer_start) * 1000) / timer_freq; |
|
} |
|
int64_t ggml_time_us(void) { |
|
LARGE_INTEGER t; |
|
QueryPerformanceCounter(&t); |
|
return ((t.QuadPart-timer_start) * 1000000) / timer_freq; |
|
} |
|
#else |
|
void ggml_time_init(void) {} |
|
int64_t ggml_time_ms(void) { |
|
struct timespec ts; |
|
clock_gettime(CLOCK_MONOTONIC, &ts); |
|
return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000; |
|
} |
|
|
|
int64_t ggml_time_us(void) { |
|
struct timespec ts; |
|
clock_gettime(CLOCK_MONOTONIC, &ts); |
|
return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000; |
|
} |
|
#endif |
|
|
|
int64_t ggml_cycles(void) { |
|
return clock(); |
|
} |
|
|
|
int64_t ggml_cycles_per_ms(void) { |
|
return CLOCKS_PER_SEC/1000; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
#ifdef _WIN32 |
|
static wchar_t * ggml_mbstowcs(const char * mbs) { |
|
int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0); |
|
if (!wlen) { |
|
errno = EINVAL; |
|
return NULL; |
|
} |
|
|
|
wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t)); |
|
wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen); |
|
if (!wlen) { |
|
GGML_FREE(wbuf); |
|
errno = EINVAL; |
|
return NULL; |
|
} |
|
|
|
return wbuf; |
|
} |
|
#endif |
|
|
|
FILE * ggml_fopen(const char * fname, const char * mode) { |
|
#ifdef _WIN32 |
|
FILE * file = NULL; |
|
|
|
|
|
wchar_t * wfname = ggml_mbstowcs(fname); |
|
if (wfname) { |
|
|
|
wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t)); |
|
wchar_t * wmode_p = wmode; |
|
do { |
|
*wmode_p++ = (wchar_t)*mode; |
|
} while (*mode++); |
|
|
|
|
|
file = _wfopen(wfname, wmode); |
|
|
|
GGML_FREE(wfname); |
|
GGML_FREE(wmode); |
|
} |
|
|
|
return file; |
|
#else |
|
return fopen(fname, mode); |
|
#endif |
|
|
|
} |
|
static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc); |
|
static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc); |
|
static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc); |
|
|
|
static const struct ggml_type_traits type_traits[GGML_TYPE_COUNT] = { |
|
[GGML_TYPE_I8] = { |
|
.type_name = "i8", |
|
.blck_size = 1, |
|
.type_size = sizeof(int8_t), |
|
.is_quantized = false, |
|
}, |
|
[GGML_TYPE_I16] = { |
|
.type_name = "i16", |
|
.blck_size = 1, |
|
.type_size = sizeof(int16_t), |
|
.is_quantized = false, |
|
}, |
|
[GGML_TYPE_I32] = { |
|
.type_name = "i32", |
|
.blck_size = 1, |
|
.type_size = sizeof(int32_t), |
|
.is_quantized = false, |
|
}, |
|
[GGML_TYPE_I64] = { |
|
.type_name = "i64", |
|
.blck_size = 1, |
|
.type_size = sizeof(int64_t), |
|
.is_quantized = false, |
|
}, |
|
[GGML_TYPE_F64] = { |
|
.type_name = "f64", |
|
.blck_size = 1, |
|
.type_size = sizeof(double), |
|
.is_quantized = false, |
|
}, |
|
[GGML_TYPE_F32] = { |
|
.type_name = "f32", |
|
.blck_size = 1, |
|
.type_size = sizeof(float), |
|
.is_quantized = false, |
|
}, |
|
[GGML_TYPE_F16] = { |
|
.type_name = "f16", |
|
.blck_size = 1, |
|
.type_size = sizeof(ggml_fp16_t), |
|
.is_quantized = false, |
|
.to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row, |
|
.from_float_ref = (ggml_from_float_t) ggml_fp32_to_fp16_row, |
|
}, |
|
[GGML_TYPE_Q4_0] = { |
|
.type_name = "q4_0", |
|
.blck_size = QK4_0, |
|
.type_size = sizeof(block_q4_0), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_q4_0, |
|
.from_float_ref = (ggml_from_float_t) quantize_row_q4_0_ref, |
|
}, |
|
[GGML_TYPE_Q4_1] = { |
|
.type_name = "q4_1", |
|
.blck_size = QK4_1, |
|
.type_size = sizeof(block_q4_1), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_q4_1, |
|
.from_float_ref = (ggml_from_float_t) quantize_row_q4_1_ref, |
|
}, |
|
[4] = { |
|
.type_name = "DEPRECATED", |
|
.blck_size = 0, |
|
.type_size = 0, |
|
.is_quantized = false, |
|
}, |
|
[5] = { |
|
.type_name = "DEPRECATED", |
|
.blck_size = 0, |
|
.type_size = 0, |
|
.is_quantized = false, |
|
}, |
|
[GGML_TYPE_Q5_0] = { |
|
.type_name = "q5_0", |
|
.blck_size = QK5_0, |
|
.type_size = sizeof(block_q5_0), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_q5_0, |
|
.from_float_ref = (ggml_from_float_t) quantize_row_q5_0_ref, |
|
}, |
|
[GGML_TYPE_Q5_1] = { |
|
.type_name = "q5_1", |
|
.blck_size = QK5_1, |
|
.type_size = sizeof(block_q5_1), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_q5_1, |
|
.from_float_ref = (ggml_from_float_t) quantize_row_q5_1_ref, |
|
}, |
|
[GGML_TYPE_Q8_0] = { |
|
.type_name = "q8_0", |
|
.blck_size = QK8_0, |
|
.type_size = sizeof(block_q8_0), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_q8_0, |
|
.from_float_ref = (ggml_from_float_t) quantize_row_q8_0_ref, |
|
}, |
|
[GGML_TYPE_Q8_1] = { |
|
.type_name = "q8_1", |
|
.blck_size = QK8_1, |
|
.type_size = sizeof(block_q8_1), |
|
.is_quantized = true, |
|
.from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref, |
|
}, |
|
[GGML_TYPE_Q2_K] = { |
|
.type_name = "q2_K", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_q2_K), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_q2_K, |
|
.from_float_ref = (ggml_from_float_t) quantize_row_q2_K_ref, |
|
}, |
|
[GGML_TYPE_Q3_K] = { |
|
.type_name = "q3_K", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_q3_K), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_q3_K, |
|
.from_float_ref = (ggml_from_float_t) quantize_row_q3_K_ref, |
|
}, |
|
[GGML_TYPE_Q4_K] = { |
|
.type_name = "q4_K", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_q4_K), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_q4_K, |
|
.from_float_ref = (ggml_from_float_t) quantize_row_q4_K_ref, |
|
}, |
|
[GGML_TYPE_Q5_K] = { |
|
.type_name = "q5_K", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_q5_K), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_q5_K, |
|
.from_float_ref = (ggml_from_float_t) quantize_row_q5_K_ref, |
|
}, |
|
[GGML_TYPE_Q6_K] = { |
|
.type_name = "q6_K", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_q6_K), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_q6_K, |
|
.from_float_ref = (ggml_from_float_t) quantize_row_q6_K_ref, |
|
}, |
|
[GGML_TYPE_IQ2_XXS] = { |
|
.type_name = "iq2_xxs", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_iq2_xxs), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_iq2_xxs, |
|
.from_float_ref = NULL, |
|
}, |
|
[GGML_TYPE_IQ2_XS] = { |
|
.type_name = "iq2_xs", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_iq2_xs), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_iq2_xs, |
|
.from_float_ref = NULL, |
|
}, |
|
[GGML_TYPE_IQ3_XXS] = { |
|
.type_name = "iq3_xxs", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_iq3_xxs), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_iq3_xxs, |
|
.from_float_ref = (ggml_from_float_t)quantize_row_iq3_xxs_ref, |
|
}, |
|
[GGML_TYPE_IQ3_S] = { |
|
.type_name = "iq3_s", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_iq3_s), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_iq3_s, |
|
.from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_ref, |
|
}, |
|
[GGML_TYPE_IQ2_S] = { |
|
.type_name = "iq2_s", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_iq2_s), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_iq2_s, |
|
.from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_ref, |
|
}, |
|
[GGML_TYPE_IQ1_S] = { |
|
.type_name = "iq1_s", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_iq1_s), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_iq1_s, |
|
.from_float_ref = NULL, |
|
}, |
|
[GGML_TYPE_IQ1_M] = { |
|
.type_name = "iq1_m", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_iq1_m), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_iq1_m, |
|
.from_float_ref = NULL, |
|
}, |
|
[GGML_TYPE_IQ4_NL] = { |
|
.type_name = "iq4_nl", |
|
.blck_size = QK4_NL, |
|
.type_size = sizeof(block_iq4_nl), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_iq4_nl, |
|
.from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref, |
|
}, |
|
[GGML_TYPE_IQ4_XS] = { |
|
.type_name = "iq4_xs", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_iq4_xs), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_iq4_xs, |
|
.from_float_ref = (ggml_from_float_t)quantize_row_iq4_xs_ref, |
|
}, |
|
[GGML_TYPE_Q8_K] = { |
|
.type_name = "q8_K", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_q8_K), |
|
.is_quantized = true, |
|
}, |
|
[GGML_TYPE_BF16] = { |
|
.type_name = "bf16", |
|
.blck_size = 1, |
|
.type_size = sizeof(ggml_bf16_t), |
|
.is_quantized = false, |
|
.to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row, |
|
.from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref, |
|
}, |
|
[31] = { |
|
.type_name = "TYPE_Q4_0_4_4 REMOVED, use Q4_0 with runtime repacking", |
|
.blck_size = 0, |
|
.type_size = 0, |
|
.is_quantized = false, |
|
}, |
|
[32] = { |
|
.type_name = "TYPE_Q4_0_4_8 REMOVED, use Q4_0 with runtime repacking", |
|
.blck_size = 0, |
|
.type_size = 0, |
|
.is_quantized = false, |
|
}, |
|
[33] = { |
|
.type_name = "TYPE_Q4_0_8_8 REMOVED, use Q4_0 with runtime repacking", |
|
.blck_size = 0, |
|
.type_size = 0, |
|
.is_quantized = false, |
|
}, |
|
[GGML_TYPE_TQ1_0] = { |
|
.type_name = "tq1_0", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_tq1_0), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_tq1_0, |
|
.from_float_ref = (ggml_from_float_t) quantize_row_tq1_0_ref, |
|
}, |
|
[GGML_TYPE_TQ2_0] = { |
|
.type_name = "tq2_0", |
|
.blck_size = QK_K, |
|
.type_size = sizeof(block_tq2_0), |
|
.is_quantized = true, |
|
.to_float = (ggml_to_float_t) dequantize_row_tq2_0, |
|
.from_float_ref = (ggml_from_float_t) quantize_row_tq2_0_ref, |
|
}, |
|
[36] = { |
|
.type_name = "TYPE_IQ4_NL_4_4 REMOVED, use IQ4_NL with runtime repacking", |
|
.blck_size = 0, |
|
.type_size = 0, |
|
.is_quantized = false, |
|
}, |
|
[37] = { |
|
.type_name = "TYPE_IQ4_NL_4_8 REMOVED, use IQ4_NL with runtime repacking", |
|
.blck_size = 0, |
|
.type_size = 0, |
|
.is_quantized = false, |
|
}, |
|
[38] = { |
|
.type_name = "TYPE_IQ4_NL_8_8 REMOVED, use IQ4_NL with runtime repacking", |
|
.blck_size = 0, |
|
.type_size = 0, |
|
.is_quantized = false, |
|
}, |
|
}; |
|
|
|
const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type) { |
|
GGML_ASSERT(type < GGML_TYPE_COUNT); |
|
return &type_traits[type]; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
struct ggml_object { |
|
size_t offs; |
|
size_t size; |
|
|
|
struct ggml_object * next; |
|
|
|
enum ggml_object_type type; |
|
|
|
char padding[4]; |
|
}; |
|
|
|
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object); |
|
|
|
|
|
|
|
|
|
|
|
struct ggml_context { |
|
size_t mem_size; |
|
void * mem_buffer; |
|
bool mem_buffer_owned; |
|
bool no_alloc; |
|
|
|
int n_objects; |
|
|
|
struct ggml_object * objects_begin; |
|
struct ggml_object * objects_end; |
|
}; |
|
|
|
struct ggml_context_container { |
|
bool used; |
|
|
|
struct ggml_context context; |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
static const char * GGML_OP_NAME[GGML_OP_COUNT] = { |
|
"NONE", |
|
|
|
"DUP", |
|
"ADD", |
|
"ADD1", |
|
"ACC", |
|
"SUB", |
|
"MUL", |
|
"DIV", |
|
"SQR", |
|
"SQRT", |
|
"LOG", |
|
"SIN", |
|
"COS", |
|
"SUM", |
|
"SUM_ROWS", |
|
"MEAN", |
|
"ARGMAX", |
|
"COUNT_EQUAL", |
|
"REPEAT", |
|
"REPEAT_BACK", |
|
"CONCAT", |
|
"SILU_BACK", |
|
"NORM", |
|
"RMS_NORM", |
|
"RMS_NORM_BACK", |
|
"GROUP_NORM", |
|
|
|
"MUL_MAT", |
|
"MUL_MAT_ID", |
|
"OUT_PROD", |
|
|
|
"SCALE", |
|
"SET", |
|
"CPY", |
|
"CONT", |
|
"RESHAPE", |
|
"VIEW", |
|
"PERMUTE", |
|
"TRANSPOSE", |
|
"GET_ROWS", |
|
"GET_ROWS_BACK", |
|
"DIAG", |
|
"DIAG_MASK_INF", |
|
"DIAG_MASK_ZERO", |
|
"SOFT_MAX", |
|
"SOFT_MAX_BACK", |
|
"ROPE", |
|
"ROPE_BACK", |
|
"CLAMP", |
|
"CONV_TRANSPOSE_1D", |
|
"IM2COL", |
|
"IM2COL_BACK", |
|
"CONV_TRANSPOSE_2D", |
|
"POOL_1D", |
|
"POOL_2D", |
|
"POOL_2D_BACK", |
|
"UPSCALE", |
|
"PAD", |
|
"PAD_REFLECT_1D", |
|
"ARANGE", |
|
"TIMESTEP_EMBEDDING", |
|
"ARGSORT", |
|
"LEAKY_RELU", |
|
|
|
"FLASH_ATTN_EXT", |
|
"FLASH_ATTN_BACK", |
|
"SSM_CONV", |
|
"SSM_SCAN", |
|
"WIN_PART", |
|
"WIN_UNPART", |
|
"GET_REL_POS", |
|
"ADD_REL_POS", |
|
"RWKV_WKV6", |
|
"GATED_LINEAR_ATTN", |
|
|
|
"UNARY", |
|
|
|
"MAP_UNARY", |
|
"MAP_BINARY", |
|
|
|
"MAP_CUSTOM1_F32", |
|
"MAP_CUSTOM2_F32", |
|
"MAP_CUSTOM3_F32", |
|
|
|
"MAP_CUSTOM1", |
|
"MAP_CUSTOM2", |
|
"MAP_CUSTOM3", |
|
|
|
"CROSS_ENTROPY_LOSS", |
|
"CROSS_ENTROPY_LOSS_BACK", |
|
"OPT_STEP_ADAMW", |
|
}; |
|
|
|
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83"); |
|
|
|
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { |
|
"none", |
|
|
|
"x", |
|
"x+y", |
|
"x+y", |
|
"view(x,nb,offset)+=y->x", |
|
"x-y", |
|
"x*y", |
|
"x/y", |
|
"x^2", |
|
"√x", |
|
"log(x)", |
|
"sin(x)", |
|
"cos(x)", |
|
"Σx", |
|
"Σx_k", |
|
"Σx/n", |
|
"argmax(x)", |
|
"count_equal(x)", |
|
"repeat(x)", |
|
"repeat_back(x)", |
|
"concat(x, y)", |
|
"silu_back(x)", |
|
"norm(x)", |
|
"rms_norm(x)", |
|
"rms_norm_back(x)", |
|
"group_norm(x)", |
|
|
|
"X*Y", |
|
"X[i]*Y", |
|
"X*Y", |
|
|
|
"x*v", |
|
"y-\\>view(x)", |
|
"x-\\>y", |
|
"cont(x)", |
|
"reshape(x)", |
|
"view(x)", |
|
"permute(x)", |
|
"transpose(x)", |
|
"get_rows(x)", |
|
"get_rows_back(x)", |
|
"diag(x)", |
|
"diag_mask_inf(x)", |
|
"diag_mask_zero(x)", |
|
"soft_max(x)", |
|
"soft_max_back(x)", |
|
"rope(x)", |
|
"rope_back(x)", |
|
"clamp(x)", |
|
"conv_transpose_1d(x)", |
|
"im2col(x)", |
|
"im2col_back(x)", |
|
"conv_transpose_2d(x)", |
|
"pool_1d(x)", |
|
"pool_2d(x)", |
|
"pool_2d_back(x)", |
|
"upscale(x)", |
|
"pad(x)", |
|
"pad_reflect_1d(x)", |
|
"arange(start, stop, step)", |
|
"timestep_embedding(timesteps, dim, max_period)", |
|
"argsort(x)", |
|
"leaky_relu(x)", |
|
|
|
"flash_attn_ext(x)", |
|
"flash_attn_back(x)", |
|
"ssm_conv(x)", |
|
"ssm_scan(x)", |
|
"win_part(x)", |
|
"win_unpart(x)", |
|
"get_rel_pos(x)", |
|
"add_rel_pos(x)", |
|
"rwkv_wkv6(k, v, r, tf, td, s)", |
|
"gated_linear_attn(k, v, q, gate, s)", |
|
|
|
"unary(x)", |
|
|
|
"f(x)", |
|
"f(x,y)", |
|
|
|
"custom_f32(x)", |
|
"custom_f32(x,y)", |
|
"custom_f32(x,y,z)", |
|
|
|
"custom(x)", |
|
"custom(x,y)", |
|
"custom(x,y,z)", |
|
|
|
"cross_entropy_loss(x,y)", |
|
"cross_entropy_loss_back(x,y)", |
|
"adamw(x)", |
|
}; |
|
|
|
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83"); |
|
|
|
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); |
|
|
|
|
|
static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = { |
|
"ABS", |
|
"SGN", |
|
"NEG", |
|
"STEP", |
|
"TANH", |
|
"ELU", |
|
"RELU", |
|
"SIGMOID", |
|
"GELU", |
|
"GELU_QUICK", |
|
"SILU", |
|
"HARDSWISH", |
|
"HARDSIGMOID", |
|
"EXP", |
|
}; |
|
|
|
static_assert(GGML_UNARY_OP_COUNT == 14, "GGML_UNARY_OP_COUNT != 14"); |
|
|
|
|
|
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); |
|
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); |
|
|
|
|
|
|
|
|
|
void ggml_print_object(const struct ggml_object * obj) { |
|
GGML_LOG_INFO(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n", |
|
obj->type, obj->offs, obj->size, (const void *) obj->next); |
|
} |
|
|
|
void ggml_print_objects(const struct ggml_context * ctx) { |
|
struct ggml_object * obj = ctx->objects_begin; |
|
|
|
GGML_LOG_INFO("%s: objects in context %p:\n", __func__, (const void *) ctx); |
|
|
|
while (obj != NULL) { |
|
ggml_print_object(obj); |
|
obj = obj->next; |
|
} |
|
|
|
GGML_LOG_INFO("%s: --- end ---\n", __func__); |
|
} |
|
|
|
int64_t ggml_nelements(const struct ggml_tensor * tensor) { |
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); |
|
|
|
return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; |
|
} |
|
|
|
int64_t ggml_nrows(const struct ggml_tensor * tensor) { |
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); |
|
|
|
return tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; |
|
} |
|
|
|
size_t ggml_nbytes(const struct ggml_tensor * tensor) { |
|
size_t nbytes; |
|
const size_t blck_size = ggml_blck_size(tensor->type); |
|
if (blck_size == 1) { |
|
nbytes = ggml_type_size(tensor->type); |
|
for (int i = 0; i < GGML_MAX_DIMS; ++i) { |
|
nbytes += (tensor->ne[i] - 1)*tensor->nb[i]; |
|
} |
|
} |
|
else { |
|
nbytes = tensor->ne[0]*tensor->nb[0]/blck_size; |
|
for (int i = 1; i < GGML_MAX_DIMS; ++i) { |
|
nbytes += (tensor->ne[i] - 1)*tensor->nb[i]; |
|
} |
|
} |
|
|
|
return nbytes; |
|
} |
|
|
|
size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) { |
|
return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN); |
|
} |
|
|
|
int64_t ggml_blck_size(enum ggml_type type) { |
|
return type_traits[type].blck_size; |
|
} |
|
|
|
size_t ggml_type_size(enum ggml_type type) { |
|
return type_traits[type].type_size; |
|
} |
|
|
|
size_t ggml_row_size(enum ggml_type type, int64_t ne) { |
|
assert(ne % ggml_blck_size(type) == 0); |
|
return ggml_type_size(type)*ne/ggml_blck_size(type); |
|
} |
|
|
|
double ggml_type_sizef(enum ggml_type type) { |
|
return ((double)(type_traits[type].type_size))/type_traits[type].blck_size; |
|
} |
|
|
|
const char * ggml_type_name(enum ggml_type type) { |
|
return type < GGML_TYPE_COUNT ? type_traits[type].type_name : "NONE"; |
|
} |
|
|
|
bool ggml_is_quantized(enum ggml_type type) { |
|
return type_traits[type].is_quantized; |
|
} |
|
|
|
const char * ggml_op_name(enum ggml_op op) { |
|
return GGML_OP_NAME[op]; |
|
} |
|
|
|
const char * ggml_op_symbol(enum ggml_op op) { |
|
return GGML_OP_SYMBOL[op]; |
|
} |
|
|
|
const char * ggml_unary_op_name(enum ggml_unary_op op) { |
|
return GGML_UNARY_OP_NAME[op]; |
|
} |
|
|
|
const char * ggml_op_desc(const struct ggml_tensor * t) { |
|
if (t->op == GGML_OP_UNARY) { |
|
enum ggml_unary_op uop = ggml_get_unary_op(t); |
|
return ggml_unary_op_name(uop); |
|
} |
|
return ggml_op_name(t->op); |
|
} |
|
|
|
size_t ggml_element_size(const struct ggml_tensor * tensor) { |
|
return ggml_type_size(tensor->type); |
|
} |
|
|
|
bool ggml_is_scalar(const struct ggml_tensor * tensor) { |
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); |
|
|
|
return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1; |
|
} |
|
|
|
bool ggml_is_vector(const struct ggml_tensor * tensor) { |
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); |
|
|
|
return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1; |
|
} |
|
|
|
bool ggml_is_matrix(const struct ggml_tensor * tensor) { |
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); |
|
|
|
return tensor->ne[2] == 1 && tensor->ne[3] == 1; |
|
} |
|
|
|
bool ggml_is_3d(const struct ggml_tensor * tensor) { |
|
return tensor->ne[3] == 1; |
|
} |
|
|
|
int ggml_n_dims(const struct ggml_tensor * tensor) { |
|
for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) { |
|
if (tensor->ne[i] > 1) { |
|
return i + 1; |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { |
|
enum ggml_type wtype = GGML_TYPE_COUNT; |
|
|
|
switch (ftype) { |
|
case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break; |
|
case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break; |
|
case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break; |
|
case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break; |
|
case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break; |
|
case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break; |
|
case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break; |
|
case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break; |
|
case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break; |
|
case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break; |
|
case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break; |
|
case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break; |
|
case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break; |
|
case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break; |
|
case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break; |
|
case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break; |
|
case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break; |
|
case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break; |
|
case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break; |
|
case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break; |
|
case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break; |
|
case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break; |
|
case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break; |
|
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break; |
|
} |
|
|
|
GGML_ASSERT(wtype != GGML_TYPE_COUNT); |
|
|
|
return wtype; |
|
} |
|
|
|
size_t ggml_tensor_overhead(void) { |
|
return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE; |
|
} |
|
|
|
bool ggml_is_transposed(const struct ggml_tensor * tensor) { |
|
return tensor->nb[0] > tensor->nb[1]; |
|
} |
|
|
|
static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) { |
|
size_t next_nb = ggml_type_size(tensor->type); |
|
if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) { |
|
return false; |
|
} |
|
next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type); |
|
for (int i = 1; i < GGML_MAX_DIMS; i++) { |
|
if (tensor->ne[i] != 1) { |
|
if (i > n) { |
|
if (tensor->nb[i] != next_nb) { |
|
return false; |
|
} |
|
next_nb *= tensor->ne[i]; |
|
} else { |
|
|
|
next_nb = tensor->ne[i]*tensor->nb[i]; |
|
} |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
bool ggml_is_contiguous(const struct ggml_tensor * tensor) { |
|
return ggml_is_contiguous_0(tensor); |
|
} |
|
|
|
bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) { |
|
return ggml_is_contiguous_n(tensor, 0); |
|
} |
|
|
|
bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) { |
|
return ggml_is_contiguous_n(tensor, 1); |
|
} |
|
|
|
bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) { |
|
return ggml_is_contiguous_n(tensor, 2); |
|
} |
|
|
|
bool ggml_is_permuted(const struct ggml_tensor * tensor) { |
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); |
|
|
|
return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3]; |
|
} |
|
|
|
static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) { |
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); |
|
|
|
return |
|
tensor->nb[0] == ggml_type_size(tensor->type) && |
|
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && |
|
tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; |
|
} |
|
|
|
bool ggml_is_empty(const struct ggml_tensor * tensor) { |
|
for (int i = 0; i < GGML_MAX_DIMS; ++i) { |
|
if (tensor->ne[i] == 0) { |
|
|
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { |
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); |
|
|
|
return |
|
(t0->ne[0] == t1->ne[0]) && |
|
(t0->ne[1] == t1->ne[1]) && |
|
(t0->ne[2] == t1->ne[2]) && |
|
(t0->ne[3] == t1->ne[3]); |
|
} |
|
|
|
bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { |
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); |
|
|
|
return |
|
(t0->nb[0] == t1->nb[0]) && |
|
(t0->nb[1] == t1->nb[1]) && |
|
(t0->nb[2] == t1->nb[2]) && |
|
(t0->nb[3] == t1->nb[3]); |
|
} |
|
|
|
|
|
bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { |
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); |
|
|
|
return ggml_is_empty(t0) ? ggml_is_empty(t1) : |
|
(t1->ne[0]%t0->ne[0] == 0) && |
|
(t1->ne[1]%t0->ne[1] == 0) && |
|
(t1->ne[2]%t0->ne[2] == 0) && |
|
(t1->ne[3]%t0->ne[3] == 0); |
|
} |
|
|
|
static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { |
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); |
|
|
|
return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1); |
|
} |
|
|
|
|
|
#define GGML_ASSERT_ALIGNED(ptr) \ |
|
GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0) |
|
|
|
|
|
|
|
struct ggml_context * ggml_init(struct ggml_init_params params) { |
|
static bool is_first_call = true; |
|
|
|
ggml_critical_section_start(); |
|
|
|
if (is_first_call) { |
|
|
|
ggml_time_init(); |
|
|
|
for (int i = 0; i < (1 << 16); ++i) { |
|
union { |
|
uint16_t u16; |
|
ggml_fp16_t fp16; |
|
} u = {i}; |
|
ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16); |
|
} |
|
|
|
is_first_call = false; |
|
} |
|
|
|
ggml_critical_section_end(); |
|
|
|
struct ggml_context * ctx = GGML_MALLOC(sizeof(struct ggml_context)); |
|
|
|
|
|
if (params.mem_size == 0) { |
|
params.mem_size = GGML_MEM_ALIGN; |
|
} |
|
|
|
const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN); |
|
|
|
*ctx = (struct ggml_context) { |
|
mem_size, |
|
params.mem_buffer ? params.mem_buffer : ggml_aligned_malloc(mem_size), |
|
params.mem_buffer ? false : true, |
|
params.no_alloc, |
|
0, |
|
NULL, |
|
NULL, |
|
}; |
|
|
|
GGML_ASSERT(ctx->mem_buffer != NULL); |
|
|
|
GGML_ASSERT_ALIGNED(ctx->mem_buffer); |
|
|
|
GGML_PRINT_DEBUG("%s: context initialized\n", __func__); |
|
|
|
return ctx; |
|
} |
|
|
|
void ggml_reset(struct ggml_context * ctx) { |
|
if (ctx == NULL) { |
|
return; |
|
} |
|
|
|
ctx->n_objects = 0; |
|
ctx->objects_begin = NULL; |
|
ctx->objects_end = NULL; |
|
} |
|
|
|
void ggml_free(struct ggml_context * ctx) { |
|
if (ctx == NULL) { |
|
return; |
|
} |
|
|
|
if (ctx->mem_buffer_owned) { |
|
ggml_aligned_free(ctx->mem_buffer, ctx->mem_size); |
|
} |
|
|
|
GGML_FREE(ctx); |
|
} |
|
|
|
size_t ggml_used_mem(const struct ggml_context * ctx) { |
|
return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size; |
|
} |
|
|
|
bool ggml_get_no_alloc(struct ggml_context * ctx) { |
|
return ctx->no_alloc; |
|
} |
|
|
|
void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) { |
|
ctx->no_alloc = no_alloc; |
|
} |
|
|
|
void * ggml_get_mem_buffer(const struct ggml_context * ctx) { |
|
return ctx->mem_buffer; |
|
} |
|
|
|
size_t ggml_get_mem_size(const struct ggml_context * ctx) { |
|
return ctx->mem_size; |
|
} |
|
|
|
size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) { |
|
size_t max_size = 0; |
|
|
|
for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) { |
|
size_t bytes = ggml_nbytes(tensor); |
|
max_size = MAX(max_size, bytes); |
|
} |
|
|
|
return max_size; |
|
} |
|
|
|
|
|
|
|
static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) { |
|
|
|
struct ggml_object * obj_cur = ctx->objects_end; |
|
|
|
const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs; |
|
const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size; |
|
const size_t cur_end = cur_offs + cur_size; |
|
|
|
|
|
size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN); |
|
|
|
char * const mem_buffer = ctx->mem_buffer; |
|
struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end); |
|
|
|
if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) { |
|
GGML_LOG_WARN("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n", |
|
__func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size); |
|
#ifndef NDEBUG |
|
GGML_ABORT("not enough space in the context's memory pool"); |
|
#endif |
|
return NULL; |
|
} |
|
|
|
*obj_new = (struct ggml_object) { |
|
.offs = cur_end + GGML_OBJECT_SIZE, |
|
.size = size_needed, |
|
.next = NULL, |
|
.type = type, |
|
}; |
|
|
|
GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs); |
|
|
|
if (obj_cur != NULL) { |
|
obj_cur->next = obj_new; |
|
} else { |
|
|
|
ctx->objects_begin = obj_new; |
|
} |
|
|
|
ctx->objects_end = obj_new; |
|
|
|
|
|
|
|
return obj_new; |
|
} |
|
|
|
static struct ggml_tensor * ggml_new_tensor_impl( |
|
struct ggml_context * ctx, |
|
enum ggml_type type, |
|
int n_dims, |
|
const int64_t * ne, |
|
struct ggml_tensor * view_src, |
|
size_t view_offs) { |
|
|
|
GGML_ASSERT(type >= 0 && type < GGML_TYPE_COUNT); |
|
GGML_ASSERT(n_dims >= 1 && n_dims <= GGML_MAX_DIMS); |
|
|
|
|
|
if (view_src != NULL && view_src->view_src != NULL) { |
|
view_offs += view_src->view_offs; |
|
view_src = view_src->view_src; |
|
} |
|
|
|
size_t data_size = ggml_row_size(type, ne[0]); |
|
for (int i = 1; i < n_dims; i++) { |
|
data_size *= ne[i]; |
|
} |
|
|
|
GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src)); |
|
|
|
void * data = view_src != NULL ? view_src->data : NULL; |
|
if (data != NULL) { |
|
data = (char *) data + view_offs; |
|
} |
|
|
|
size_t obj_alloc_size = 0; |
|
|
|
if (view_src == NULL && !ctx->no_alloc) { |
|
|
|
obj_alloc_size = data_size; |
|
} |
|
|
|
struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size); |
|
GGML_ASSERT(obj_new); |
|
|
|
struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs); |
|
|
|
*result = (struct ggml_tensor) { |
|
type, |
|
NULL, |
|
{ 1, 1, 1, 1 }, |
|
{ 0, 0, 0, 0 }, |
|
GGML_OP_NONE, |
|
{ 0 }, |
|
0, |
|
{ NULL }, |
|
view_src, |
|
view_offs, |
|
obj_alloc_size > 0 ? (void *)(result + 1) : data, |
|
{ 0 }, |
|
NULL, |
|
{ 0 }, |
|
}; |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < n_dims; i++) { |
|
result->ne[i] = ne[i]; |
|
} |
|
|
|
result->nb[0] = ggml_type_size(type); |
|
result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type)); |
|
for (int i = 2; i < GGML_MAX_DIMS; i++) { |
|
result->nb[i] = result->nb[i - 1]*result->ne[i - 1]; |
|
} |
|
|
|
ctx->n_objects++; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_new_tensor( |
|
struct ggml_context * ctx, |
|
enum ggml_type type, |
|
int n_dims, |
|
const int64_t * ne) { |
|
return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0); |
|
} |
|
|
|
struct ggml_tensor * ggml_new_tensor_1d( |
|
struct ggml_context * ctx, |
|
enum ggml_type type, |
|
int64_t ne0) { |
|
return ggml_new_tensor(ctx, type, 1, &ne0); |
|
} |
|
|
|
struct ggml_tensor * ggml_new_tensor_2d( |
|
struct ggml_context * ctx, |
|
enum ggml_type type, |
|
int64_t ne0, |
|
int64_t ne1) { |
|
const int64_t ne[2] = { ne0, ne1 }; |
|
return ggml_new_tensor(ctx, type, 2, ne); |
|
} |
|
|
|
struct ggml_tensor * ggml_new_tensor_3d( |
|
struct ggml_context * ctx, |
|
enum ggml_type type, |
|
int64_t ne0, |
|
int64_t ne1, |
|
int64_t ne2) { |
|
const int64_t ne[3] = { ne0, ne1, ne2 }; |
|
return ggml_new_tensor(ctx, type, 3, ne); |
|
} |
|
|
|
struct ggml_tensor * ggml_new_tensor_4d( |
|
struct ggml_context * ctx, |
|
enum ggml_type type, |
|
int64_t ne0, |
|
int64_t ne1, |
|
int64_t ne2, |
|
int64_t ne3) { |
|
const int64_t ne[4] = { ne0, ne1, ne2, ne3 }; |
|
return ggml_new_tensor(ctx, type, 4, ne); |
|
} |
|
|
|
void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes) { |
|
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, nbytes); |
|
|
|
return (uint8_t *)ctx->mem_buffer + obj->offs; |
|
} |
|
|
|
struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) { |
|
return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne); |
|
} |
|
|
|
void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) { |
|
const int64_t ne2 = tensor->ne[2]; |
|
const int64_t ne1 = tensor->ne[1]; |
|
const int64_t ne0 = tensor->ne[0]; |
|
|
|
const int64_t i3_ = (i/(ne2*ne1*ne0)); |
|
const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0); |
|
const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0; |
|
const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0); |
|
|
|
if (i0) { |
|
* i0 = i0_; |
|
} |
|
if (i1) { |
|
* i1 = i1_; |
|
} |
|
if (i2) { |
|
* i2 = i2_; |
|
} |
|
if (i3) { |
|
* i3 = i3_; |
|
} |
|
} |
|
|
|
void * ggml_get_data(const struct ggml_tensor * tensor) { |
|
return tensor->data; |
|
} |
|
|
|
float * ggml_get_data_f32(const struct ggml_tensor * tensor) { |
|
assert(tensor->type == GGML_TYPE_F32); |
|
return (float *)(tensor->data); |
|
} |
|
|
|
enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) { |
|
GGML_ASSERT(tensor->op == GGML_OP_UNARY); |
|
return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0); |
|
} |
|
|
|
const char * ggml_get_name(const struct ggml_tensor * tensor) { |
|
return tensor->name; |
|
} |
|
|
|
struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) { |
|
size_t i; |
|
for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) { |
|
tensor->name[i] = name[i]; |
|
} |
|
tensor->name[i] = '\0'; |
|
return tensor; |
|
} |
|
|
|
struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) { |
|
va_list args; |
|
va_start(args, fmt); |
|
vsnprintf(tensor->name, sizeof(tensor->name), fmt, args); |
|
va_end(args); |
|
return tensor; |
|
} |
|
|
|
struct ggml_tensor * ggml_view_tensor( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * src) { |
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0); |
|
ggml_format_name(result, "%s (view)", src->name); |
|
|
|
for (int i = 0; i < GGML_MAX_DIMS; i++) { |
|
result->nb[i] = src->nb[i]; |
|
} |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) { |
|
struct ggml_object * obj = ctx->objects_begin; |
|
|
|
char * const mem_buffer = ctx->mem_buffer; |
|
|
|
while (obj != NULL) { |
|
if (obj->type == GGML_OBJECT_TYPE_TENSOR) { |
|
return (struct ggml_tensor *)(mem_buffer + obj->offs); |
|
} |
|
|
|
obj = obj->next; |
|
} |
|
|
|
return NULL; |
|
} |
|
|
|
struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) { |
|
struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE); |
|
obj = obj->next; |
|
|
|
char * const mem_buffer = ctx->mem_buffer; |
|
|
|
while (obj != NULL) { |
|
if (obj->type == GGML_OBJECT_TYPE_TENSOR) { |
|
return (struct ggml_tensor *)(mem_buffer + obj->offs); |
|
} |
|
|
|
obj = obj->next; |
|
} |
|
|
|
return NULL; |
|
} |
|
|
|
struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) { |
|
struct ggml_object * obj = ctx->objects_begin; |
|
|
|
char * const mem_buffer = ctx->mem_buffer; |
|
|
|
while (obj != NULL) { |
|
if (obj->type == GGML_OBJECT_TYPE_TENSOR) { |
|
struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs); |
|
if (strcmp(cur->name, name) == 0) { |
|
return cur; |
|
} |
|
} |
|
|
|
obj = obj->next; |
|
} |
|
|
|
return NULL; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_dup_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
result->op = GGML_OP_DUP; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_dup( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_dup_impl(ctx, a, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_dup_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_dup_impl(ctx, a, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_add_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
bool inplace) { |
|
GGML_ASSERT(ggml_can_repeat(b, a)); |
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
result->op = GGML_OP_ADD; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_add( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
return ggml_add_impl(ctx, a, b, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_add_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
return ggml_add_impl(ctx, a, b, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_add_cast_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
enum ggml_type type) { |
|
|
|
|
|
GGML_ASSERT(ggml_can_repeat_rows(b, a)); |
|
|
|
|
|
GGML_ASSERT(ggml_is_quantized(a->type) || |
|
a->type == GGML_TYPE_F16 || |
|
a->type == GGML_TYPE_BF16); |
|
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne); |
|
|
|
result->op = GGML_OP_ADD; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_add_cast( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
enum ggml_type type) { |
|
return ggml_add_cast_impl(ctx, a, b, type); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_add1_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
bool inplace) { |
|
GGML_ASSERT(ggml_is_scalar(b)); |
|
GGML_ASSERT(ggml_is_padded_1d(a)); |
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
result->op = GGML_OP_ADD1; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_add1( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
return ggml_add1_impl(ctx, a, b, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_add1_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
return ggml_add1_impl(ctx, a, b, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_acc_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
size_t nb1, |
|
size_t nb2, |
|
size_t nb3, |
|
size_t offset, |
|
bool inplace) { |
|
GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a)); |
|
GGML_ASSERT(ggml_is_contiguous(a)); |
|
GGML_ASSERT(a->type == GGML_TYPE_F32); |
|
GGML_ASSERT(b->type == GGML_TYPE_F32); |
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_ACC; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_acc( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
size_t nb1, |
|
size_t nb2, |
|
size_t nb3, |
|
size_t offset) { |
|
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_acc_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
size_t nb1, |
|
size_t nb2, |
|
size_t nb3, |
|
size_t offset) { |
|
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_sub_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
bool inplace) { |
|
GGML_ASSERT(ggml_can_repeat(b, a)); |
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
result->op = GGML_OP_SUB; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_sub( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
return ggml_sub_impl(ctx, a, b, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_sub_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
return ggml_sub_impl(ctx, a, b, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_mul_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
bool inplace) { |
|
GGML_ASSERT(ggml_can_repeat(b, a)); |
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
result->op = GGML_OP_MUL; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_mul( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
return ggml_mul_impl(ctx, a, b, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_mul_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
return ggml_mul_impl(ctx, a, b, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_div_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
bool inplace) { |
|
GGML_ASSERT(ggml_can_repeat(b, a)); |
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
result->op = GGML_OP_DIV; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_div( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
return ggml_div_impl(ctx, a, b, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_div_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
return ggml_div_impl(ctx, a, b, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_sqr_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
result->op = GGML_OP_SQR; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_sqr( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_sqr_impl(ctx, a, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_sqr_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_sqr_impl(ctx, a, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_sqrt_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
result->op = GGML_OP_SQRT; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_sqrt( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_sqrt_impl(ctx, a, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_sqrt_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_sqrt_impl(ctx, a, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_log_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
result->op = GGML_OP_LOG; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_log( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_log_impl(ctx, a, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_log_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_log_impl(ctx, a, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_sin_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
result->op = GGML_OP_SIN; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_sin( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_sin_impl(ctx, a, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_sin_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_sin_impl(ctx, a, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_cos_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
result->op = GGML_OP_COS; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_cos( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_cos_impl(ctx, a, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_cos_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_cos_impl(ctx, a, true); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_sum( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1); |
|
|
|
result->op = GGML_OP_SUM; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_sum_rows( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
int64_t ne[GGML_MAX_DIMS] = { 1 }; |
|
for (int i = 1; i < GGML_MAX_DIMS; ++i) { |
|
ne[i] = a->ne[i]; |
|
} |
|
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne); |
|
|
|
result->op = GGML_OP_SUM_ROWS; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_mean( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] }; |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); |
|
|
|
result->op = GGML_OP_MEAN; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_argmax( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
GGML_ASSERT(ggml_is_matrix(a)); |
|
GGML_ASSERT(a->ne[0] <= INT32_MAX); |
|
|
|
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]); |
|
|
|
result->op = GGML_OP_ARGMAX; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_count_equal( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
GGML_ASSERT(ggml_are_same_shape(a, b)); |
|
|
|
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, 1); |
|
|
|
result->op = GGML_OP_COUNT_EQUAL; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_repeat( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
GGML_ASSERT(ggml_can_repeat(a, b)); |
|
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne); |
|
|
|
result->op = GGML_OP_REPEAT; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_repeat_back( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
GGML_ASSERT(ggml_can_repeat(b, a)); |
|
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne); |
|
|
|
result->op = GGML_OP_REPEAT_BACK; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_concat( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
int dim) { |
|
GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS); |
|
|
|
int64_t ne[GGML_MAX_DIMS]; |
|
for (int d = 0; d < GGML_MAX_DIMS; ++d) { |
|
if (d == dim) { |
|
ne[d] = a->ne[d] + b->ne[d]; |
|
continue; |
|
} |
|
GGML_ASSERT(a->ne[d] == b->ne[d]); |
|
ne[d] = a->ne[d]; |
|
} |
|
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne); |
|
|
|
ggml_set_op_params_i32(result, 0, dim); |
|
|
|
result->op = GGML_OP_CONCAT; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_abs( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary(ctx, a, GGML_UNARY_OP_ABS); |
|
} |
|
|
|
struct ggml_tensor * ggml_abs_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_sgn( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary(ctx, a, GGML_UNARY_OP_SGN); |
|
} |
|
|
|
struct ggml_tensor * ggml_sgn_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_neg( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary(ctx, a, GGML_UNARY_OP_NEG); |
|
} |
|
|
|
struct ggml_tensor * ggml_neg_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_step( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary(ctx, a, GGML_UNARY_OP_STEP); |
|
} |
|
|
|
struct ggml_tensor * ggml_step_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_tanh( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary(ctx, a, GGML_UNARY_OP_TANH); |
|
} |
|
|
|
struct ggml_tensor * ggml_tanh_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_elu( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary(ctx, a, GGML_UNARY_OP_ELU); |
|
} |
|
|
|
struct ggml_tensor * ggml_elu_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_relu( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary(ctx, a, GGML_UNARY_OP_RELU); |
|
} |
|
|
|
struct ggml_tensor * ggml_relu_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_leaky_relu( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
float negative_slope, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
ggml_set_op_params(result, &negative_slope, sizeof(negative_slope)); |
|
|
|
result->op = GGML_OP_LEAKY_RELU; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_sigmoid( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID); |
|
} |
|
|
|
struct ggml_tensor * ggml_sigmoid_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_gelu( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary(ctx, a, GGML_UNARY_OP_GELU); |
|
} |
|
|
|
struct ggml_tensor * ggml_gelu_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_gelu_quick( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK); |
|
} |
|
|
|
struct ggml_tensor * ggml_gelu_quick_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_silu( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary(ctx, a, GGML_UNARY_OP_SILU); |
|
} |
|
|
|
struct ggml_tensor * ggml_silu_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_silu_back( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
struct ggml_tensor * result = ggml_dup_tensor(ctx, a); |
|
|
|
result->op = GGML_OP_SILU_BACK; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_hardswish( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_hardsigmoid( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_exp( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary(ctx, a, GGML_UNARY_OP_EXP); |
|
} |
|
|
|
struct ggml_tensor * ggml_exp_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_EXP); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_norm_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
float eps, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
ggml_set_op_params(result, &eps, sizeof(eps)); |
|
|
|
result->op = GGML_OP_NORM; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_norm( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
float eps) { |
|
return ggml_norm_impl(ctx, a, eps, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_norm_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
float eps) { |
|
return ggml_norm_impl(ctx, a, eps, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_rms_norm_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
float eps, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
ggml_set_op_params(result, &eps, sizeof(eps)); |
|
|
|
result->op = GGML_OP_RMS_NORM; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_rms_norm( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
float eps) { |
|
return ggml_rms_norm_impl(ctx, a, eps, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_rms_norm_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
float eps) { |
|
return ggml_rms_norm_impl(ctx, a, eps, true); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_rms_norm_back( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
float eps) { |
|
struct ggml_tensor * result = ggml_dup_tensor(ctx, a); |
|
|
|
ggml_set_op_params(result, &eps, sizeof(eps)); |
|
|
|
result->op = GGML_OP_RMS_NORM_BACK; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_group_norm_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int n_groups, |
|
float eps, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
ggml_set_op_params_i32(result, 0, n_groups); |
|
ggml_set_op_params_f32(result, 1, eps); |
|
|
|
result->op = GGML_OP_GROUP_NORM; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_group_norm( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int n_groups, |
|
float eps) { |
|
return ggml_group_norm_impl(ctx, a, n_groups, eps, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_group_norm_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int n_groups, |
|
float eps) { |
|
return ggml_group_norm_impl(ctx, a, n_groups, eps, true); |
|
} |
|
|
|
|
|
|
|
static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { |
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); |
|
|
|
return (t0->ne[0] == t1->ne[0]) && |
|
(t1->ne[2]%t0->ne[2] == 0) && |
|
(t1->ne[3]%t0->ne[3] == 0); |
|
} |
|
|
|
struct ggml_tensor * ggml_mul_mat( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
GGML_ASSERT(ggml_can_mul_mat(a, b)); |
|
GGML_ASSERT(!ggml_is_transposed(a)); |
|
|
|
const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] }; |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); |
|
|
|
result->op = GGML_OP_MUL_MAT; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
void ggml_mul_mat_set_prec( |
|
struct ggml_tensor * a, |
|
enum ggml_prec prec) { |
|
GGML_ASSERT(a->op == GGML_OP_MUL_MAT); |
|
|
|
const int32_t prec_i32 = (int32_t) prec; |
|
|
|
ggml_set_op_params_i32(a, 0, prec_i32); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct ggml_tensor * ggml_mul_mat_id( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * as, |
|
struct ggml_tensor * b, |
|
struct ggml_tensor * ids) { |
|
GGML_ASSERT(!ggml_is_transposed(as)); |
|
GGML_ASSERT(ids->type == GGML_TYPE_I32); |
|
|
|
GGML_ASSERT(as->ne[3] == 1); |
|
GGML_ASSERT(b->ne[3] == 1); |
|
GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); |
|
GGML_ASSERT(ids->ne[1] == b->ne[2]); |
|
GGML_ASSERT(as->ne[0] == b->ne[0]); |
|
GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); |
|
|
|
const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 }; |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); |
|
|
|
result->op = GGML_OP_MUL_MAT_ID; |
|
result->src[0] = as; |
|
result->src[1] = b; |
|
result->src[2] = ids; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { |
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); |
|
|
|
return (t0->ne[1] == t1->ne[1]) && |
|
(t1->ne[2]%t0->ne[2] == 0) && |
|
(t1->ne[3]%t0->ne[3] == 0); |
|
} |
|
|
|
struct ggml_tensor * ggml_out_prod( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
GGML_ASSERT(ggml_can_out_prod(a, b)); |
|
GGML_ASSERT(!ggml_is_transposed(a)); |
|
|
|
|
|
const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] }; |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); |
|
|
|
result->op = GGML_OP_OUT_PROD; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_scale_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
float s, |
|
bool inplace) { |
|
GGML_ASSERT(ggml_is_padded_1d(a)); |
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
ggml_set_op_params(result, &s, sizeof(s)); |
|
|
|
result->op = GGML_OP_SCALE; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_scale( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
float s) { |
|
return ggml_scale_impl(ctx, a, s, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_scale_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
float s) { |
|
return ggml_scale_impl(ctx, a, s, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_set_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
size_t nb1, |
|
size_t nb2, |
|
size_t nb3, |
|
size_t offset, |
|
bool inplace) { |
|
GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b)); |
|
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
GGML_ASSERT(offset < (size_t)(1 << 30)); |
|
int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_SET; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_set( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
size_t nb1, |
|
size_t nb2, |
|
size_t nb3, |
|
size_t offset) { |
|
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_set_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
size_t nb1, |
|
size_t nb2, |
|
size_t nb3, |
|
size_t offset) { |
|
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true); |
|
} |
|
|
|
struct ggml_tensor * ggml_set_1d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
size_t offset) { |
|
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_set_1d_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
size_t offset) { |
|
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true); |
|
} |
|
|
|
struct ggml_tensor * ggml_set_2d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
size_t nb1, |
|
size_t offset) { |
|
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_set_2d_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
size_t nb1, |
|
size_t offset) { |
|
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_cpy_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); |
|
|
|
|
|
struct ggml_tensor * result = ggml_view_tensor(ctx, b); |
|
if (strlen(b->name) > 0) { |
|
ggml_format_name(result, "%s (copy of %s)", b->name, a->name); |
|
} else { |
|
ggml_format_name(result, "%s (copy)", a->name); |
|
} |
|
|
|
result->op = GGML_OP_CPY; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_cpy( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
return ggml_cpy_impl(ctx, a, b); |
|
} |
|
|
|
struct ggml_tensor * ggml_cast( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
enum ggml_type type) { |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne); |
|
ggml_format_name(result, "%s (copy)", a->name); |
|
|
|
result->op = GGML_OP_CPY; |
|
result->src[0] = a; |
|
result->src[1] = result; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_cont_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
struct ggml_tensor * result = ggml_dup_tensor(ctx, a); |
|
ggml_format_name(result, "%s (cont)", a->name); |
|
|
|
result->op = GGML_OP_CONT; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_cont( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_cont_impl(ctx, a); |
|
} |
|
|
|
|
|
GGML_API struct ggml_tensor * ggml_cont_1d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int64_t ne0) { |
|
return ggml_cont_4d(ctx, a, ne0, 1, 1, 1); |
|
} |
|
|
|
GGML_API struct ggml_tensor * ggml_cont_2d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int64_t ne0, |
|
int64_t ne1) { |
|
return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1); |
|
} |
|
|
|
GGML_API struct ggml_tensor * ggml_cont_3d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int64_t ne0, |
|
int64_t ne1, |
|
int64_t ne2) { |
|
return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1); |
|
} |
|
|
|
struct ggml_tensor * ggml_cont_4d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int64_t ne0, |
|
int64_t ne1, |
|
int64_t ne2, |
|
int64_t ne3) { |
|
GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3)); |
|
|
|
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3); |
|
ggml_format_name(result, "%s (cont)", a->name); |
|
|
|
result->op = GGML_OP_CONT; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_reshape( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
GGML_ASSERT(ggml_is_contiguous(a)); |
|
|
|
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); |
|
|
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0); |
|
ggml_format_name(result, "%s (reshaped)", a->name); |
|
|
|
result->op = GGML_OP_RESHAPE; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_reshape_1d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int64_t ne0) { |
|
GGML_ASSERT(ggml_is_contiguous(a)); |
|
GGML_ASSERT(ggml_nelements(a) == ne0); |
|
|
|
const int64_t ne[1] = { ne0 }; |
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0); |
|
ggml_format_name(result, "%s (reshaped)", a->name); |
|
|
|
result->op = GGML_OP_RESHAPE; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_reshape_2d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int64_t ne0, |
|
int64_t ne1) { |
|
GGML_ASSERT(ggml_is_contiguous(a)); |
|
GGML_ASSERT(ggml_nelements(a) == ne0*ne1); |
|
|
|
const int64_t ne[2] = { ne0, ne1 }; |
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0); |
|
ggml_format_name(result, "%s (reshaped)", a->name); |
|
|
|
result->op = GGML_OP_RESHAPE; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_reshape_3d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int64_t ne0, |
|
int64_t ne1, |
|
int64_t ne2) { |
|
GGML_ASSERT(ggml_is_contiguous(a)); |
|
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2); |
|
|
|
const int64_t ne[3] = { ne0, ne1, ne2 }; |
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0); |
|
ggml_format_name(result, "%s (reshaped)", a->name); |
|
|
|
result->op = GGML_OP_RESHAPE; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_reshape_4d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int64_t ne0, |
|
int64_t ne1, |
|
int64_t ne2, |
|
int64_t ne3) { |
|
GGML_ASSERT(ggml_is_contiguous(a)); |
|
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3); |
|
|
|
const int64_t ne[4] = { ne0, ne1, ne2, ne3 }; |
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0); |
|
ggml_format_name(result, "%s (reshaped)", a->name); |
|
|
|
result->op = GGML_OP_RESHAPE; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
static struct ggml_tensor * ggml_view_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int n_dims, |
|
const int64_t * ne, |
|
size_t offset) { |
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset); |
|
ggml_format_name(result, "%s (view)", a->name); |
|
|
|
ggml_set_op_params(result, &offset, sizeof(offset)); |
|
|
|
result->op = GGML_OP_VIEW; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_view_1d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int64_t ne0, |
|
size_t offset) { |
|
struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset); |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_view_2d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int64_t ne0, |
|
int64_t ne1, |
|
size_t nb1, |
|
size_t offset) { |
|
const int64_t ne[2] = { ne0, ne1 }; |
|
|
|
struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset); |
|
|
|
result->nb[1] = nb1; |
|
result->nb[2] = result->nb[1]*ne1; |
|
result->nb[3] = result->nb[2]; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_view_3d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int64_t ne0, |
|
int64_t ne1, |
|
int64_t ne2, |
|
size_t nb1, |
|
size_t nb2, |
|
size_t offset) { |
|
const int64_t ne[3] = { ne0, ne1, ne2 }; |
|
|
|
struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset); |
|
|
|
result->nb[1] = nb1; |
|
result->nb[2] = nb2; |
|
result->nb[3] = result->nb[2]*ne2; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_view_4d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int64_t ne0, |
|
int64_t ne1, |
|
int64_t ne2, |
|
int64_t ne3, |
|
size_t nb1, |
|
size_t nb2, |
|
size_t nb3, |
|
size_t offset) { |
|
const int64_t ne[4] = { ne0, ne1, ne2, ne3 }; |
|
|
|
struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset); |
|
|
|
result->nb[1] = nb1; |
|
result->nb[2] = nb2; |
|
result->nb[3] = nb3; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_permute( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int axis0, |
|
int axis1, |
|
int axis2, |
|
int axis3) { |
|
GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS); |
|
GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS); |
|
GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS); |
|
GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS); |
|
|
|
GGML_ASSERT(axis0 != axis1); |
|
GGML_ASSERT(axis0 != axis2); |
|
GGML_ASSERT(axis0 != axis3); |
|
GGML_ASSERT(axis1 != axis2); |
|
GGML_ASSERT(axis1 != axis3); |
|
GGML_ASSERT(axis2 != axis3); |
|
|
|
struct ggml_tensor * result = ggml_view_tensor(ctx, a); |
|
ggml_format_name(result, "%s (permuted)", a->name); |
|
|
|
int ne[GGML_MAX_DIMS]; |
|
int nb[GGML_MAX_DIMS]; |
|
|
|
ne[axis0] = a->ne[0]; |
|
ne[axis1] = a->ne[1]; |
|
ne[axis2] = a->ne[2]; |
|
ne[axis3] = a->ne[3]; |
|
|
|
nb[axis0] = a->nb[0]; |
|
nb[axis1] = a->nb[1]; |
|
nb[axis2] = a->nb[2]; |
|
nb[axis3] = a->nb[3]; |
|
|
|
result->ne[0] = ne[0]; |
|
result->ne[1] = ne[1]; |
|
result->ne[2] = ne[2]; |
|
result->ne[3] = ne[3]; |
|
|
|
result->nb[0] = nb[0]; |
|
result->nb[1] = nb[1]; |
|
result->nb[2] = nb[2]; |
|
result->nb[3] = nb[3]; |
|
|
|
result->op = GGML_OP_PERMUTE; |
|
result->src[0] = a; |
|
|
|
int32_t params[] = { axis0, axis1, axis2, axis3 }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_transpose( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
struct ggml_tensor * result = ggml_view_tensor(ctx, a); |
|
ggml_format_name(result, "%s (transposed)", a->name); |
|
|
|
result->ne[0] = a->ne[1]; |
|
result->ne[1] = a->ne[0]; |
|
|
|
result->nb[0] = a->nb[1]; |
|
result->nb[1] = a->nb[0]; |
|
|
|
result->op = GGML_OP_TRANSPOSE; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_get_rows( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
GGML_ASSERT(a->ne[2] == b->ne[1]); |
|
GGML_ASSERT(b->ne[3] == 1); |
|
GGML_ASSERT(b->type == GGML_TYPE_I32); |
|
|
|
|
|
enum ggml_type type = GGML_TYPE_F32; |
|
if (a->type == GGML_TYPE_I32) { |
|
type = a->type; |
|
} |
|
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]); |
|
|
|
result->op = GGML_OP_GET_ROWS; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_get_rows_back( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
struct ggml_tensor * c) { |
|
GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32); |
|
GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0])); |
|
|
|
|
|
|
|
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]); |
|
|
|
result->op = GGML_OP_GET_ROWS_BACK; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_diag( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
GGML_ASSERT(a->ne[1] == 1); |
|
|
|
const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] }; |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne); |
|
|
|
result->op = GGML_OP_DIAG; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_diag_mask_inf_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int n_past, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
int32_t params[] = { n_past }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_DIAG_MASK_INF; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_diag_mask_inf( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int n_past) { |
|
return ggml_diag_mask_inf_impl(ctx, a, n_past, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_diag_mask_inf_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int n_past) { |
|
return ggml_diag_mask_inf_impl(ctx, a, n_past, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_diag_mask_zero_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int n_past, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
int32_t params[] = { n_past }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_DIAG_MASK_ZERO; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_diag_mask_zero( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int n_past) { |
|
return ggml_diag_mask_zero_impl(ctx, a, n_past, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_diag_mask_zero_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int n_past) { |
|
return ggml_diag_mask_zero_impl(ctx, a, n_past, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_soft_max_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * mask, |
|
float scale, |
|
float max_bias, |
|
bool inplace) { |
|
GGML_ASSERT(ggml_is_contiguous(a)); |
|
|
|
if (mask) { |
|
GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32); |
|
GGML_ASSERT(ggml_is_contiguous(mask)); |
|
GGML_ASSERT(ggml_is_matrix(mask)); |
|
GGML_ASSERT(mask->ne[0] == a->ne[0]); |
|
GGML_ASSERT(mask->ne[1] >= a->ne[1]); |
|
} |
|
|
|
if (max_bias > 0.0f) { |
|
GGML_ASSERT(mask); |
|
} |
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
float params[] = { scale, max_bias }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_SOFT_MAX; |
|
result->src[0] = a; |
|
result->src[1] = mask; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_soft_max( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_soft_max_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a) { |
|
return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true); |
|
} |
|
|
|
struct ggml_tensor * ggml_soft_max_ext( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * mask, |
|
float scale, |
|
float max_bias) { |
|
return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_soft_max_ext_back_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
float scale, |
|
float max_bias, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
result->op = GGML_OP_SOFT_MAX_BACK; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
memcpy((float *) result->op_params + 0, &scale, sizeof(float)); |
|
memcpy((float *) result->op_params + 1, &max_bias, sizeof(float)); |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_soft_max_ext_back( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
float scale, |
|
float max_bias) { |
|
return ggml_soft_max_ext_back_impl(ctx, a, b, scale, max_bias, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_soft_max_ext_back_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
float scale, |
|
float max_bias) { |
|
return ggml_soft_max_ext_back_impl(ctx, a, b, scale, max_bias, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_rope_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
struct ggml_tensor * c, |
|
int n_dims, |
|
int mode, |
|
int n_ctx_orig, |
|
float freq_base, |
|
float freq_scale, |
|
float ext_factor, |
|
float attn_factor, |
|
float beta_fast, |
|
float beta_slow, |
|
bool inplace) { |
|
GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported"); |
|
|
|
GGML_ASSERT(ggml_is_vector(b)); |
|
GGML_ASSERT(b->type == GGML_TYPE_I32); |
|
GGML_ASSERT(a->ne[2] == b->ne[0]); |
|
|
|
if (c) { |
|
GGML_ASSERT(c->type == GGML_TYPE_F32); |
|
GGML_ASSERT(c->ne[0] >= n_dims / 2); |
|
} |
|
|
|
int sections[4] = {0, 0, 0, 0}; |
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
int32_t params[15] = { 0, n_dims, mode, 0, n_ctx_orig }; |
|
memcpy(params + 5, &freq_base, sizeof(float)); |
|
memcpy(params + 6, &freq_scale, sizeof(float)); |
|
memcpy(params + 7, &ext_factor, sizeof(float)); |
|
memcpy(params + 8, &attn_factor, sizeof(float)); |
|
memcpy(params + 9, &beta_fast, sizeof(float)); |
|
memcpy(params + 10, &beta_slow, sizeof(float)); |
|
memcpy(params + 11, §ions, sizeof(int)*4); |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_ROPE; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
result->src[2] = c; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_rope( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
int n_dims, |
|
int mode) { |
|
return ggml_rope_impl( |
|
ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false |
|
); |
|
} |
|
|
|
struct ggml_tensor * ggml_rope_multi( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
struct ggml_tensor * c, |
|
int n_dims, |
|
int sections[4], |
|
int mode, |
|
int n_ctx_orig, |
|
float freq_base, |
|
float freq_scale, |
|
float ext_factor, |
|
float attn_factor, |
|
float beta_fast, |
|
float beta_slow) { |
|
|
|
GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported"); |
|
|
|
GGML_ASSERT(ggml_is_vector(b)); |
|
GGML_ASSERT(b->type == GGML_TYPE_I32); |
|
GGML_ASSERT(a->ne[2] * 4 == b->ne[0]); |
|
|
|
if (c) { |
|
GGML_ASSERT(c->type == GGML_TYPE_F32); |
|
GGML_ASSERT(c->ne[0] >= n_dims / 2); |
|
} |
|
|
|
struct ggml_tensor * result = ggml_dup_tensor(ctx, a); |
|
|
|
int32_t params[11 + 4] = { 0, n_dims, mode, 0, n_ctx_orig }; |
|
memcpy(params + 5, &freq_base, sizeof(float)); |
|
memcpy(params + 6, &freq_scale, sizeof(float)); |
|
memcpy(params + 7, &ext_factor, sizeof(float)); |
|
memcpy(params + 8, &attn_factor, sizeof(float)); |
|
memcpy(params + 9, &beta_fast, sizeof(float)); |
|
memcpy(params + 10, &beta_slow, sizeof(float)); |
|
memcpy(¶ms[11], sections, sizeof(int)*4); |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_ROPE; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
result->src[2] = c; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_rope_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
int n_dims, |
|
int mode) { |
|
return ggml_rope_impl( |
|
ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true |
|
); |
|
} |
|
|
|
struct ggml_tensor * ggml_rope_ext( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
struct ggml_tensor * c, |
|
int n_dims, |
|
int mode, |
|
int n_ctx_orig, |
|
float freq_base, |
|
float freq_scale, |
|
float ext_factor, |
|
float attn_factor, |
|
float beta_fast, |
|
float beta_slow) { |
|
return ggml_rope_impl( |
|
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale, |
|
ext_factor, attn_factor, beta_fast, beta_slow, false |
|
); |
|
} |
|
|
|
struct ggml_tensor * ggml_rope_ext_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
struct ggml_tensor * c, |
|
int n_dims, |
|
int mode, |
|
int n_ctx_orig, |
|
float freq_base, |
|
float freq_scale, |
|
float ext_factor, |
|
float attn_factor, |
|
float beta_fast, |
|
float beta_slow) { |
|
return ggml_rope_impl( |
|
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale, |
|
ext_factor, attn_factor, beta_fast, beta_slow, true |
|
); |
|
} |
|
|
|
struct ggml_tensor * ggml_rope_custom( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
int n_dims, |
|
int mode, |
|
int n_ctx_orig, |
|
float freq_base, |
|
float freq_scale, |
|
float ext_factor, |
|
float attn_factor, |
|
float beta_fast, |
|
float beta_slow) { |
|
return ggml_rope_impl( |
|
ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale, |
|
ext_factor, attn_factor, beta_fast, beta_slow, false |
|
); |
|
} |
|
|
|
struct ggml_tensor * ggml_rope_custom_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
int n_dims, |
|
int mode, |
|
int n_ctx_orig, |
|
float freq_base, |
|
float freq_scale, |
|
float ext_factor, |
|
float attn_factor, |
|
float beta_fast, |
|
float beta_slow) { |
|
return ggml_rope_impl( |
|
ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale, |
|
ext_factor, attn_factor, beta_fast, beta_slow, true |
|
); |
|
} |
|
|
|
|
|
|
|
static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) { |
|
return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base)); |
|
} |
|
|
|
void ggml_rope_yarn_corr_dims( |
|
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2] |
|
) { |
|
|
|
float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base)); |
|
float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base)); |
|
dims[0] = MAX(0, start); |
|
dims[1] = MIN(n_dims - 1, end); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_rope_ext_back( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
struct ggml_tensor * c, |
|
int n_dims, |
|
int mode, |
|
int n_ctx_orig, |
|
float freq_base, |
|
float freq_scale, |
|
float ext_factor, |
|
float attn_factor, |
|
float beta_fast, |
|
float beta_slow) { |
|
struct ggml_tensor * result = ggml_rope_ext( |
|
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); |
|
result->op = GGML_OP_ROPE_BACK; |
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_rope_multi_back( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
struct ggml_tensor * c, |
|
int n_dims, |
|
int sections[4], |
|
int mode, |
|
int n_ctx_orig, |
|
float freq_base, |
|
float freq_scale, |
|
float ext_factor, |
|
float attn_factor, |
|
float beta_fast, |
|
float beta_slow) { |
|
struct ggml_tensor * result = ggml_rope_multi( |
|
ctx, a, b, c, n_dims, sections, mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); |
|
result->op = GGML_OP_ROPE_BACK; |
|
return result; |
|
} |
|
|
|
|
|
struct ggml_tensor * ggml_clamp( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
float min, |
|
float max) { |
|
|
|
struct ggml_tensor * result = ggml_view_tensor(ctx, a); |
|
|
|
float params[] = { min, max }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_CLAMP; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) { |
|
return (ins + 2 * p - d * (ks - 1) - 1) / s + 1; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
struct ggml_tensor * ggml_im2col( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
int s0, |
|
int s1, |
|
int p0, |
|
int p1, |
|
int d0, |
|
int d1, |
|
bool is_2D, |
|
enum ggml_type dst_type) { |
|
if (is_2D) { |
|
GGML_ASSERT(a->ne[2] == b->ne[2]); |
|
} else { |
|
|
|
GGML_ASSERT(b->ne[1] == a->ne[1]); |
|
GGML_ASSERT(b->ne[3] == 1); |
|
} |
|
|
|
const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0; |
|
const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0); |
|
|
|
GGML_ASSERT((!is_2D || OH > 0) && "b too small compared to a"); |
|
GGML_ASSERT((OW > 0) && "b too small compared to a"); |
|
|
|
const int64_t ne[4] = { |
|
is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0], |
|
OW, |
|
is_2D ? OH : b->ne[2], |
|
is_2D ? b->ne[3] : 1, |
|
}; |
|
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne); |
|
int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_IM2COL; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_im2col_back( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
int64_t * ne, |
|
int s0, |
|
int s1, |
|
int p0, |
|
int p1, |
|
int d0, |
|
int d1, |
|
bool is_2D) { |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); |
|
int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_IM2COL_BACK; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_conv_1d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
int s0, |
|
int p0, |
|
int d0) { |
|
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); |
|
|
|
struct ggml_tensor * result = |
|
ggml_mul_mat(ctx, |
|
ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), |
|
ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); |
|
|
|
result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor* ggml_conv_1d_ph( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
int s, |
|
int d) { |
|
return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_conv_1d_dw( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
int s0, |
|
int p0, |
|
int d0) { |
|
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], 1, a->ne[1], a->ne[2]); |
|
struct ggml_tensor * new_b = ggml_reshape_4d(ctx, b, b->ne[0], 1, b->ne[1], b->ne[2]); |
|
|
|
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, new_b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); |
|
|
|
struct ggml_tensor * result = ggml_mul_mat(ctx, im2col, a); |
|
|
|
result = ggml_reshape_3d(ctx, result, b->ne[0], b->ne[1], 1); |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_conv_1d_dw_ph( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
int s0, |
|
int d0) { |
|
return ggml_conv_1d_dw(ctx, a, b, s0, a->ne[0] / 2, d0); |
|
} |
|
|
|
|
|
|
|
static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) { |
|
return (ins - 1) * s - 2 * p + d * (ks - 1) + 1; |
|
} |
|
|
|
GGML_API struct ggml_tensor * ggml_conv_transpose_1d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
int s0, |
|
int p0, |
|
int d0) { |
|
GGML_ASSERT(ggml_is_matrix(b)); |
|
GGML_ASSERT(a->ne[2] == b->ne[1]); |
|
GGML_ASSERT(a->ne[3] == 1); |
|
|
|
GGML_ASSERT(p0 == 0); |
|
GGML_ASSERT(d0 == 1); |
|
|
|
const int64_t ne[4] = { |
|
ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 , 1 ), |
|
a->ne[1], b->ne[2], 1, |
|
}; |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); |
|
|
|
int32_t params[] = { s0, p0, d0 }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_CONV_TRANSPOSE_1D; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
struct ggml_tensor * ggml_conv_2d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
int s0, |
|
int s1, |
|
int p0, |
|
int p1, |
|
int d0, |
|
int d1) { |
|
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, a->type); |
|
|
|
struct ggml_tensor * result = |
|
ggml_mul_mat(ctx, |
|
ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), |
|
ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); |
|
|
|
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); |
|
result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); |
|
|
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_conv_2d_sk_p0( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_conv_2d_s1_ph( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_conv_2d_dw( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
int s0, |
|
int s1, |
|
int p0, |
|
int p1, |
|
int d0, |
|
int d1) { |
|
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]); |
|
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, |
|
ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]), |
|
s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); |
|
struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); |
|
|
|
new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); |
|
struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b); |
|
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) { |
|
return (ins - 1) * s - 2 * p + ks; |
|
} |
|
|
|
struct ggml_tensor * ggml_conv_transpose_2d_p0( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
int stride) { |
|
GGML_ASSERT(a->ne[3] == b->ne[2]); |
|
|
|
const int64_t ne[4] = { |
|
ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 ), |
|
ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 ), |
|
a->ne[2], b->ne[3], |
|
}; |
|
|
|
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); |
|
|
|
ggml_set_op_params_i32(result, 0, stride); |
|
|
|
result->op = GGML_OP_CONV_TRANSPOSE_2D; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) { |
|
return (ins + 2 * p - ks) / s + 1; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_pool_1d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
enum ggml_op_pool op, |
|
int k0, |
|
int s0, |
|
int p0) { |
|
const int64_t ne[4] = { |
|
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0), |
|
a->ne[1], |
|
a->ne[2], |
|
a->ne[3], |
|
}; |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); |
|
|
|
int32_t params[] = { op, k0, s0, p0 }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_POOL_1D; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_pool_2d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
enum ggml_op_pool op, |
|
int k0, |
|
int k1, |
|
int s0, |
|
int s1, |
|
float p0, |
|
float p1) { |
|
struct ggml_tensor * result; |
|
const int64_t ne[4] = { |
|
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0), |
|
ggml_calc_pool_output_size(a->ne[1], k1, s1, p1), |
|
a->ne[2], |
|
a->ne[3], |
|
}; |
|
result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); |
|
|
|
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_POOL_2D; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_pool_2d_back( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * af, |
|
enum ggml_op_pool op, |
|
int k0, |
|
int k1, |
|
int s0, |
|
int s1, |
|
float p0, |
|
float p1) { |
|
struct ggml_tensor * result; |
|
result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, af->ne); |
|
|
|
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_POOL_2D_BACK; |
|
result->src[0] = a; |
|
result->src[1] = af; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_upscale_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int ne0, |
|
int ne1, |
|
int ne2, |
|
int ne3) { |
|
GGML_ASSERT(a->ne[0] <= ne0); |
|
GGML_ASSERT(a->ne[1] <= ne1); |
|
GGML_ASSERT(a->ne[2] <= ne2); |
|
GGML_ASSERT(a->ne[3] <= ne3); |
|
|
|
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3); |
|
|
|
result->op = GGML_OP_UPSCALE; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_upscale( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int scale_factor) { |
|
return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]); |
|
} |
|
|
|
struct ggml_tensor * ggml_upscale_ext( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int ne0, |
|
int ne1, |
|
int ne2, |
|
int ne3) { |
|
return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_pad( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int p0, |
|
int p1, |
|
int p2, |
|
int p3) { |
|
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, |
|
a->ne[0] + p0, |
|
a->ne[1] + p1, |
|
a->ne[2] + p2, |
|
a->ne[3] + p3); |
|
|
|
result->op = GGML_OP_PAD; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_pad_reflect_1d( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int p0, |
|
int p1) { |
|
GGML_ASSERT(p0 >= 0); |
|
GGML_ASSERT(p1 >= 0); |
|
|
|
GGML_ASSERT(p0 < a->ne[0]); |
|
GGML_ASSERT(p1 < a->ne[0]); |
|
|
|
GGML_ASSERT(ggml_is_contiguous(a)); |
|
GGML_ASSERT(a->type == GGML_TYPE_F32); |
|
|
|
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, |
|
a->ne[0] + p0 + p1, |
|
a->ne[1], |
|
a->ne[2], |
|
a->ne[3]); |
|
|
|
int32_t params[] = { p0, p1 }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_PAD_REFLECT_1D; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_arange( |
|
struct ggml_context * ctx, |
|
float start, |
|
float stop, |
|
float step) { |
|
GGML_ASSERT(stop > start); |
|
|
|
const int64_t steps = (int64_t) ceilf((stop - start) / step); |
|
|
|
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps); |
|
|
|
ggml_set_op_params_f32(result, 0, start); |
|
ggml_set_op_params_f32(result, 1, stop); |
|
ggml_set_op_params_f32(result, 2, step); |
|
|
|
result->op = GGML_OP_ARANGE; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_timestep_embedding( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * timesteps, |
|
int dim, |
|
int max_period) { |
|
int actual_dim = dim; |
|
if (dim % 2 != 0) { |
|
actual_dim = dim + 1; |
|
} |
|
|
|
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]); |
|
|
|
ggml_set_op_params_i32(result, 0, dim); |
|
ggml_set_op_params_i32(result, 1, max_period); |
|
|
|
result->op = GGML_OP_TIMESTEP_EMBEDDING; |
|
result->src[0] = timesteps; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_argsort( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
enum ggml_sort_order order) { |
|
GGML_ASSERT(a->ne[0] <= INT32_MAX); |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne); |
|
|
|
ggml_set_op_params_i32(result, 0, (int32_t) order); |
|
|
|
result->op = GGML_OP_ARGSORT; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_top_k( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int k) { |
|
GGML_ASSERT(a->ne[0] >= k); |
|
|
|
struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC); |
|
|
|
result = ggml_view_4d(ctx, result, |
|
k, result->ne[1], result->ne[2], result->ne[3], |
|
result->nb[1], result->nb[2], result->nb[3], |
|
0); |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_flash_attn_ext( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * q, |
|
struct ggml_tensor * k, |
|
struct ggml_tensor * v, |
|
struct ggml_tensor * mask, |
|
float scale, |
|
float max_bias, |
|
float logit_softcap) { |
|
GGML_ASSERT(ggml_can_mul_mat(k, q)); |
|
|
|
|
|
if (mask) { |
|
GGML_ASSERT(ggml_is_contiguous(mask)); |
|
GGML_ASSERT(mask->ne[2] == 1); |
|
GGML_ASSERT(mask->ne[3] == 1); |
|
GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) && |
|
"the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big"); |
|
|
|
} |
|
|
|
if (max_bias > 0.0f) { |
|
GGML_ASSERT(mask); |
|
} |
|
|
|
|
|
int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] }; |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); |
|
|
|
float params[] = { scale, max_bias, logit_softcap }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_FLASH_ATTN_EXT; |
|
result->src[0] = q; |
|
result->src[1] = k; |
|
result->src[2] = v; |
|
result->src[3] = mask; |
|
|
|
return result; |
|
} |
|
|
|
void ggml_flash_attn_ext_set_prec( |
|
struct ggml_tensor * a, |
|
enum ggml_prec prec) { |
|
GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT); |
|
|
|
const int32_t prec_i32 = (int32_t) prec; |
|
|
|
ggml_set_op_params_i32(a, 3, prec_i32); |
|
} |
|
|
|
enum ggml_prec ggml_flash_attn_ext_get_prec( |
|
const struct ggml_tensor * a) { |
|
GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT); |
|
|
|
const int32_t prec_i32 = ggml_get_op_params_i32(a, 3); |
|
|
|
return (enum ggml_prec) prec_i32; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_flash_attn_back( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * q, |
|
struct ggml_tensor * k, |
|
struct ggml_tensor * v, |
|
struct ggml_tensor * d, |
|
bool masked) { |
|
GGML_ABORT("TODO: adapt to ggml_flash_attn_ext() changes"); |
|
|
|
GGML_ASSERT(ggml_can_mul_mat(k, q)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const int64_t D = q->ne[0]; |
|
const int64_t N = q->ne[1]; |
|
const int64_t M = k->ne[1]; |
|
const int64_t ne2 = q->ne[2]; |
|
const int64_t ne3 = q->ne[3]; |
|
const int64_t kvne2 = k->ne[2]; |
|
|
|
GGML_ASSERT(k->ne[0] == D); |
|
GGML_ASSERT(v->ne[0] == M); |
|
GGML_ASSERT(v->ne[1] == D); |
|
GGML_ASSERT(d->ne[0] == D); |
|
GGML_ASSERT(d->ne[1] == N); |
|
GGML_ASSERT(k->ne[2] == kvne2); |
|
GGML_ASSERT(k->ne[3] == ne3); |
|
GGML_ASSERT(v->ne[2] == kvne2); |
|
GGML_ASSERT(v->ne[3] == ne3); |
|
GGML_ASSERT(d->ne[2] == ne2); |
|
GGML_ASSERT(d->ne[3] == ne3); |
|
|
|
GGML_ASSERT(ne2 % kvne2 == 0); |
|
|
|
|
|
|
|
const int64_t elem_q = ggml_nelements(q); |
|
const int64_t elem_k = ggml_nelements(k); |
|
const int64_t elem_v = ggml_nelements(v); |
|
|
|
enum ggml_type result_type = GGML_TYPE_F32; |
|
GGML_ASSERT(ggml_blck_size(result_type) == 1); |
|
const size_t tsize = ggml_type_size(result_type); |
|
|
|
const size_t offs_q = 0; |
|
const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN); |
|
const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN); |
|
const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN); |
|
|
|
const size_t nelements = (end + tsize - 1)/tsize; |
|
|
|
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements); |
|
|
|
int32_t masked_i = masked ? 1 : 0; |
|
ggml_set_op_params(result, &masked_i, sizeof(masked_i)); |
|
|
|
result->op = GGML_OP_FLASH_ATTN_BACK; |
|
result->src[0] = q; |
|
result->src[1] = k; |
|
result->src[2] = v; |
|
result->src[3] = d; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_ssm_conv( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * sx, |
|
struct ggml_tensor * c) { |
|
GGML_ASSERT(ggml_is_3d(sx)); |
|
GGML_ASSERT(ggml_is_matrix(c)); |
|
|
|
const int64_t d_conv = c->ne[0]; |
|
const int64_t d_inner = c->ne[1]; |
|
const int64_t n_t = sx->ne[0] - d_conv + 1; |
|
const int64_t n_s = sx->ne[2]; |
|
|
|
|
|
|
|
GGML_ASSERT(sx->ne[0] == d_conv - 1 + n_t); |
|
GGML_ASSERT(sx->ne[1] == d_inner); |
|
GGML_ASSERT(n_t >= 0); |
|
|
|
struct ggml_tensor * result = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_t, n_s); |
|
|
|
result->op = GGML_OP_SSM_CONV; |
|
result->src[0] = sx; |
|
result->src[1] = c; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_ssm_scan( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * s, |
|
struct ggml_tensor * x, |
|
struct ggml_tensor * dt, |
|
struct ggml_tensor * A, |
|
struct ggml_tensor * B, |
|
struct ggml_tensor * C) { |
|
GGML_ASSERT(ggml_is_contiguous(s)); |
|
GGML_ASSERT(ggml_is_contiguous(x)); |
|
GGML_ASSERT(ggml_is_contiguous(dt)); |
|
GGML_ASSERT(ggml_is_contiguous(A)); |
|
GGML_ASSERT(ggml_is_matrix(A)); |
|
GGML_ASSERT(ggml_is_3d(B)); |
|
GGML_ASSERT(ggml_is_3d(s)); |
|
GGML_ASSERT(B->nb[0] == ggml_type_size(B->type)); |
|
GGML_ASSERT(C->nb[0] == ggml_type_size(C->type)); |
|
GGML_ASSERT(ggml_are_same_shape(x, dt)); |
|
GGML_ASSERT(ggml_are_same_shape(B, C)); |
|
|
|
{ |
|
const int64_t d_state = s->ne[0]; |
|
const int64_t d_inner = s->ne[1]; |
|
const int64_t n_seq_tokens = x->ne[1]; |
|
const int64_t n_seqs = x->ne[2]; |
|
|
|
GGML_ASSERT(s->ne[2] == n_seqs); |
|
GGML_ASSERT(x->ne[0] == d_inner); |
|
GGML_ASSERT(A->ne[0] == d_state); |
|
GGML_ASSERT(A->ne[1] == d_inner); |
|
GGML_ASSERT(B->ne[0] == d_state); |
|
GGML_ASSERT(B->ne[1] == n_seq_tokens); |
|
GGML_ASSERT(B->ne[2] == n_seqs); |
|
} |
|
|
|
|
|
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s)); |
|
|
|
result->op = GGML_OP_SSM_SCAN; |
|
result->src[0] = s; |
|
result->src[1] = x; |
|
result->src[2] = dt; |
|
result->src[3] = A; |
|
result->src[4] = B; |
|
result->src[5] = C; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_win_part( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int w) { |
|
GGML_ASSERT(a->ne[3] == 1); |
|
GGML_ASSERT(a->type == GGML_TYPE_F32); |
|
|
|
|
|
const int px = (w - a->ne[1]%w)%w; |
|
const int py = (w - a->ne[2]%w)%w; |
|
|
|
const int npx = (px + a->ne[1])/w; |
|
const int npy = (py + a->ne[2])/w; |
|
const int np = npx*npy; |
|
|
|
const int64_t ne[4] = { a->ne[0], w, w, np, }; |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); |
|
|
|
int32_t params[] = { npx, npy, w }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_WIN_PART; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_win_unpart( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int w0, |
|
int h0, |
|
int w) { |
|
GGML_ASSERT(a->type == GGML_TYPE_F32); |
|
|
|
const int64_t ne[4] = { a->ne[0], w0, h0, 1, }; |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne); |
|
|
|
int32_t params[] = { w }; |
|
ggml_set_op_params(result, params, sizeof(params)); |
|
|
|
result->op = GGML_OP_WIN_UNPART; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_get_rel_pos( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
int qh, |
|
int kh) { |
|
GGML_ASSERT(qh == kh); |
|
GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]); |
|
|
|
const int64_t ne[4] = { a->ne[0], kh, qh, 1, }; |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne); |
|
|
|
result->op = GGML_OP_GET_REL_POS; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_add_rel_pos_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * pw, |
|
struct ggml_tensor * ph, |
|
bool inplace) { |
|
GGML_ASSERT(ggml_are_same_shape(pw, ph)); |
|
GGML_ASSERT(ggml_is_contiguous(a)); |
|
GGML_ASSERT(ggml_is_contiguous(pw)); |
|
GGML_ASSERT(ggml_is_contiguous(ph)); |
|
GGML_ASSERT(ph->type == GGML_TYPE_F32); |
|
GGML_ASSERT(pw->type == GGML_TYPE_F32); |
|
GGML_ASSERT(pw->ne[3] == a->ne[2]); |
|
GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]); |
|
GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]); |
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
ggml_set_op_params_i32(result, 0, inplace ? 1 : 0); |
|
|
|
result->op = GGML_OP_ADD_REL_POS; |
|
result->src[0] = a; |
|
result->src[1] = pw; |
|
result->src[2] = ph; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_add_rel_pos( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * pw, |
|
struct ggml_tensor * ph) { |
|
return ggml_add_rel_pos_impl(ctx, a, pw, ph, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_add_rel_pos_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * pw, |
|
struct ggml_tensor * ph) { |
|
return ggml_add_rel_pos_impl(ctx, a, pw, ph, true); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_rwkv_wkv6( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * k, |
|
struct ggml_tensor * v, |
|
struct ggml_tensor * r, |
|
struct ggml_tensor * tf, |
|
struct ggml_tensor * td, |
|
struct ggml_tensor * state) { |
|
GGML_ASSERT(ggml_is_contiguous(k)); |
|
GGML_ASSERT(ggml_is_contiguous(v)); |
|
GGML_ASSERT(ggml_is_contiguous(r)); |
|
GGML_ASSERT(ggml_is_contiguous(tf)); |
|
GGML_ASSERT(ggml_is_contiguous(td)); |
|
GGML_ASSERT(ggml_is_contiguous(state)); |
|
|
|
const int64_t S = k->ne[0]; |
|
const int64_t H = k->ne[1]; |
|
const int64_t n_tokens = k->ne[2]; |
|
const int64_t n_seqs = state->ne[1]; |
|
{ |
|
GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens); |
|
GGML_ASSERT(r->ne[0] == S && r->ne[1] == H && r->ne[2] == n_tokens); |
|
GGML_ASSERT(td->ne[0] == S && td->ne[1] == H && td->ne[2] == n_tokens); |
|
GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs); |
|
} |
|
|
|
|
|
const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 }; |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); |
|
|
|
result->op = GGML_OP_RWKV_WKV6; |
|
result->src[0] = k; |
|
result->src[1] = v; |
|
result->src[2] = r; |
|
result->src[3] = tf; |
|
result->src[4] = td; |
|
result->src[5] = state; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_gated_linear_attn( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * k, |
|
struct ggml_tensor * v, |
|
struct ggml_tensor * q, |
|
struct ggml_tensor * g, |
|
struct ggml_tensor * state, |
|
float scale) { |
|
GGML_ASSERT(ggml_is_contiguous(k)); |
|
GGML_ASSERT(ggml_is_contiguous(v)); |
|
GGML_ASSERT(ggml_is_contiguous(q)); |
|
GGML_ASSERT(ggml_is_contiguous(g)); |
|
GGML_ASSERT(ggml_is_contiguous(state)); |
|
|
|
const int64_t S = k->ne[0]; |
|
const int64_t H = k->ne[1]; |
|
const int64_t n_tokens = k->ne[2]; |
|
const int64_t n_seqs = state->ne[1]; |
|
{ |
|
GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens); |
|
GGML_ASSERT(q->ne[0] == S && q->ne[1] == H && q->ne[2] == n_tokens); |
|
GGML_ASSERT(g->ne[0] == S && g->ne[1] == H && g->ne[2] == n_tokens); |
|
GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs); |
|
} |
|
|
|
|
|
const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 }; |
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); |
|
|
|
ggml_set_op_params_f32(result, 0, scale); |
|
|
|
result->op = GGML_OP_GATED_LINEAR_ATTN; |
|
result->src[0] = k; |
|
result->src[1] = v; |
|
result->src[2] = q; |
|
result->src[3] = g; |
|
result->src[4] = state; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_unary_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
enum ggml_unary_op op, |
|
bool inplace) { |
|
GGML_ASSERT(ggml_is_contiguous_1(a)); |
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
ggml_set_op_params_i32(result, 0, (int32_t) op); |
|
|
|
result->op = GGML_OP_UNARY; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_unary( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
enum ggml_unary_op op) { |
|
return ggml_unary_impl(ctx, a, op, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_unary_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
enum ggml_unary_op op) { |
|
return ggml_unary_impl(ctx, a, op, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_map_unary_impl_f32( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
const ggml_unary_op_f32_t fun, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
ggml_set_op_params(result, (const void *) &fun, sizeof(fun)); |
|
|
|
result->op = GGML_OP_MAP_UNARY; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_map_unary_f32( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
const ggml_unary_op_f32_t fun) { |
|
return ggml_map_unary_impl_f32(ctx, a, fun, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_map_unary_inplace_f32( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
const ggml_unary_op_f32_t fun) { |
|
return ggml_map_unary_impl_f32(ctx, a, fun, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_map_binary_impl_f32( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
const ggml_binary_op_f32_t fun, |
|
bool inplace) { |
|
GGML_ASSERT(ggml_are_same_shape(a, b)); |
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
ggml_set_op_params(result, (const void *) &fun, sizeof(fun)); |
|
|
|
result->op = GGML_OP_MAP_BINARY; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_map_binary_f32( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
const ggml_binary_op_f32_t fun) { |
|
return ggml_map_binary_impl_f32(ctx, a, b, fun, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_map_binary_inplace_f32( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
const ggml_binary_op_f32_t fun) { |
|
return ggml_map_binary_impl_f32(ctx, a, b, fun, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_map_custom1_impl_f32( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
const ggml_custom1_op_f32_t fun, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
ggml_set_op_params(result, (const void *) &fun, sizeof(fun)); |
|
|
|
result->op = GGML_OP_MAP_CUSTOM1_F32; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_map_custom1_f32( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
const ggml_custom1_op_f32_t fun) { |
|
return ggml_map_custom1_impl_f32(ctx, a, fun, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_map_custom1_inplace_f32( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
const ggml_custom1_op_f32_t fun) { |
|
return ggml_map_custom1_impl_f32(ctx, a, fun, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_map_custom2_impl_f32( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
const ggml_custom2_op_f32_t fun, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
ggml_set_op_params(result, (const void *) &fun, sizeof(fun)); |
|
|
|
result->op = GGML_OP_MAP_CUSTOM2_F32; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_map_custom2_f32( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
const ggml_custom2_op_f32_t fun) { |
|
return ggml_map_custom2_impl_f32(ctx, a, b, fun, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_map_custom2_inplace_f32( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
const ggml_custom2_op_f32_t fun) { |
|
return ggml_map_custom2_impl_f32(ctx, a, b, fun, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_map_custom3_impl_f32( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
struct ggml_tensor * c, |
|
const ggml_custom3_op_f32_t fun, |
|
bool inplace) { |
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
ggml_set_op_params(result, (const void *) &fun, sizeof(fun)); |
|
|
|
result->op = GGML_OP_MAP_CUSTOM3_F32; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
result->src[2] = c; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_map_custom3_f32( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
struct ggml_tensor * c, |
|
const ggml_custom3_op_f32_t fun) { |
|
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_map_custom3_inplace_f32( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
struct ggml_tensor * c, |
|
const ggml_custom3_op_f32_t fun) { |
|
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_map_custom1_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
const ggml_custom1_op_t fun, |
|
int n_tasks, |
|
void * userdata, |
|
bool inplace) { |
|
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0); |
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
struct ggml_map_custom1_op_params params = { |
|
fun, |
|
n_tasks, |
|
userdata |
|
}; |
|
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params)); |
|
|
|
result->op = GGML_OP_MAP_CUSTOM1; |
|
result->src[0] = a; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_map_custom1( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
const ggml_custom1_op_t fun, |
|
int n_tasks, |
|
void * userdata) { |
|
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_map_custom1_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
const ggml_custom1_op_t fun, |
|
int n_tasks, |
|
void * userdata) { |
|
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_map_custom2_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
const ggml_custom2_op_t fun, |
|
int n_tasks, |
|
void * userdata, |
|
bool inplace) { |
|
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0); |
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
struct ggml_map_custom2_op_params params = { |
|
fun, |
|
n_tasks, |
|
userdata |
|
}; |
|
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params)); |
|
|
|
result->op = GGML_OP_MAP_CUSTOM2; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_map_custom2( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
const ggml_custom2_op_t fun, |
|
int n_tasks, |
|
void * userdata) { |
|
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_map_custom2_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
const ggml_custom2_op_t fun, |
|
int n_tasks, |
|
void * userdata) { |
|
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true); |
|
} |
|
|
|
|
|
|
|
static struct ggml_tensor * ggml_map_custom3_impl( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
struct ggml_tensor * c, |
|
const ggml_custom3_op_t fun, |
|
int n_tasks, |
|
void * userdata, |
|
bool inplace) { |
|
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0); |
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); |
|
|
|
struct ggml_map_custom3_op_params params = { |
|
fun, |
|
n_tasks, |
|
userdata |
|
}; |
|
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params)); |
|
|
|
result->op = GGML_OP_MAP_CUSTOM3; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
result->src[2] = c; |
|
|
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_map_custom3( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
struct ggml_tensor * c, |
|
const ggml_custom3_op_t fun, |
|
int n_tasks, |
|
void * userdata) { |
|
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false); |
|
} |
|
|
|
struct ggml_tensor * ggml_map_custom3_inplace( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
struct ggml_tensor * c, |
|
const ggml_custom3_op_t fun, |
|
int n_tasks, |
|
void * userdata) { |
|
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_cross_entropy_loss( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b) { |
|
GGML_ASSERT(ggml_are_same_shape(a, b)); |
|
|
|
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1); |
|
|
|
result->op = GGML_OP_CROSS_ENTROPY_LOSS; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_cross_entropy_loss_back( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * b, |
|
struct ggml_tensor * c) { |
|
GGML_ASSERT(ggml_is_scalar(a)); |
|
GGML_ASSERT(ggml_are_same_shape(b, c)); |
|
|
|
struct ggml_tensor * result = ggml_dup_tensor(ctx, b); |
|
|
|
result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK; |
|
result->src[0] = a; |
|
result->src[1] = b; |
|
result->src[2] = c; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * ggml_opt_step_adamw( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * a, |
|
struct ggml_tensor * grad, |
|
struct ggml_tensor * m, |
|
struct ggml_tensor * v, |
|
struct ggml_tensor * adamw_params) { |
|
GGML_ASSERT(a->flags & GGML_TENSOR_FLAG_PARAM); |
|
GGML_ASSERT(ggml_are_same_shape(a, grad)); |
|
GGML_ASSERT(ggml_are_same_shape(a, m)); |
|
GGML_ASSERT(ggml_are_same_shape(a, v)); |
|
GGML_ASSERT(adamw_params->type == GGML_TYPE_F32); |
|
GGML_ASSERT(ggml_nelements(adamw_params) == 7); |
|
|
|
struct ggml_tensor * result = ggml_view_tensor(ctx, a); |
|
|
|
result->op = GGML_OP_OPT_STEP_ADAMW; |
|
result->src[0] = a; |
|
result->src[1] = grad; |
|
result->src[2] = m; |
|
result->src[3] = v; |
|
result->src[4] = adamw_params; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct ggml_hash_set ggml_hash_set_new(size_t size) { |
|
size = ggml_hash_size(size); |
|
struct ggml_hash_set result; |
|
result.size = size; |
|
result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size); |
|
result.used = GGML_CALLOC(ggml_bitset_size(size), sizeof(ggml_bitset_t)); |
|
return result; |
|
} |
|
|
|
void ggml_hash_set_reset(struct ggml_hash_set * hash_set) { |
|
memset(hash_set->used, 0, sizeof(ggml_bitset_t) * ggml_bitset_size(hash_set->size)); |
|
} |
|
|
|
void ggml_hash_set_free(struct ggml_hash_set * hash_set) { |
|
GGML_FREE(hash_set->used); |
|
GGML_FREE(hash_set->keys); |
|
} |
|
|
|
size_t ggml_hash_size(size_t min_sz) { |
|
|
|
static const size_t primes[] = { |
|
2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031, |
|
2053, 4099, 8209, 16411, 32771, 65537, 131101, |
|
262147, 524309, 1048583, 2097169, 4194319, 8388617, |
|
16777259, 33554467, 67108879, 134217757, 268435459, |
|
536870923, 1073741827, 2147483659 |
|
}; |
|
static const size_t n_primes = sizeof(primes)/sizeof(primes[0]); |
|
|
|
|
|
size_t l = 0; |
|
size_t r = n_primes; |
|
while (l < r) { |
|
size_t m = (l + r)/2; |
|
if (primes[m] < min_sz) { |
|
l = m + 1; |
|
} else { |
|
r = m; |
|
} |
|
} |
|
size_t sz = l < n_primes ? primes[l] : min_sz | 1; |
|
return sz; |
|
} |
|
|
|
struct hash_map { |
|
struct ggml_hash_set set; |
|
struct ggml_tensor ** vals; |
|
}; |
|
|
|
static struct hash_map * ggml_new_hash_map(size_t size) { |
|
struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map)); |
|
result->set = ggml_hash_set_new(size); |
|
result->vals = GGML_CALLOC(result->set.size, sizeof(struct ggml_tensor *)); |
|
return result; |
|
} |
|
|
|
static void ggml_hash_map_free(struct hash_map * map) { |
|
ggml_hash_set_free(&map->set); |
|
GGML_FREE(map->vals); |
|
GGML_FREE(map); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void ggml_add_or_set( |
|
struct ggml_context * ctx, |
|
struct ggml_cgraph * cgraph, |
|
size_t isrc, |
|
struct ggml_tensor * tensor) { |
|
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc]; |
|
GGML_ASSERT(src); |
|
if (cgraph->grads[isrc]) { |
|
cgraph->grads[isrc] = ggml_add_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]); |
|
} else { |
|
cgraph->grads[isrc] = tensor; |
|
} |
|
ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name); |
|
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]); |
|
} |
|
|
|
static void ggml_acc_or_set( |
|
struct ggml_context * ctx, |
|
struct ggml_cgraph * cgraph, |
|
size_t isrc, |
|
struct ggml_tensor * tensor, |
|
const size_t nb1, |
|
const size_t nb2, |
|
const size_t nb3, |
|
const size_t offset) { |
|
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc]; |
|
GGML_ASSERT(src); |
|
if (cgraph->grads[isrc]) { |
|
cgraph->grads[isrc] = ggml_acc_impl(ctx, cgraph->grads[isrc], tensor, nb1, nb2, nb3, offset, cgraph->grad_accs[isrc]); |
|
} else { |
|
struct ggml_tensor * a_zero = ggml_scale(ctx, src, 0.0f); |
|
cgraph->grads[isrc] = ggml_acc_impl(ctx, a_zero, tensor, nb1, nb2, nb3, offset, false); |
|
} |
|
ggml_format_name(cgraph->grads[isrc], "grad for %s", cgraph->visited_hash_set.keys[isrc]->name); |
|
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]); |
|
} |
|
|
|
static void ggml_add1_or_set( |
|
struct ggml_context * ctx, |
|
struct ggml_cgraph * cgraph, |
|
size_t isrc, |
|
struct ggml_tensor * tensor) { |
|
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc]; |
|
GGML_ASSERT(src); |
|
if (cgraph->grads[isrc]) { |
|
cgraph->grads[isrc] = ggml_add1_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]); |
|
} else { |
|
cgraph->grads[isrc] = ggml_repeat(ctx, tensor, src); |
|
} |
|
ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name); |
|
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]); |
|
} |
|
|
|
static void ggml_sub_or_set( |
|
struct ggml_context * ctx, |
|
struct ggml_cgraph * cgraph, |
|
size_t isrc, |
|
struct ggml_tensor * tensor) { |
|
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc]; |
|
GGML_ASSERT(src); |
|
if (cgraph->grads[isrc]) { |
|
cgraph->grads[isrc] = ggml_sub_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]); |
|
} else { |
|
cgraph->grads[isrc] = ggml_neg(ctx, tensor); |
|
} |
|
ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name); |
|
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]); |
|
} |
|
|
|
static void ggml_compute_backward( |
|
struct ggml_context * ctx, struct ggml_cgraph * cgraph, int i, const bool * grads_needed) { |
|
struct ggml_tensor * tensor = cgraph->nodes[i]; |
|
struct ggml_tensor * grad = ggml_graph_get_grad(cgraph, tensor); |
|
|
|
if (!grad) { |
|
return; |
|
} |
|
|
|
struct ggml_tensor * src0 = tensor->src[0]; |
|
struct ggml_tensor * src1 = tensor->src[1]; |
|
struct ggml_tensor * src2 = tensor->src[2]; |
|
struct ggml_hash_set * hash_set = &cgraph->visited_hash_set; |
|
const size_t isrc0 = src0 ? ggml_hash_find(hash_set, src0) : (size_t) -1; |
|
const size_t isrc1 = src1 ? ggml_hash_find(hash_set, src1) : (size_t) -1; |
|
const size_t isrc2 = src2 ? ggml_hash_find(hash_set, src2) : (size_t) -1; |
|
const bool src0_needs_grads = src0 && isrc0 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc0) && grads_needed[isrc0]; |
|
const bool src1_needs_grads = src1 && isrc1 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc1) && grads_needed[isrc1]; |
|
const bool src2_needs_grads = src2 && isrc2 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc2) && grads_needed[isrc2]; |
|
|
|
switch (tensor->op) { |
|
case GGML_OP_DUP: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, grad); |
|
} |
|
} break; |
|
case GGML_OP_ADD: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, grad); |
|
} |
|
if (src1_needs_grads) { |
|
struct ggml_tensor * tmp = grad; |
|
if (!ggml_are_same_shape(src0, src1)) { |
|
tmp = ggml_repeat_back(ctx, tmp, src1); |
|
} |
|
ggml_add_or_set(ctx, cgraph, isrc1, tmp); |
|
} |
|
} break; |
|
case GGML_OP_ADD1: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, grad); |
|
} |
|
if (src1_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc1, ggml_mean(ctx, grad)); |
|
} |
|
} break; |
|
case GGML_OP_ACC: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, grad); |
|
} |
|
if (src1_needs_grads) { |
|
const size_t nb1 = ((int32_t *) tensor->op_params)[0]; |
|
const size_t nb2 = ((int32_t *) tensor->op_params)[1]; |
|
const size_t nb3 = ((int32_t *) tensor->op_params)[2]; |
|
const size_t offset = ((int32_t *) tensor->op_params)[3]; |
|
|
|
struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx, |
|
grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3], |
|
nb1, nb2, nb3, offset); |
|
|
|
ggml_add_or_set(ctx, cgraph, isrc1, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1)); |
|
} |
|
} break; |
|
case GGML_OP_SUB: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, grad); |
|
} |
|
if (src1_needs_grads) { |
|
ggml_sub_or_set(ctx, cgraph, isrc1, grad); |
|
} |
|
} break; |
|
case GGML_OP_MUL: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, src1)); |
|
} |
|
if (src1_needs_grads) { |
|
struct ggml_tensor * tmp = ggml_mul(ctx, src0, grad); |
|
if (!ggml_are_same_shape(src0, src1)) { |
|
tmp = ggml_repeat_back(ctx, tmp, src1); |
|
} |
|
ggml_add_or_set(ctx, cgraph, isrc1, tmp); |
|
} |
|
} break; |
|
case GGML_OP_DIV: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_div(ctx, grad, src1)); |
|
} |
|
if (src1_needs_grads) { |
|
ggml_sub_or_set(ctx, cgraph, isrc1, ggml_mul(ctx, grad, ggml_div(ctx, tensor, src1))); |
|
} |
|
} break; |
|
case GGML_OP_SQR: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale(ctx, ggml_mul(ctx, src0, grad), 2.0f)); |
|
} |
|
} break; |
|
case GGML_OP_SQRT: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale(ctx, ggml_div(ctx, grad, tensor), 0.5f)); |
|
} |
|
} break; |
|
case GGML_OP_LOG: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_div(ctx, grad, src0)); |
|
} |
|
} break; |
|
case GGML_OP_SIN: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, ggml_cos(ctx, src0))); |
|
} |
|
} break; |
|
case GGML_OP_COS: { |
|
if (src0_needs_grads) { |
|
ggml_sub_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, ggml_sin(ctx, src0))); |
|
} |
|
} break; |
|
case GGML_OP_SUM: { |
|
if (src0_needs_grads) { |
|
ggml_add1_or_set(ctx, cgraph, isrc0, grad); |
|
} |
|
} break; |
|
case GGML_OP_SUM_ROWS: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat(ctx, grad, src0)); |
|
} |
|
} break; |
|
case GGML_OP_MEAN: { |
|
if (src0_needs_grads) { |
|
ggml_add1_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, 1.0f/src0->ne[0], false)); |
|
} |
|
} break; |
|
case GGML_OP_REPEAT: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat_back(ctx, grad, src0)); |
|
} |
|
} break; |
|
case GGML_OP_REPEAT_BACK: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat(ctx, grad, src0)); |
|
} |
|
} break; |
|
case GGML_OP_RMS_NORM: { |
|
if (src0_needs_grads) { |
|
float eps; |
|
memcpy(&eps, tensor->op_params, sizeof(float)); |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_rms_norm_back(ctx, grad, src0, eps)); |
|
} |
|
} break; |
|
case GGML_OP_MUL_MAT: { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (src0_needs_grads) { |
|
GGML_ASSERT(grad->ne[2] == src1->ne[2]); |
|
GGML_ASSERT(grad->ne[3] == src1->ne[3]); |
|
struct ggml_tensor * tmp = |
|
ggml_out_prod(ctx, |
|
src1, |
|
grad); |
|
if (!ggml_are_same_shape(tmp, src0)) { |
|
GGML_ASSERT(tmp->ne[0] == src0->ne[0]); |
|
GGML_ASSERT(tmp->ne[1] == src0->ne[1]); |
|
GGML_ASSERT(tmp->ne[3] == 1); |
|
|
|
const int64_t nr2 = tmp->ne[2] / src0->ne[2]; |
|
const size_t nb2 = tmp->nb[2] * nr2; |
|
const size_t nb3 = tmp->nb[2]; |
|
|
|
tmp = ggml_view_4d(ctx, tmp, src0->ne[0], src0->ne[1], src0->ne[2], nr2, tmp->nb[1], nb2, nb3, 0); |
|
tmp = ggml_repeat_back(ctx, tmp, src0); |
|
} |
|
ggml_add_or_set(ctx, cgraph, isrc0, tmp); |
|
} |
|
if (src1_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc1, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml_out_prod(ctx, |
|
src0, |
|
ggml_transpose(ctx, |
|
grad))); |
|
} |
|
} break; |
|
case GGML_OP_SCALE: { |
|
if (src0_needs_grads) { |
|
float s; |
|
memcpy(&s, tensor->op_params, sizeof(float)); |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, s, false)); |
|
} |
|
} break; |
|
case GGML_OP_SET: { |
|
const size_t nb1 = ((const int32_t *) tensor->op_params)[0]; |
|
const size_t nb2 = ((const int32_t *) tensor->op_params)[1]; |
|
const size_t nb3 = ((const int32_t *) tensor->op_params)[2]; |
|
const size_t offset = ((const int32_t *) tensor->op_params)[3]; |
|
|
|
struct ggml_tensor * tensor_grad_view = NULL; |
|
|
|
if (src0_needs_grads || src1_needs_grads) { |
|
GGML_ASSERT(src0->type == tensor->type); |
|
GGML_ASSERT(!cgraph->grads[isrc0] || cgraph->grads[isrc0]->type == grad->type); |
|
GGML_ASSERT(!cgraph->grads[isrc1] || !src1_needs_grads || cgraph->grads[isrc1]->type == grad->type); |
|
|
|
tensor_grad_view = ggml_view_4d(ctx, |
|
grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3], |
|
nb1, nb2, nb3, offset); |
|
} |
|
|
|
if (src0_needs_grads) { |
|
struct ggml_tensor * tmp = ggml_neg(ctx, tensor_grad_view); |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_acc_impl(ctx, grad, tmp, nb1, nb2, nb3, offset, false)); |
|
} |
|
|
|
if (src1_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc1, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1)); |
|
} |
|
} break; |
|
case GGML_OP_CPY: { |
|
|
|
|
|
|
|
if (src0_needs_grads) { |
|
|
|
ggml_add_or_set(ctx, cgraph, isrc0, grad); |
|
} |
|
if (src1_needs_grads) { |
|
|
|
} |
|
} break; |
|
case GGML_OP_CONT: { |
|
|
|
if (src0_needs_grads) { |
|
GGML_ASSERT(!cgraph->grads[isrc0] || ggml_is_contiguous(cgraph->grads[isrc0])); |
|
GGML_ASSERT(ggml_is_contiguous(grad)); |
|
GGML_ASSERT(ggml_nelements(tensor) == ggml_nelements(src0)); |
|
ggml_add_or_set(ctx, cgraph, isrc0, |
|
ggml_are_same_shape(tensor, src0) ? grad : ggml_reshape(ctx, grad, src0)); |
|
} |
|
} break; |
|
case GGML_OP_RESHAPE: { |
|
if (src0_needs_grads) { |
|
struct ggml_tensor * grad_cont = ggml_is_contiguous(grad) ? grad : ggml_cont(ctx, grad); |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_reshape(ctx, grad_cont, src0)); |
|
} |
|
} break; |
|
case GGML_OP_VIEW: { |
|
if (src0_needs_grads) { |
|
size_t offset; |
|
|
|
memcpy(&offset, tensor->op_params, sizeof(offset)); |
|
|
|
size_t nb1 = tensor->nb[1]; |
|
size_t nb2 = tensor->nb[2]; |
|
size_t nb3 = tensor->nb[3]; |
|
|
|
if (cgraph->grads[isrc0] && src0->type != cgraph->grads[isrc0]->type) { |
|
|
|
size_t ng = ggml_element_size(cgraph->grads[isrc0]); |
|
size_t n0 = ggml_element_size(src0); |
|
GGML_ASSERT(offset % n0 == 0); |
|
GGML_ASSERT(nb1 % n0 == 0); |
|
GGML_ASSERT(nb2 % n0 == 0); |
|
GGML_ASSERT(nb3 % n0 == 0); |
|
offset = (offset / n0) * ng; |
|
nb1 = (nb1 / n0) * ng; |
|
nb2 = (nb2 / n0) * ng; |
|
nb3 = (nb3 / n0) * ng; |
|
} |
|
|
|
ggml_acc_or_set(ctx, cgraph, isrc0, grad, nb1, nb2, nb3, offset); |
|
} |
|
} break; |
|
case GGML_OP_PERMUTE: { |
|
if (src0_needs_grads) { |
|
const int32_t * axes = (const int32_t *) tensor->op_params; |
|
const int axis0 = axes[0] & 0x3; |
|
const int axis1 = axes[1] & 0x3; |
|
const int axis2 = axes[2] & 0x3; |
|
const int axis3 = axes[3] & 0x3; |
|
int axb[4] = {0,0,0,0}; |
|
axb[axis0] = 0; |
|
axb[axis1] = 1; |
|
axb[axis2] = 2; |
|
axb[axis3] = 3; |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_permute(ctx, grad, axb[0], axb[1], axb[2], axb[3])); |
|
} |
|
} break; |
|
case GGML_OP_TRANSPOSE: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_transpose(ctx, grad)); |
|
} |
|
} break; |
|
case GGML_OP_GET_ROWS: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_get_rows_back(ctx, grad, src1, src0)); |
|
} |
|
if (src1_needs_grads) { |
|
|
|
} |
|
} break; |
|
case GGML_OP_DIAG_MASK_INF: { |
|
if (src0_needs_grads) { |
|
|
|
|
|
const int n_past = ((const int32_t *) tensor->op_params)[0]; |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_diag_mask_zero_impl(ctx, grad, n_past, false)); |
|
} |
|
} break; |
|
case GGML_OP_DIAG_MASK_ZERO: { |
|
if (src0_needs_grads) { |
|
const int n_past = ((const int32_t *) tensor->op_params)[0]; |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_diag_mask_zero_impl(ctx, grad, n_past, false)); |
|
} |
|
} break; |
|
case GGML_OP_SOFT_MAX: { |
|
if (src0_needs_grads) { |
|
float scale = 1.0f; |
|
float max_bias = 0.0f; |
|
|
|
memcpy(&scale, (const float *) tensor->op_params + 0, sizeof(float)); |
|
memcpy(&max_bias, (const float *) tensor->op_params + 1, sizeof(float)); |
|
|
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_soft_max_ext_back(ctx, grad, tensor, scale, max_bias)); |
|
} |
|
GGML_ASSERT((!src1 || !src1_needs_grads) && "backward pass for softmax mask not implemented"); |
|
} break; |
|
case GGML_OP_ROPE: { |
|
if (src0_needs_grads) { |
|
|
|
const int n_dims = ((const int32_t *) tensor->op_params)[1]; |
|
const int mode = ((const int32_t *) tensor->op_params)[2]; |
|
|
|
const int n_ctx_orig = ((const int32_t *) tensor->op_params)[4]; |
|
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; |
|
int sections[4] = {0, 0, 0, 0}; |
|
|
|
memcpy(&freq_base, (const float *) tensor->op_params + 5, sizeof(float)); |
|
memcpy(&freq_scale, (const float *) tensor->op_params + 6, sizeof(float)); |
|
memcpy(&ext_factor, (const float *) tensor->op_params + 7, sizeof(float)); |
|
memcpy(&attn_factor, (const float *) tensor->op_params + 8, sizeof(float)); |
|
memcpy(&beta_fast, (const float *) tensor->op_params + 9, sizeof(float)); |
|
memcpy(&beta_slow, (const float *) tensor->op_params + 10, sizeof(float)); |
|
memcpy(§ions, tensor->op_params + 11, sizeof(sections)); |
|
|
|
struct ggml_tensor * rope_back = grad->ne[2] == src1->ne[0] ? |
|
ggml_rope_ext_back(ctx, grad, src1, src2, n_dims, |
|
mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow) : |
|
ggml_rope_multi_back(ctx, grad, src1, src2, n_dims, sections, |
|
mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); |
|
ggml_add_or_set(ctx, cgraph, isrc0, rope_back); |
|
} |
|
GGML_ASSERT((!src2 || !src2_needs_grads) && "gradients for freq factors not implemented"); |
|
} break; |
|
case GGML_OP_IM2COL: { |
|
if (src1_needs_grads) { |
|
const int32_t s0 = ggml_get_op_params_i32(tensor, 0); |
|
const int32_t s1 = ggml_get_op_params_i32(tensor, 1); |
|
const int32_t p0 = ggml_get_op_params_i32(tensor, 2); |
|
const int32_t p1 = ggml_get_op_params_i32(tensor, 3); |
|
const int32_t d0 = ggml_get_op_params_i32(tensor, 4); |
|
const int32_t d1 = ggml_get_op_params_i32(tensor, 5); |
|
const bool is_2D = ggml_get_op_params_i32(tensor, 6) == 1; |
|
|
|
ggml_add_or_set(ctx, cgraph, isrc1, ggml_im2col_back(ctx, grad, src0, src1->ne, s0, s1, p0, p1, d0, d1, is_2D)); |
|
} |
|
} break; |
|
case GGML_OP_POOL_2D: { |
|
if (src0_needs_grads) { |
|
const enum ggml_op_pool op = ggml_get_op_params_i32(tensor, 0); |
|
const int32_t k0 = ggml_get_op_params_i32(tensor, 1); |
|
const int32_t k1 = ggml_get_op_params_i32(tensor, 2); |
|
const int32_t s0 = ggml_get_op_params_i32(tensor, 3); |
|
const int32_t s1 = ggml_get_op_params_i32(tensor, 4); |
|
const int32_t p0 = ggml_get_op_params_i32(tensor, 5); |
|
const int32_t p1 = ggml_get_op_params_i32(tensor, 6); |
|
|
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_pool_2d_back(ctx, grad, src0, op, k0, k1, s0, s1, p0, p1)); |
|
} |
|
} break; |
|
case GGML_OP_WIN_PART: |
|
case GGML_OP_WIN_UNPART: |
|
case GGML_OP_UNARY: { |
|
switch (ggml_get_unary_op(tensor)) { |
|
case GGML_UNARY_OP_ABS: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, ggml_sgn(ctx, src0), grad)); |
|
} |
|
} break; |
|
case GGML_UNARY_OP_SGN: { |
|
|
|
} break; |
|
case GGML_UNARY_OP_NEG: { |
|
if (src0_needs_grads) { |
|
ggml_sub_or_set(ctx, cgraph, isrc0, grad); |
|
} |
|
} break; |
|
case GGML_UNARY_OP_STEP: { |
|
|
|
} break; |
|
case GGML_UNARY_OP_RELU: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, ggml_step(ctx, src0), grad)); |
|
} |
|
} break; |
|
case GGML_UNARY_OP_SILU: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_silu_back(ctx, grad, src0)); |
|
} |
|
} break; |
|
case GGML_UNARY_OP_EXP: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, tensor, grad)); |
|
} |
|
} break; |
|
default: { |
|
fprintf(stderr, "%s: unsupported unary op for backward pass: %s\n", |
|
__func__, ggml_unary_op_name(ggml_get_unary_op(tensor))); |
|
GGML_ABORT("fatal error"); |
|
} |
|
} |
|
} break; |
|
case GGML_OP_CROSS_ENTROPY_LOSS: { |
|
if (src0_needs_grads) { |
|
ggml_add_or_set(ctx, cgraph, isrc0, ggml_cross_entropy_loss_back(ctx, grad, src0, src1)); |
|
} |
|
GGML_ASSERT(!src1_needs_grads && "backward pass for labels not implemented"); |
|
} break; |
|
case GGML_OP_NONE: { |
|
|
|
} break; |
|
case GGML_OP_COUNT: |
|
default: { |
|
fprintf(stderr, "%s: unsupported ggml op for backward pass: %s\n", __func__, ggml_op_name(tensor->op)); |
|
GGML_ABORT("fatal error"); |
|
} |
|
} |
|
|
|
GGML_ASSERT(!src0_needs_grads || ggml_are_same_shape(src0, cgraph->grads[isrc0])); |
|
GGML_ASSERT(!src1_needs_grads || ggml_are_same_shape(src1, cgraph->grads[isrc1])); |
|
GGML_ASSERT(!src2_needs_grads || ggml_are_same_shape(src2, cgraph->grads[isrc2])); |
|
} |
|
|
|
static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) { |
|
|
|
if (ggml_hash_insert(&cgraph->visited_hash_set, node) == GGML_HASHSET_ALREADY_EXISTS) { |
|
return; |
|
} |
|
|
|
for (int i = 0; i < GGML_MAX_SRC; ++i) { |
|
const int k = |
|
(cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i : |
|
(cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) : |
|
i; |
|
if (node->src[k]) { |
|
ggml_visit_parents(cgraph, node->src[k]); |
|
} |
|
} |
|
|
|
if (node->op == GGML_OP_NONE && !(node->flags & GGML_TENSOR_FLAG_PARAM)) { |
|
|
|
GGML_ASSERT(cgraph->n_leafs < cgraph->size); |
|
|
|
if (strlen(node->name) == 0) { |
|
ggml_format_name(node, "leaf_%d", cgraph->n_leafs); |
|
} |
|
|
|
cgraph->leafs[cgraph->n_leafs] = node; |
|
cgraph->n_leafs++; |
|
} else { |
|
GGML_ASSERT(cgraph->n_nodes < cgraph->size); |
|
|
|
if (strlen(node->name) == 0) { |
|
ggml_format_name(node, "node_%d", cgraph->n_nodes); |
|
} |
|
|
|
cgraph->nodes[cgraph->n_nodes] = node; |
|
cgraph->n_nodes++; |
|
} |
|
} |
|
|
|
static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) { |
|
if (!expand) { |
|
|
|
ggml_graph_clear(cgraph); |
|
} |
|
|
|
const int n0 = cgraph->n_nodes; |
|
|
|
ggml_visit_parents(cgraph, tensor); |
|
|
|
const int n_new = cgraph->n_nodes - n0; |
|
GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new); |
|
|
|
if (n_new > 0) { |
|
|
|
GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor); |
|
} |
|
} |
|
|
|
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) { |
|
ggml_build_forward_impl(cgraph, tensor, true); |
|
} |
|
|
|
void ggml_build_backward_expand( |
|
struct ggml_context * ctx_static, |
|
struct ggml_context * ctx_compute, |
|
struct ggml_cgraph * cgraph, |
|
bool accumulate) { |
|
GGML_ASSERT(cgraph->n_nodes > 0); |
|
GGML_ASSERT(cgraph->grads); |
|
GGML_ASSERT(cgraph->grad_accs); |
|
|
|
const int n_nodes_f = cgraph->n_nodes; |
|
|
|
memset(cgraph->grads, 0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *)); |
|
memset(cgraph->grad_accs, 0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *)); |
|
bool * grads_needed = calloc(cgraph->visited_hash_set.size, sizeof(bool)); |
|
|
|
{ |
|
bool any_params = false; |
|
bool any_loss = false; |
|
for (int i = 0; i < n_nodes_f; ++i) { |
|
struct ggml_tensor * node = cgraph->nodes[i]; |
|
any_params = any_params || (node->flags & GGML_TENSOR_FLAG_PARAM); |
|
any_loss = any_loss || (node->flags & GGML_TENSOR_FLAG_LOSS); |
|
} |
|
GGML_ASSERT(any_params && "no trainable parameters found, did you forget to call ggml_set_param?"); |
|
GGML_ASSERT(any_loss && "no training loss found, did you forget to call ggml_set_loss?"); |
|
} |
|
|
|
for (int i = 0; i < n_nodes_f; ++i) { |
|
struct ggml_tensor * node = cgraph->nodes[i]; |
|
|
|
if (node->type == GGML_TYPE_I32) { |
|
continue; |
|
} |
|
|
|
bool node_needs_grad = (node->flags & GGML_TENSOR_FLAG_PARAM) || (node->flags & GGML_TENSOR_FLAG_LOSS); |
|
bool ignore_src[GGML_MAX_SRC] = {false}; |
|
switch (node->op) { |
|
|
|
case GGML_OP_IM2COL: |
|
case GGML_OP_IM2COL_BACK: |
|
ignore_src[0] = true; |
|
break; |
|
case GGML_OP_UNARY: { |
|
const enum ggml_unary_op uop = ggml_get_unary_op(node); |
|
|
|
if (uop == GGML_UNARY_OP_SGN || uop == GGML_UNARY_OP_STEP) { |
|
ignore_src[0] = true; |
|
} |
|
} break; |
|
|
|
|
|
case GGML_OP_CPY: |
|
case GGML_OP_GET_ROWS: |
|
case GGML_OP_GET_ROWS_BACK: |
|
case GGML_OP_ROPE: |
|
ignore_src[1] = true; |
|
break; |
|
|
|
default: |
|
break; |
|
} |
|
for (int j = 0; j < GGML_MAX_SRC; ++j) { |
|
if (!node->src[j] || ignore_src[j] || !grads_needed[ggml_hash_find(&cgraph->visited_hash_set, node->src[j])]) { |
|
continue; |
|
} |
|
GGML_ASSERT(node->src[j]->type == GGML_TYPE_F32 || node->src[j]->type == GGML_TYPE_F16); |
|
node_needs_grad = true; |
|
break; |
|
} |
|
if (!node_needs_grad) { |
|
continue; |
|
} |
|
|
|
|
|
GGML_ASSERT(!node->view_src || node->op == GGML_OP_CPY || node->op == GGML_OP_VIEW || |
|
node->op == GGML_OP_RESHAPE || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE); |
|
|
|
const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node); |
|
GGML_ASSERT(igrad != GGML_HASHSET_FULL); |
|
GGML_ASSERT(ggml_bitset_get(cgraph->visited_hash_set.used, igrad)); |
|
if ((accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) || (node->flags & GGML_TENSOR_FLAG_LOSS)) { |
|
cgraph->grad_accs[igrad] = ggml_dup_tensor(ctx_static, node); |
|
cgraph->grads[igrad] = cgraph->grad_accs[igrad]; |
|
ggml_format_name(cgraph->grad_accs[igrad], "grad acc for %s", node->name); |
|
} |
|
grads_needed[igrad] = true; |
|
} |
|
|
|
for (int i = n_nodes_f - 1; i >= 0; --i) { |
|
|
|
|
|
ggml_compute_backward(ctx_compute, cgraph, i, grads_needed); |
|
} |
|
|
|
free(grads_needed); |
|
} |
|
|
|
static void * incr_ptr_aligned(void ** p, size_t size, size_t align) { |
|
void * ptr = *p; |
|
ptr = (void *) GGML_PAD((uintptr_t) ptr, align); |
|
*p = (void *) ((char *) ptr + size); |
|
return ptr; |
|
} |
|
|
|
static size_t ggml_graph_nbytes(size_t size, bool grads) { |
|
size_t hash_size = ggml_hash_size(size * 2); |
|
void * p = 0; |
|
incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1); |
|
incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); |
|
incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); |
|
incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); |
|
if (grads) { |
|
incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); |
|
incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); |
|
} |
|
incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t)); |
|
|
|
size_t nbytes = (size_t) p; |
|
return nbytes; |
|
} |
|
|
|
size_t ggml_graph_overhead_custom(size_t size, bool grads) { |
|
return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN); |
|
} |
|
|
|
size_t ggml_graph_overhead(void) { |
|
return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false); |
|
} |
|
|
|
struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) { |
|
const size_t obj_size = ggml_graph_nbytes(size, grads); |
|
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size); |
|
struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs); |
|
|
|
|
|
size_t hash_size = ggml_hash_size(size * 2); |
|
|
|
void * p = cgraph + 1; |
|
|
|
struct ggml_tensor ** nodes_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); |
|
struct ggml_tensor ** leafs_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); |
|
struct ggml_tensor ** hash_keys_ptr = incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); |
|
struct ggml_tensor ** grads_ptr = grads ? incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL; |
|
struct ggml_tensor ** grad_accs_ptr = grads ? incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL; |
|
|
|
ggml_bitset_t * hash_used = incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t)); |
|
|
|
|
|
assert(obj_size == (size_t)((char *)p - (char *)cgraph)); |
|
|
|
*cgraph = (struct ggml_cgraph) { |
|
size, |
|
0, |
|
0, |
|
nodes_ptr, |
|
grads_ptr, |
|
grad_accs_ptr, |
|
leafs_ptr, |
|
{ hash_size, hash_used, hash_keys_ptr }, |
|
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT, |
|
}; |
|
|
|
ggml_hash_set_reset(&cgraph->visited_hash_set); |
|
if (grads) { |
|
memset(cgraph->grads, 0, hash_size*sizeof(struct ggml_tensor *)); |
|
memset(cgraph->grad_accs, 0, hash_size*sizeof(struct ggml_tensor *)); |
|
} |
|
|
|
return cgraph; |
|
} |
|
|
|
struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) { |
|
return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false); |
|
} |
|
|
|
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) { |
|
struct ggml_cgraph cgraph = { |
|
0, |
|
i1 - i0, |
|
0, |
|
cgraph0->nodes + i0, |
|
NULL, |
|
NULL, |
|
NULL, |
|
{ 0, NULL, NULL }, |
|
cgraph0->order, |
|
}; |
|
|
|
return cgraph; |
|
} |
|
|
|
void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) { |
|
GGML_ASSERT(dst->size >= src->n_leafs); |
|
GGML_ASSERT(dst->size >= src->n_nodes); |
|
GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size); |
|
|
|
dst->n_leafs = src->n_leafs; |
|
dst->n_nodes = src->n_nodes; |
|
dst->order = src->order; |
|
|
|
for (int i = 0; i < src->n_leafs; ++i) { |
|
dst->leafs[i] = src->leafs[i]; |
|
} |
|
|
|
for (int i = 0; i < src->n_nodes; ++i) { |
|
dst->nodes[i] = src->nodes[i]; |
|
} |
|
|
|
for (size_t i = 0; i < src->visited_hash_set.size; ++i) { |
|
|
|
if (ggml_bitset_get(src->visited_hash_set.used, i)) { |
|
ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]); |
|
} |
|
} |
|
|
|
if (dst->grads) { |
|
memset(dst->grads, 0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *)); |
|
memset(dst->grad_accs, 0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *)); |
|
} |
|
if (src->grads) { |
|
GGML_ASSERT(dst->grads != NULL); |
|
GGML_ASSERT(dst->grad_accs != NULL); |
|
for (int i = 0; i < src->n_nodes; ++i) { |
|
const size_t igrad_src = ggml_hash_find(&src->visited_hash_set, src->nodes[i]); |
|
const size_t igrad_dst = ggml_hash_find(&dst->visited_hash_set, dst->nodes[i]); |
|
|
|
GGML_ASSERT(igrad_src != GGML_HASHSET_FULL); |
|
GGML_ASSERT(ggml_bitset_get(src->visited_hash_set.used, igrad_src)); |
|
GGML_ASSERT(igrad_dst != GGML_HASHSET_FULL); |
|
GGML_ASSERT(ggml_bitset_get(dst->visited_hash_set.used, igrad_dst)); |
|
|
|
dst->grads[igrad_dst] = src->grads[igrad_src]; |
|
dst->grad_accs[igrad_dst] = src->grad_accs[igrad_src]; |
|
} |
|
} |
|
} |
|
|
|
struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) { |
|
struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL); |
|
ggml_graph_cpy(cgraph, result); |
|
return result; |
|
} |
|
|
|
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) { |
|
if (ggml_is_empty(tensor)) { |
|
return tensor; |
|
} |
|
if (tensor->buffer) { |
|
ggml_backend_tensor_memset(tensor, 0, 0, ggml_nbytes(tensor)); |
|
} else { |
|
GGML_ASSERT(tensor->data); |
|
memset(tensor->data, 0, ggml_nbytes(tensor)); |
|
} |
|
return tensor; |
|
} |
|
|
|
void ggml_graph_reset(struct ggml_cgraph * cgraph) { |
|
GGML_ASSERT(cgraph->grads != NULL); |
|
|
|
for (int i = 0; i < cgraph->n_nodes; i++) { |
|
struct ggml_tensor * node = cgraph->nodes[i]; |
|
struct ggml_tensor * grad_acc = ggml_graph_get_grad_acc(cgraph, node); |
|
|
|
if (node->op == GGML_OP_OPT_STEP_ADAMW) { |
|
|
|
ggml_set_zero(node->src[2]); |
|
ggml_set_zero(node->src[3]); |
|
} |
|
|
|
|
|
if (grad_acc) { |
|
if (node->flags & GGML_TENSOR_FLAG_LOSS) { |
|
GGML_ASSERT(grad_acc->type == GGML_TYPE_F32); |
|
GGML_ASSERT(ggml_is_scalar(grad_acc)); |
|
|
|
const float onef = 1.0f; |
|
if (grad_acc->buffer) { |
|
ggml_backend_tensor_set(grad_acc, &onef, 0, sizeof(float)); |
|
} else { |
|
GGML_ASSERT(grad_acc->data); |
|
*((float *) grad_acc->data) = onef; |
|
} |
|
} else { |
|
ggml_set_zero(grad_acc); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void ggml_graph_clear(struct ggml_cgraph * cgraph) { |
|
cgraph->n_leafs = 0; |
|
cgraph->n_nodes = 0; |
|
ggml_hash_set_reset(&cgraph->visited_hash_set); |
|
} |
|
|
|
int ggml_graph_size(struct ggml_cgraph * cgraph) { |
|
return cgraph->size; |
|
} |
|
|
|
struct ggml_tensor * ggml_graph_node(struct ggml_cgraph * cgraph, int i) { |
|
if (i < 0) { |
|
GGML_ASSERT(cgraph->n_nodes + i >= 0); |
|
return cgraph->nodes[cgraph->n_nodes + i]; |
|
} |
|
|
|
GGML_ASSERT(i < cgraph->n_nodes); |
|
return cgraph->nodes[i]; |
|
} |
|
|
|
struct ggml_tensor ** ggml_graph_nodes(struct ggml_cgraph * cgraph) { |
|
return cgraph->nodes; |
|
} |
|
|
|
int ggml_graph_n_nodes(struct ggml_cgraph * cgraph) { |
|
return cgraph->n_nodes; |
|
} |
|
|
|
void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) { |
|
GGML_ASSERT(cgraph->size > cgraph->n_nodes); |
|
cgraph->nodes[cgraph->n_nodes] = tensor; |
|
cgraph->n_nodes++; |
|
} |
|
|
|
struct ggml_tensor * ggml_graph_get_tensor(const struct ggml_cgraph * cgraph, const char * name) { |
|
for (int i = 0; i < cgraph->n_leafs; i++) { |
|
struct ggml_tensor * leaf = cgraph->leafs[i]; |
|
|
|
if (strcmp(leaf->name, name) == 0) { |
|
return leaf; |
|
} |
|
} |
|
|
|
for (int i = 0; i < cgraph->n_nodes; i++) { |
|
struct ggml_tensor * node = cgraph->nodes[i]; |
|
|
|
if (strcmp(node->name, name) == 0) { |
|
return node; |
|
} |
|
} |
|
|
|
return NULL; |
|
} |
|
|
|
struct ggml_tensor * ggml_graph_get_grad(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { |
|
const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node); |
|
return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) && cgraph->grads ? cgraph->grads[igrad] : NULL; |
|
} |
|
|
|
struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { |
|
const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node); |
|
return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) && cgraph->grad_accs ? cgraph->grad_accs[igrad] : NULL; |
|
} |
|
|
|
void ggml_graph_print(const struct ggml_cgraph * cgraph) { |
|
GGML_LOG_INFO("=== GRAPH ===\n"); |
|
|
|
GGML_LOG_INFO("n_nodes = %d\n", cgraph->n_nodes); |
|
for (int i = 0; i < cgraph->n_nodes; i++) { |
|
struct ggml_tensor * node = cgraph->nodes[i]; |
|
|
|
GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n", |
|
i, |
|
node->ne[0], node->ne[1], node->ne[2], |
|
ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : |
|
ggml_graph_get_grad(cgraph, node) ? "g" : " "); |
|
} |
|
|
|
GGML_LOG_INFO("n_leafs = %d\n", cgraph->n_leafs); |
|
for (int i = 0; i < cgraph->n_leafs; i++) { |
|
struct ggml_tensor * node = cgraph->leafs[i]; |
|
|
|
GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n", |
|
i, |
|
node->ne[0], node->ne[1], |
|
ggml_op_name(node->op), |
|
ggml_get_name(node)); |
|
} |
|
|
|
GGML_LOG_INFO("========================================\n"); |
|
} |
|
|
|
|
|
static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { |
|
if (cgraph == NULL) { |
|
return true; |
|
} |
|
|
|
for (int i = 0; i < cgraph->n_nodes; i++) { |
|
if (cgraph->nodes[i] == node) { |
|
return true; |
|
} |
|
} |
|
|
|
return false; |
|
} |
|
|
|
static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { |
|
for (int i = 0; i < cgraph->n_nodes; i++) { |
|
struct ggml_tensor * parent = cgraph->nodes[i]; |
|
struct ggml_tensor * grad = ggml_graph_get_grad(cgraph, parent); |
|
|
|
if (grad == node) { |
|
return parent; |
|
} |
|
} |
|
|
|
return NULL; |
|
} |
|
|
|
static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) { |
|
struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node); |
|
struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent); |
|
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n", |
|
gparent0 ? (void *) gparent0 : (void *) parent, |
|
gparent0 ? "g" : "x", |
|
gparent ? (void *) gparent : (void *) node, |
|
gparent ? "g" : "x", |
|
gparent ? "empty" : "vee", |
|
gparent ? "dashed" : "solid", |
|
label); |
|
} |
|
|
|
static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) { |
|
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n", |
|
(void *) parent, "x", |
|
(void *) node, "x", |
|
label); |
|
} |
|
|
|
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) { |
|
char color[16]; |
|
|
|
FILE * fp = ggml_fopen(filename, "w"); |
|
GGML_ASSERT(fp); |
|
|
|
fprintf(fp, "digraph G {\n"); |
|
fprintf(fp, " newrank = true;\n"); |
|
fprintf(fp, " rankdir = TB;\n"); |
|
|
|
for (int i = 0; i < gb->n_nodes; i++) { |
|
struct ggml_tensor * node = gb->nodes[i]; |
|
struct ggml_tensor * grad = ggml_graph_get_grad(gb, node); |
|
|
|
if (ggml_graph_get_parent(gb, node) != NULL) { |
|
continue; |
|
} |
|
|
|
if (node->flags & GGML_TENSOR_FLAG_PARAM) { |
|
snprintf(color, sizeof(color), "yellow"); |
|
} else if (grad) { |
|
if (ggml_graph_find(gf, node)) { |
|
snprintf(color, sizeof(color), "green"); |
|
} else { |
|
snprintf(color, sizeof(color), "lightblue"); |
|
} |
|
} else { |
|
snprintf(color, sizeof(color), "white"); |
|
} |
|
|
|
fprintf(fp, " \"%p\" [ " |
|
"style = filled; fillcolor = %s; shape = record; " |
|
"label=\"", |
|
(void *) node, color); |
|
|
|
if (strlen(node->name) > 0) { |
|
fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type)); |
|
} else { |
|
fprintf(fp, "(%s)|", ggml_type_name(node->type)); |
|
} |
|
|
|
if (ggml_is_matrix(node)) { |
|
fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op)); |
|
} else { |
|
fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op)); |
|
} |
|
|
|
if (grad) { |
|
fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(grad->op)); |
|
} else { |
|
fprintf(fp, "\"; ]\n"); |
|
} |
|
} |
|
|
|
for (int i = 0; i < gb->n_leafs; i++) { |
|
struct ggml_tensor * node = gb->leafs[i]; |
|
|
|
snprintf(color, sizeof(color), "pink"); |
|
|
|
fprintf(fp, " \"%p\" [ " |
|
"style = filled; fillcolor = %s; shape = record; " |
|
"label=\"<x>", |
|
(void *) node, color); |
|
|
|
if (strlen(node->name) > 0) { |
|
fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type)); |
|
} else { |
|
fprintf(fp, "(%s)|", ggml_type_name(node->type)); |
|
} |
|
|
|
fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]); |
|
if (ggml_nelements(node) < 5 && node->data != NULL) { |
|
fprintf(fp, " | ("); |
|
for (int j = 0; j < ggml_nelements(node); j++) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{ |
|
fprintf(fp, "#"); |
|
} |
|
if (j < ggml_nelements(node) - 1) { |
|
fprintf(fp, ", "); |
|
} |
|
} |
|
fprintf(fp, ")"); |
|
} |
|
fprintf(fp, "\"; ]\n"); |
|
} |
|
|
|
for (int i = 0; i < gb->n_nodes; i++) { |
|
struct ggml_tensor * node = gb->nodes[i]; |
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) { |
|
if (node->src[j]) { |
|
char label[16]; |
|
snprintf(label, sizeof(label), "src %d", j); |
|
ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label); |
|
} |
|
} |
|
} |
|
|
|
for (int i = 0; i < gb->n_leafs; i++) { |
|
struct ggml_tensor * node = gb->leafs[i]; |
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) { |
|
if (node->src[j]) { |
|
char label[16]; |
|
snprintf(label, sizeof(label), "src %d", j); |
|
ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label); |
|
} |
|
} |
|
} |
|
|
|
fprintf(fp, "}\n"); |
|
|
|
fclose(fp); |
|
|
|
GGML_LOG_INFO("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename); |
|
} |
|
|
|
|
|
|
|
void ggml_set_input(struct ggml_tensor * tensor) { |
|
tensor->flags |= GGML_TENSOR_FLAG_INPUT; |
|
} |
|
|
|
void ggml_set_output(struct ggml_tensor * tensor) { |
|
tensor->flags |= GGML_TENSOR_FLAG_OUTPUT; |
|
} |
|
|
|
void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor) { |
|
GGML_UNUSED(ctx); |
|
tensor->flags |= GGML_TENSOR_FLAG_PARAM; |
|
} |
|
|
|
void ggml_set_loss(struct ggml_tensor * tensor) { |
|
GGML_ASSERT(ggml_is_scalar(tensor)); |
|
GGML_ASSERT(tensor->type == GGML_TYPE_F32); |
|
tensor->flags |= GGML_TENSOR_FLAG_LOSS; |
|
} |
|
|
|
|
|
|
|
void ggml_quantize_init(enum ggml_type type) { |
|
ggml_critical_section_start(); |
|
|
|
switch (type) { |
|
case GGML_TYPE_IQ2_XXS: |
|
case GGML_TYPE_IQ2_XS: |
|
case GGML_TYPE_IQ2_S: |
|
case GGML_TYPE_IQ1_S: |
|
case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break; |
|
case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break; |
|
case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break; |
|
default: |
|
break; |
|
} |
|
|
|
ggml_critical_section_end(); |
|
} |
|
|
|
void ggml_quantize_free(void) { |
|
ggml_critical_section_start(); |
|
|
|
iq2xs_free_impl(GGML_TYPE_IQ2_XXS); |
|
iq2xs_free_impl(GGML_TYPE_IQ2_XS); |
|
iq2xs_free_impl(GGML_TYPE_IQ1_S); |
|
iq3xs_free_impl(256); |
|
|
|
ggml_critical_section_end(); |
|
} |
|
|
|
bool ggml_quantize_requires_imatrix(enum ggml_type type) { |
|
return |
|
type == GGML_TYPE_IQ2_XXS || |
|
type == GGML_TYPE_IQ2_XS || |
|
type == GGML_TYPE_IQ1_S; |
|
|
|
} |
|
|
|
size_t ggml_quantize_chunk( |
|
enum ggml_type type, |
|
const float * src, |
|
void * dst, |
|
int64_t start, |
|
int64_t nrows, |
|
int64_t n_per_row, |
|
const float * imatrix) { |
|
const int64_t n = (int64_t) nrows * n_per_row; |
|
|
|
if (ggml_quantize_requires_imatrix(type)) { |
|
GGML_ASSERT(imatrix != NULL); |
|
} |
|
|
|
GGML_ASSERT(start % type_traits[type].blck_size == 0); |
|
GGML_ASSERT(start % n_per_row == 0); |
|
|
|
ggml_quantize_init(type); |
|
|
|
const size_t start_row = start / n_per_row; |
|
const size_t row_size = ggml_row_size(type, n_per_row); |
|
|
|
size_t result = 0; |
|
|
|
switch (type) { |
|
case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_TQ1_0: result = quantize_tq1_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_TQ2_0: result = quantize_tq2_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |
|
case GGML_TYPE_F16: |
|
{ |
|
size_t elemsize = sizeof(ggml_fp16_t); |
|
ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n); |
|
result = n * elemsize; |
|
} break; |
|
case GGML_TYPE_BF16: |
|
{ |
|
size_t elemsize = sizeof(ggml_bf16_t); |
|
ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n); |
|
result = n * elemsize; |
|
} break; |
|
case GGML_TYPE_F32: |
|
{ |
|
size_t elemsize = sizeof(float); |
|
result = n * elemsize; |
|
memcpy((uint8_t *)dst + start * elemsize, src + start, result); |
|
} break; |
|
default: |
|
assert(false); |
|
} |
|
|
|
GGML_ASSERT(result == nrows * row_size); |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
void ggml_log_set(ggml_log_callback log_callback, void * user_data) { |
|
g_logger_state.log_callback = log_callback ? log_callback : ggml_log_callback_default; |
|
g_logger_state.log_callback_user_data = user_data; |
|
} |
|
|
|
void ggml_threadpool_params_init(struct ggml_threadpool_params * p, int n_threads) { |
|
p->n_threads = n_threads; |
|
p->prio = 0; |
|
p->poll = 50; |
|
p->strict_cpu = false; |
|
p->paused = false; |
|
memset(p->cpumask, 0, GGML_MAX_N_THREADS); |
|
} |
|
|
|
struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads) { |
|
struct ggml_threadpool_params p; |
|
ggml_threadpool_params_init(&p, n_threads); |
|
return p; |
|
} |
|
|
|
bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1) { |
|
if (p0->n_threads != p1->n_threads ) return false; |
|
if (p0->prio != p1->prio ) return false; |
|
if (p0->poll != p1->poll ) return false; |
|
if (p0->strict_cpu != p1->strict_cpu ) return false; |
|
return memcmp(p0->cpumask, p1->cpumask, GGML_MAX_N_THREADS) == 0; |
|
} |
|
|