Steven10429's picture
llama.cpp
61b850a
#define _CRT_SECURE_NO_DEPRECATE // Disables "unsafe" warnings on Windows
#define _USE_MATH_DEFINES // For M_PI on MSVC
#include "ggml-backend.h"
#include "ggml-impl.h"
#include "ggml-threading.h"
#include "ggml.h"
// FIXME: required here for quantization functions
#include "ggml-quants.h"
#ifdef GGML_USE_CPU_HBM
#include <hbwmalloc.h>
#endif
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h> // using malloc.h with MSC/MINGW
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
#include <alloca.h>
#endif
#include <assert.h>
#include <errno.h>
#include <time.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <stdio.h>
#include <float.h>
#include <limits.h>
#include <stdarg.h>
#include <signal.h>
#if defined(__gnu_linux__)
#include <syscall.h>
#endif
#if defined(__APPLE__)
#include <unistd.h>
#include <mach/mach.h>
#include <TargetConditionals.h>
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#endif
#define UNUSED GGML_UNUSED
#if defined(_MSC_VER)
#define m512bh(p) p
#define m512i(p) p
#else
#define m512bh(p) (__m512bh)(p)
#define m512i(p) (__m512i)(p)
#endif
// precomputed f32 table for f16 (256 KB) (ggml-impl.h)
float ggml_table_f32_f16[1 << 16];
#if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
(!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#if defined(__ANDROID__)
#include <unwind.h>
#include <dlfcn.h>
#include <stdio.h>
struct backtrace_state {
void ** current;
void ** end;
};
static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context* context, void* arg) {
struct backtrace_state * state = (struct backtrace_state *)arg;
uintptr_t pc = _Unwind_GetIP(context);
if (pc) {
if (state->current == state->end) {
return _URC_END_OF_STACK;
} else {
*state->current++ = (void*)pc;
}
}
return _URC_NO_REASON;
}
static void ggml_print_backtrace_symbols(void) {
const int max = 100;
void* buffer[max];
struct backtrace_state state = {buffer, buffer + max};
_Unwind_Backtrace(unwind_callback, &state);
int count = state.current - buffer;
for (int idx = 0; idx < count; ++idx) {
const void * addr = buffer[idx];
const char * symbol = "";
Dl_info info;
if (dladdr(addr, &info) && info.dli_sname) {
symbol = info.dli_sname;
}
fprintf(stderr, "%d: %p %s\n", idx, addr, symbol);
}
}
#elif defined(__linux__) && defined(__GLIBC__)
#include <execinfo.h>
static void ggml_print_backtrace_symbols(void) {
void * trace[100];
int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
}
#else
static void ggml_print_backtrace_symbols(void) {
// platform not supported
}
#endif
static void ggml_print_backtrace(void) {
const char * GGML_NO_BACKTRACE = getenv("GGML_NO_BACKTRACE");
if (GGML_NO_BACKTRACE) {
return;
}
char attach[32];
snprintf(attach, sizeof(attach), "attach %d", getpid());
int pid = fork();
if (pid == 0) {
// try gdb
execlp("gdb", "gdb", "--batch",
"-ex", "set style enabled on",
"-ex", attach,
"-ex", "bt -frame-info source-and-location",
"-ex", "detach",
"-ex", "quit",
(char *) NULL);
// try lldb
execlp("lldb", "lldb", "--batch",
"-o", "bt",
"-o", "quit",
"-p", attach,
(char *) NULL);
exit(EXIT_FAILURE);
} else {
int wstatus;
waitpid(pid, &wstatus, 0);
if (WIFEXITED(wstatus)) {
if (WEXITSTATUS(wstatus) == EXIT_FAILURE) {
// gdb failed, fallback to backtrace_symbols
ggml_print_backtrace_symbols();
}
}
}
}
#else
static void ggml_print_backtrace(void) {
// platform not supported
}
#endif
void ggml_abort(const char * file, int line, const char * fmt, ...) {
fflush(stdout);
fprintf(stderr, "%s:%d: ", file, line);
va_list args;
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
fprintf(stderr, "\n");
ggml_print_backtrace();
abort();
}
//
// logging
//
struct ggml_logger_state {
ggml_log_callback log_callback;
void * log_callback_user_data;
};
static struct ggml_logger_state g_logger_state = {ggml_log_callback_default, NULL};
static void ggml_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
if (format == NULL) {
return;
}
va_list args_copy;
va_copy(args_copy, args);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
} else {
char * buffer2 = (char *) calloc(len + 1, sizeof(char));
vsnprintf(buffer2, len + 1, format, args_copy);
buffer2[len] = 0;
g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
free(buffer2);
}
va_end(args_copy);
}
void ggml_log_internal(enum ggml_log_level level, const char * format, ...) {
va_list args;
va_start(args, format);
ggml_log_internal_v(level, format, args);
va_end(args);
}
void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
fputs(text, stderr);
fflush(stderr);
}
//
// end of logging block
//
#ifdef GGML_USE_ACCELERATE
// uncomment to use vDSP for soft max computation
// note: not sure if it is actually faster
//#define GGML_SOFT_MAX_ACCELERATE
#endif
void * ggml_aligned_malloc(size_t size) {
const int alignment = 64;
#if defined(_MSC_VER) || defined(__MINGW32__)
return _aligned_malloc(size, alignment);
#else
if (size == 0) {
GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
return NULL;
}
void * aligned_memory = NULL;
#ifdef GGML_USE_CPU_HBM
int result = hbw_posix_memalign(&aligned_memory, alignment, size);
#elif TARGET_OS_OSX
GGML_UNUSED(alignment);
kern_return_t alloc_status = vm_allocate((vm_map_t) mach_task_self(), (vm_address_t *) &aligned_memory, size, VM_FLAGS_ANYWHERE);
int result = EFAULT;
switch (alloc_status) {
case KERN_SUCCESS:
result = 0;
break;
case KERN_INVALID_ADDRESS:
result = EINVAL;
break;
case KERN_NO_SPACE:
result = ENOMEM;
break;
default:
result = EFAULT;
break;
}
#else
int result = posix_memalign(&aligned_memory, alignment, size);
#endif
if (result != 0) {
// Handle allocation failure
const char *error_desc = "unknown allocation error";
switch (result) {
case EINVAL:
error_desc = "invalid alignment value";
break;
case ENOMEM:
error_desc = "insufficient memory";
break;
}
GGML_LOG_ERROR("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
return NULL;
}
return aligned_memory;
#endif
}
void ggml_aligned_free(void * ptr, size_t size) {
GGML_UNUSED(size);
#if defined(_MSC_VER) || defined(__MINGW32__)
_aligned_free(ptr);
#elif GGML_USE_CPU_HBM
if (ptr != NULL) {
hbw_free(ptr);
}
#elif TARGET_OS_OSX
if (ptr != NULL) {
vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ptr, size);
}
#else
free(ptr);
#endif
}
inline static void * ggml_malloc(size_t size) {
if (size == 0) {
GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
return NULL;
}
void * result = malloc(size);
if (result == NULL) {
GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
GGML_ABORT("fatal error");
}
return result;
}
// calloc
inline static void * ggml_calloc(size_t num, size_t size) {
if (num == 0 || size == 0) {
GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
return NULL;
}
void * result = calloc(num, size);
if (result == NULL) {
GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
GGML_ABORT("fatal error");
}
return result;
}
#define GGML_MALLOC(size) ggml_malloc(size)
#define GGML_CALLOC(num, size) ggml_calloc(num, size)
#define GGML_FREE(ptr) free(ptr)
const char * ggml_status_to_string(enum ggml_status status) {
switch (status) {
case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
case GGML_STATUS_SUCCESS: return "GGML status: success";
case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
}
return "GGML status: unknown";
}
float ggml_fp16_to_fp32(ggml_fp16_t x) {
#define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
return GGML_FP16_TO_FP32(x);
}
ggml_fp16_t ggml_fp32_to_fp16(float x) {
#define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
return GGML_FP32_TO_FP16(x);
}
float ggml_bf16_to_fp32(ggml_bf16_t x) {
#define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
return GGML_BF16_TO_FP32(x); // it just left shifts
}
ggml_bf16_t ggml_fp32_to_bf16(float x) {
#define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
return GGML_FP32_TO_BF16(x);
}
void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
for (int64_t i = 0; i < n; i++) {
y[i] = GGML_FP16_TO_FP32(x[i]);
}
}
// FIXME: these functions must detect the instruction set at runtime, since they are part of the core ggml library
// currently, the ggml_cpu_has_* functions are entirely compile-time
void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
int64_t i = 0;
#if defined(__F16C__)
//if (ggml_cpu_has_f16c()) {
for (; i + 7 < n; i += 8) {
__m256 x_vec = _mm256_loadu_ps(x + i);
__m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storeu_si128((__m128i *)(y + i), y_vec);
}
for(; i + 3 < n; i += 4) {
__m128 x_vec = _mm_loadu_ps(x + i);
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storel_epi64((__m128i *)(y + i), y_vec);
}
//}
#endif
for (; i < n; i++) {
y[i] = GGML_FP32_TO_FP16(x[i]);
}
}
void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
int64_t i = 0;
#if defined(__AVX512F__)
//if (ggml_cpu_has_avx512()) {
for (; i + 16 <= n; i += 16) {
_mm512_storeu_ps(y + i,
_mm512_castsi512_ps(
_mm512_slli_epi32(
_mm512_cvtepu16_epi32(
_mm256_loadu_si256(
(const __m256i *)(x + i))),
16)));
}
//}
#endif
#if defined(__AVX2__)
//if (ggml_cpu_has_avx2()) {
for (; i + 8 <= n; i += 8) {
_mm256_storeu_ps(y + i,
_mm256_castsi256_ps(
_mm256_slli_epi32(
_mm256_cvtepu16_epi32(
_mm_loadu_si128(
(const __m128i *)(x + i))),
16)));
}
//}
#endif
for (; i < n; i++) {
y[i] = GGML_BF16_TO_FP32(x[i]);
}
}
void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) {
for (int i = 0; i < n; i++) {
y[i] = ggml_compute_fp32_to_bf16(x[i]);
}
}
void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
int i = 0;
#if defined(__AVX512BF16__)
// subnormals are flushed to zero on this platform
for (; i + 32 <= n; i += 32) {
_mm512_storeu_si512(
(__m512i *)(y + i),
m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
_mm512_loadu_ps(x + i))));
}
#endif
for (; i < n; i++) {
y[i] = GGML_FP32_TO_BF16(x[i]);
}
}
bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
}
//
// timing
//
#if defined(_MSC_VER) || defined(__MINGW32__)
static int64_t timer_freq, timer_start;
void ggml_time_init(void) {
LARGE_INTEGER t;
QueryPerformanceFrequency(&t);
timer_freq = t.QuadPart;
// The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
// and the uptime is high enough.
// We subtract the program start time to reduce the likelihood of that happening.
QueryPerformanceCounter(&t);
timer_start = t.QuadPart;
}
int64_t ggml_time_ms(void) {
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
return ((t.QuadPart-timer_start) * 1000) / timer_freq;
}
int64_t ggml_time_us(void) {
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
}
#else
void ggml_time_init(void) {}
int64_t ggml_time_ms(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
}
int64_t ggml_time_us(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
}
#endif
int64_t ggml_cycles(void) {
return clock();
}
int64_t ggml_cycles_per_ms(void) {
return CLOCKS_PER_SEC/1000;
}
//
// cross-platform UTF-8 file paths
//
#ifdef _WIN32
static wchar_t * ggml_mbstowcs(const char * mbs) {
int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
if (!wlen) {
errno = EINVAL;
return NULL;
}
wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
if (!wlen) {
GGML_FREE(wbuf);
errno = EINVAL;
return NULL;
}
return wbuf;
}
#endif
FILE * ggml_fopen(const char * fname, const char * mode) {
#ifdef _WIN32
FILE * file = NULL;
// convert fname (UTF-8)
wchar_t * wfname = ggml_mbstowcs(fname);
if (wfname) {
// convert mode (ANSI)
wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
wchar_t * wmode_p = wmode;
do {
*wmode_p++ = (wchar_t)*mode;
} while (*mode++);
// open file
file = _wfopen(wfname, wmode);
GGML_FREE(wfname);
GGML_FREE(wmode);
}
return file;
#else
return fopen(fname, mode);
#endif
}
static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
static const struct ggml_type_traits type_traits[GGML_TYPE_COUNT] = {
[GGML_TYPE_I8] = {
.type_name = "i8",
.blck_size = 1,
.type_size = sizeof(int8_t),
.is_quantized = false,
},
[GGML_TYPE_I16] = {
.type_name = "i16",
.blck_size = 1,
.type_size = sizeof(int16_t),
.is_quantized = false,
},
[GGML_TYPE_I32] = {
.type_name = "i32",
.blck_size = 1,
.type_size = sizeof(int32_t),
.is_quantized = false,
},
[GGML_TYPE_I64] = {
.type_name = "i64",
.blck_size = 1,
.type_size = sizeof(int64_t),
.is_quantized = false,
},
[GGML_TYPE_F64] = {
.type_name = "f64",
.blck_size = 1,
.type_size = sizeof(double),
.is_quantized = false,
},
[GGML_TYPE_F32] = {
.type_name = "f32",
.blck_size = 1,
.type_size = sizeof(float),
.is_quantized = false,
},
[GGML_TYPE_F16] = {
.type_name = "f16",
.blck_size = 1,
.type_size = sizeof(ggml_fp16_t),
.is_quantized = false,
.to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
.from_float_ref = (ggml_from_float_t) ggml_fp32_to_fp16_row,
},
[GGML_TYPE_Q4_0] = {
.type_name = "q4_0",
.blck_size = QK4_0,
.type_size = sizeof(block_q4_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_0,
.from_float_ref = (ggml_from_float_t) quantize_row_q4_0_ref,
},
[GGML_TYPE_Q4_1] = {
.type_name = "q4_1",
.blck_size = QK4_1,
.type_size = sizeof(block_q4_1),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_1,
.from_float_ref = (ggml_from_float_t) quantize_row_q4_1_ref,
},
[4] = { // GGML_TYPE_Q4_2
.type_name = "DEPRECATED",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
},
[5] = { // GGML_TYPE_Q4_3
.type_name = "DEPRECATED",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
},
[GGML_TYPE_Q5_0] = {
.type_name = "q5_0",
.blck_size = QK5_0,
.type_size = sizeof(block_q5_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q5_0,
.from_float_ref = (ggml_from_float_t) quantize_row_q5_0_ref,
},
[GGML_TYPE_Q5_1] = {
.type_name = "q5_1",
.blck_size = QK5_1,
.type_size = sizeof(block_q5_1),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q5_1,
.from_float_ref = (ggml_from_float_t) quantize_row_q5_1_ref,
},
[GGML_TYPE_Q8_0] = {
.type_name = "q8_0",
.blck_size = QK8_0,
.type_size = sizeof(block_q8_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q8_0,
.from_float_ref = (ggml_from_float_t) quantize_row_q8_0_ref,
},
[GGML_TYPE_Q8_1] = {
.type_name = "q8_1",
.blck_size = QK8_1,
.type_size = sizeof(block_q8_1),
.is_quantized = true,
.from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref,
},
[GGML_TYPE_Q2_K] = {
.type_name = "q2_K",
.blck_size = QK_K,
.type_size = sizeof(block_q2_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q2_K,
.from_float_ref = (ggml_from_float_t) quantize_row_q2_K_ref,
},
[GGML_TYPE_Q3_K] = {
.type_name = "q3_K",
.blck_size = QK_K,
.type_size = sizeof(block_q3_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q3_K,
.from_float_ref = (ggml_from_float_t) quantize_row_q3_K_ref,
},
[GGML_TYPE_Q4_K] = {
.type_name = "q4_K",
.blck_size = QK_K,
.type_size = sizeof(block_q4_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_K,
.from_float_ref = (ggml_from_float_t) quantize_row_q4_K_ref,
},
[GGML_TYPE_Q5_K] = {
.type_name = "q5_K",
.blck_size = QK_K,
.type_size = sizeof(block_q5_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q5_K,
.from_float_ref = (ggml_from_float_t) quantize_row_q5_K_ref,
},
[GGML_TYPE_Q6_K] = {
.type_name = "q6_K",
.blck_size = QK_K,
.type_size = sizeof(block_q6_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q6_K,
.from_float_ref = (ggml_from_float_t) quantize_row_q6_K_ref,
},
[GGML_TYPE_IQ2_XXS] = {
.type_name = "iq2_xxs",
.blck_size = QK_K,
.type_size = sizeof(block_iq2_xxs),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
.from_float_ref = NULL,
},
[GGML_TYPE_IQ2_XS] = {
.type_name = "iq2_xs",
.blck_size = QK_K,
.type_size = sizeof(block_iq2_xs),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
.from_float_ref = NULL,
},
[GGML_TYPE_IQ3_XXS] = {
.type_name = "iq3_xxs",
.blck_size = QK_K,
.type_size = sizeof(block_iq3_xxs),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
.from_float_ref = (ggml_from_float_t)quantize_row_iq3_xxs_ref,
},
[GGML_TYPE_IQ3_S] = {
.type_name = "iq3_s",
.blck_size = QK_K,
.type_size = sizeof(block_iq3_s),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq3_s,
.from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_ref,
},
[GGML_TYPE_IQ2_S] = {
.type_name = "iq2_s",
.blck_size = QK_K,
.type_size = sizeof(block_iq2_s),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq2_s,
.from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_ref,
},
[GGML_TYPE_IQ1_S] = {
.type_name = "iq1_s",
.blck_size = QK_K,
.type_size = sizeof(block_iq1_s),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq1_s,
.from_float_ref = NULL,
},
[GGML_TYPE_IQ1_M] = {
.type_name = "iq1_m",
.blck_size = QK_K,
.type_size = sizeof(block_iq1_m),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq1_m,
.from_float_ref = NULL,
},
[GGML_TYPE_IQ4_NL] = {
.type_name = "iq4_nl",
.blck_size = QK4_NL,
.type_size = sizeof(block_iq4_nl),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
.from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref,
},
[GGML_TYPE_IQ4_XS] = {
.type_name = "iq4_xs",
.blck_size = QK_K,
.type_size = sizeof(block_iq4_xs),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
.from_float_ref = (ggml_from_float_t)quantize_row_iq4_xs_ref,
},
[GGML_TYPE_Q8_K] = {
.type_name = "q8_K",
.blck_size = QK_K,
.type_size = sizeof(block_q8_K),
.is_quantized = true,
},
[GGML_TYPE_BF16] = {
.type_name = "bf16",
.blck_size = 1,
.type_size = sizeof(ggml_bf16_t),
.is_quantized = false,
.to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
.from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
},
[31] = { // GGML_TYPE_Q4_0_4_4
.type_name = "TYPE_Q4_0_4_4 REMOVED, use Q4_0 with runtime repacking",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
},
[32] = { // GGML_TYPE_Q4_0_4_8
.type_name = "TYPE_Q4_0_4_8 REMOVED, use Q4_0 with runtime repacking",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
},
[33] = { // GGML_TYPE_Q4_0_8_8
.type_name = "TYPE_Q4_0_8_8 REMOVED, use Q4_0 with runtime repacking",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
},
[GGML_TYPE_TQ1_0] = {
.type_name = "tq1_0",
.blck_size = QK_K,
.type_size = sizeof(block_tq1_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_tq1_0,
.from_float_ref = (ggml_from_float_t) quantize_row_tq1_0_ref,
},
[GGML_TYPE_TQ2_0] = {
.type_name = "tq2_0",
.blck_size = QK_K,
.type_size = sizeof(block_tq2_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_tq2_0,
.from_float_ref = (ggml_from_float_t) quantize_row_tq2_0_ref,
},
[36] = { // GGML_TYPE_IQ4_NL_4_4
.type_name = "TYPE_IQ4_NL_4_4 REMOVED, use IQ4_NL with runtime repacking",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
},
[37] = { // GGML_TYPE_IQ4_NL_4_8
.type_name = "TYPE_IQ4_NL_4_8 REMOVED, use IQ4_NL with runtime repacking",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
},
[38] = { // GGML_TYPE_IQ4_NL_8_8
.type_name = "TYPE_IQ4_NL_8_8 REMOVED, use IQ4_NL with runtime repacking",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
},
};
const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type) {
GGML_ASSERT(type < GGML_TYPE_COUNT);
return &type_traits[type];
}
//
// ggml object
//
struct ggml_object {
size_t offs;
size_t size;
struct ggml_object * next;
enum ggml_object_type type;
char padding[4];
};
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
//
// ggml context
//
struct ggml_context {
size_t mem_size;
void * mem_buffer;
bool mem_buffer_owned;
bool no_alloc;
int n_objects;
struct ggml_object * objects_begin;
struct ggml_object * objects_end;
};
struct ggml_context_container {
bool used;
struct ggml_context context;
};
//
// data types
//
static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"NONE",
"DUP",
"ADD",
"ADD1",
"ACC",
"SUB",
"MUL",
"DIV",
"SQR",
"SQRT",
"LOG",
"SIN",
"COS",
"SUM",
"SUM_ROWS",
"MEAN",
"ARGMAX",
"COUNT_EQUAL",
"REPEAT",
"REPEAT_BACK",
"CONCAT",
"SILU_BACK",
"NORM",
"RMS_NORM",
"RMS_NORM_BACK",
"GROUP_NORM",
"MUL_MAT",
"MUL_MAT_ID",
"OUT_PROD",
"SCALE",
"SET",
"CPY",
"CONT",
"RESHAPE",
"VIEW",
"PERMUTE",
"TRANSPOSE",
"GET_ROWS",
"GET_ROWS_BACK",
"DIAG",
"DIAG_MASK_INF",
"DIAG_MASK_ZERO",
"SOFT_MAX",
"SOFT_MAX_BACK",
"ROPE",
"ROPE_BACK",
"CLAMP",
"CONV_TRANSPOSE_1D",
"IM2COL",
"IM2COL_BACK",
"CONV_TRANSPOSE_2D",
"POOL_1D",
"POOL_2D",
"POOL_2D_BACK",
"UPSCALE",
"PAD",
"PAD_REFLECT_1D",
"ARANGE",
"TIMESTEP_EMBEDDING",
"ARGSORT",
"LEAKY_RELU",
"FLASH_ATTN_EXT",
"FLASH_ATTN_BACK",
"SSM_CONV",
"SSM_SCAN",
"WIN_PART",
"WIN_UNPART",
"GET_REL_POS",
"ADD_REL_POS",
"RWKV_WKV6",
"GATED_LINEAR_ATTN",
"UNARY",
"MAP_UNARY",
"MAP_BINARY",
"MAP_CUSTOM1_F32",
"MAP_CUSTOM2_F32",
"MAP_CUSTOM3_F32",
"MAP_CUSTOM1",
"MAP_CUSTOM2",
"MAP_CUSTOM3",
"CROSS_ENTROPY_LOSS",
"CROSS_ENTROPY_LOSS_BACK",
"OPT_STEP_ADAMW",
};
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
"x",
"x+y",
"x+y",
"view(x,nb,offset)+=y->x",
"x-y",
"x*y",
"x/y",
"x^2",
"√x",
"log(x)",
"sin(x)",
"cos(x)",
"Σx",
"Σx_k",
"Σx/n",
"argmax(x)",
"count_equal(x)",
"repeat(x)",
"repeat_back(x)",
"concat(x, y)",
"silu_back(x)",
"norm(x)",
"rms_norm(x)",
"rms_norm_back(x)",
"group_norm(x)",
"X*Y",
"X[i]*Y",
"X*Y",
"x*v",
"y-\\>view(x)",
"x-\\>y",
"cont(x)",
"reshape(x)",
"view(x)",
"permute(x)",
"transpose(x)",
"get_rows(x)",
"get_rows_back(x)",
"diag(x)",
"diag_mask_inf(x)",
"diag_mask_zero(x)",
"soft_max(x)",
"soft_max_back(x)",
"rope(x)",
"rope_back(x)",
"clamp(x)",
"conv_transpose_1d(x)",
"im2col(x)",
"im2col_back(x)",
"conv_transpose_2d(x)",
"pool_1d(x)",
"pool_2d(x)",
"pool_2d_back(x)",
"upscale(x)",
"pad(x)",
"pad_reflect_1d(x)",
"arange(start, stop, step)",
"timestep_embedding(timesteps, dim, max_period)",
"argsort(x)",
"leaky_relu(x)",
"flash_attn_ext(x)",
"flash_attn_back(x)",
"ssm_conv(x)",
"ssm_scan(x)",
"win_part(x)",
"win_unpart(x)",
"get_rel_pos(x)",
"add_rel_pos(x)",
"rwkv_wkv6(k, v, r, tf, td, s)",
"gated_linear_attn(k, v, q, gate, s)",
"unary(x)",
"f(x)",
"f(x,y)",
"custom_f32(x)",
"custom_f32(x,y)",
"custom_f32(x,y,z)",
"custom(x)",
"custom(x,y)",
"custom(x,y,z)",
"cross_entropy_loss(x,y)",
"cross_entropy_loss_back(x,y)",
"adamw(x)",
};
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
"ABS",
"SGN",
"NEG",
"STEP",
"TANH",
"ELU",
"RELU",
"SIGMOID",
"GELU",
"GELU_QUICK",
"SILU",
"HARDSWISH",
"HARDSIGMOID",
"EXP",
};
static_assert(GGML_UNARY_OP_COUNT == 14, "GGML_UNARY_OP_COUNT != 14");
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
////////////////////////////////////////////////////////////////////////////////
void ggml_print_object(const struct ggml_object * obj) {
GGML_LOG_INFO(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
obj->type, obj->offs, obj->size, (const void *) obj->next);
}
void ggml_print_objects(const struct ggml_context * ctx) {
struct ggml_object * obj = ctx->objects_begin;
GGML_LOG_INFO("%s: objects in context %p:\n", __func__, (const void *) ctx);
while (obj != NULL) {
ggml_print_object(obj);
obj = obj->next;
}
GGML_LOG_INFO("%s: --- end ---\n", __func__);
}
int64_t ggml_nelements(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
}
int64_t ggml_nrows(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
}
size_t ggml_nbytes(const struct ggml_tensor * tensor) {
size_t nbytes;
const size_t blck_size = ggml_blck_size(tensor->type);
if (blck_size == 1) {
nbytes = ggml_type_size(tensor->type);
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
}
}
else {
nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
for (int i = 1; i < GGML_MAX_DIMS; ++i) {
nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
}
}
return nbytes;
}
size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
}
int64_t ggml_blck_size(enum ggml_type type) {
return type_traits[type].blck_size;
}
size_t ggml_type_size(enum ggml_type type) {
return type_traits[type].type_size;
}
size_t ggml_row_size(enum ggml_type type, int64_t ne) {
assert(ne % ggml_blck_size(type) == 0);
return ggml_type_size(type)*ne/ggml_blck_size(type);
}
double ggml_type_sizef(enum ggml_type type) {
return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
}
const char * ggml_type_name(enum ggml_type type) {
return type < GGML_TYPE_COUNT ? type_traits[type].type_name : "NONE";
}
bool ggml_is_quantized(enum ggml_type type) {
return type_traits[type].is_quantized;
}
const char * ggml_op_name(enum ggml_op op) {
return GGML_OP_NAME[op];
}
const char * ggml_op_symbol(enum ggml_op op) {
return GGML_OP_SYMBOL[op];
}
const char * ggml_unary_op_name(enum ggml_unary_op op) {
return GGML_UNARY_OP_NAME[op];
}
const char * ggml_op_desc(const struct ggml_tensor * t) {
if (t->op == GGML_OP_UNARY) {
enum ggml_unary_op uop = ggml_get_unary_op(t);
return ggml_unary_op_name(uop);
}
return ggml_op_name(t->op);
}
size_t ggml_element_size(const struct ggml_tensor * tensor) {
return ggml_type_size(tensor->type);
}
bool ggml_is_scalar(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
bool ggml_is_vector(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
bool ggml_is_matrix(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
bool ggml_is_3d(const struct ggml_tensor * tensor) {
return tensor->ne[3] == 1;
}
int ggml_n_dims(const struct ggml_tensor * tensor) {
for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
if (tensor->ne[i] > 1) {
return i + 1;
}
}
return 1;
}
enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
enum ggml_type wtype = GGML_TYPE_COUNT;
switch (ftype) {
case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
}
GGML_ASSERT(wtype != GGML_TYPE_COUNT);
return wtype;
}
size_t ggml_tensor_overhead(void) {
return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
}
bool ggml_is_transposed(const struct ggml_tensor * tensor) {
return tensor->nb[0] > tensor->nb[1];
}
static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
size_t next_nb = ggml_type_size(tensor->type);
if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
return false;
}
next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
if (tensor->ne[i] != 1) {
if (i > n) {
if (tensor->nb[i] != next_nb) {
return false;
}
next_nb *= tensor->ne[i];
} else {
// this dimension does not need to be contiguous
next_nb = tensor->ne[i]*tensor->nb[i];
}
}
}
return true;
}
bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
return ggml_is_contiguous_0(tensor);
}
bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
return ggml_is_contiguous_n(tensor, 0);
}
bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
return ggml_is_contiguous_n(tensor, 1);
}
bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
return ggml_is_contiguous_n(tensor, 2);
}
bool ggml_is_permuted(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
}
static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
bool ggml_is_empty(const struct ggml_tensor * tensor) {
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
if (tensor->ne[i] == 0) {
// empty if any dimension has no elements
return true;
}
}
return false;
}
bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
(t0->ne[0] == t1->ne[0]) &&
(t0->ne[1] == t1->ne[1]) &&
(t0->ne[2] == t1->ne[2]) &&
(t0->ne[3] == t1->ne[3]);
}
bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
(t0->nb[0] == t1->nb[0]) &&
(t0->nb[1] == t1->nb[1]) &&
(t0->nb[2] == t1->nb[2]) &&
(t0->nb[3] == t1->nb[3]);
}
// check if t1 can be represented as a repetition of t0
bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return ggml_is_empty(t0) ? ggml_is_empty(t1) :
(t1->ne[0]%t0->ne[0] == 0) &&
(t1->ne[1]%t0->ne[1] == 0) &&
(t1->ne[2]%t0->ne[2] == 0) &&
(t1->ne[3]%t0->ne[3] == 0);
}
static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
}
// assert that pointer is aligned to GGML_MEM_ALIGN
#define GGML_ASSERT_ALIGNED(ptr) \
GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
////////////////////////////////////////////////////////////////////////////////
struct ggml_context * ggml_init(struct ggml_init_params params) {
static bool is_first_call = true;
ggml_critical_section_start();
if (is_first_call) {
// initialize time system (required on Windows)
ggml_time_init();
for (int i = 0; i < (1 << 16); ++i) {
union {
uint16_t u16;
ggml_fp16_t fp16;
} u = {i};
ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
}
is_first_call = false;
}
ggml_critical_section_end();
struct ggml_context * ctx = GGML_MALLOC(sizeof(struct ggml_context));
// allow to call ggml_init with 0 size
if (params.mem_size == 0) {
params.mem_size = GGML_MEM_ALIGN;
}
const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
*ctx = (struct ggml_context) {
/*.mem_size =*/ mem_size,
/*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : ggml_aligned_malloc(mem_size),
/*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
/*.no_alloc =*/ params.no_alloc,
/*.n_objects =*/ 0,
/*.objects_begin =*/ NULL,
/*.objects_end =*/ NULL,
};
GGML_ASSERT(ctx->mem_buffer != NULL);
GGML_ASSERT_ALIGNED(ctx->mem_buffer);
GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
return ctx;
}
void ggml_reset(struct ggml_context * ctx) {
if (ctx == NULL) {
return;
}
ctx->n_objects = 0;
ctx->objects_begin = NULL;
ctx->objects_end = NULL;
}
void ggml_free(struct ggml_context * ctx) {
if (ctx == NULL) {
return;
}
if (ctx->mem_buffer_owned) {
ggml_aligned_free(ctx->mem_buffer, ctx->mem_size);
}
GGML_FREE(ctx);
}
size_t ggml_used_mem(const struct ggml_context * ctx) {
return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
}
bool ggml_get_no_alloc(struct ggml_context * ctx) {
return ctx->no_alloc;
}
void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
ctx->no_alloc = no_alloc;
}
void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
return ctx->mem_buffer;
}
size_t ggml_get_mem_size(const struct ggml_context * ctx) {
return ctx->mem_size;
}
size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
size_t max_size = 0;
for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
size_t bytes = ggml_nbytes(tensor);
max_size = MAX(max_size, bytes);
}
return max_size;
}
////////////////////////////////////////////////////////////////////////////////
static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
// always insert objects at the end of the context's memory pool
struct ggml_object * obj_cur = ctx->objects_end;
const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
const size_t cur_end = cur_offs + cur_size;
// align to GGML_MEM_ALIGN
size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
char * const mem_buffer = ctx->mem_buffer;
struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
GGML_LOG_WARN("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
__func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
#ifndef NDEBUG
GGML_ABORT("not enough space in the context's memory pool");
#endif
return NULL;
}
*obj_new = (struct ggml_object) {
.offs = cur_end + GGML_OBJECT_SIZE,
.size = size_needed,
.next = NULL,
.type = type,
};
GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs);
if (obj_cur != NULL) {
obj_cur->next = obj_new;
} else {
// this is the first object in this context
ctx->objects_begin = obj_new;
}
ctx->objects_end = obj_new;
//printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
return obj_new;
}
static struct ggml_tensor * ggml_new_tensor_impl(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int64_t * ne,
struct ggml_tensor * view_src,
size_t view_offs) {
GGML_ASSERT(type >= 0 && type < GGML_TYPE_COUNT);
GGML_ASSERT(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
// find the base tensor and absolute offset
if (view_src != NULL && view_src->view_src != NULL) {
view_offs += view_src->view_offs;
view_src = view_src->view_src;
}
size_t data_size = ggml_row_size(type, ne[0]);
for (int i = 1; i < n_dims; i++) {
data_size *= ne[i];
}
GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
void * data = view_src != NULL ? view_src->data : NULL;
if (data != NULL) {
data = (char *) data + view_offs;
}
size_t obj_alloc_size = 0;
if (view_src == NULL && !ctx->no_alloc) {
// allocate tensor data in the context's memory pool
obj_alloc_size = data_size;
}
struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
GGML_ASSERT(obj_new);
struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
*result = (struct ggml_tensor) {
/*.type =*/ type,
/*.buffer =*/ NULL,
/*.ne =*/ { 1, 1, 1, 1 },
/*.nb =*/ { 0, 0, 0, 0 },
/*.op =*/ GGML_OP_NONE,
/*.op_params =*/ { 0 },
/*.flags =*/ 0,
/*.src =*/ { NULL },
/*.view_src =*/ view_src,
/*.view_offs =*/ view_offs,
/*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
/*.name =*/ { 0 },
/*.extra =*/ NULL,
/*.padding =*/ { 0 },
};
// TODO: this should not be needed as long as we don't rely on aligned SIMD loads
//GGML_ASSERT_ALIGNED(result->data);
for (int i = 0; i < n_dims; i++) {
result->ne[i] = ne[i];
}
result->nb[0] = ggml_type_size(type);
result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
for (int i = 2; i < GGML_MAX_DIMS; i++) {
result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
}
ctx->n_objects++;
return result;
}
struct ggml_tensor * ggml_new_tensor(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int64_t * ne) {
return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
}
struct ggml_tensor * ggml_new_tensor_1d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0) {
return ggml_new_tensor(ctx, type, 1, &ne0);
}
struct ggml_tensor * ggml_new_tensor_2d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1) {
const int64_t ne[2] = { ne0, ne1 };
return ggml_new_tensor(ctx, type, 2, ne);
}
struct ggml_tensor * ggml_new_tensor_3d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2) {
const int64_t ne[3] = { ne0, ne1, ne2 };
return ggml_new_tensor(ctx, type, 3, ne);
}
struct ggml_tensor * ggml_new_tensor_4d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3) {
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
return ggml_new_tensor(ctx, type, 4, ne);
}
void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes) {
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, nbytes);
return (uint8_t *)ctx->mem_buffer + obj->offs;
}
struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
}
void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
const int64_t ne2 = tensor->ne[2];
const int64_t ne1 = tensor->ne[1];
const int64_t ne0 = tensor->ne[0];
const int64_t i3_ = (i/(ne2*ne1*ne0));
const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
if (i0) {
* i0 = i0_;
}
if (i1) {
* i1 = i1_;
}
if (i2) {
* i2 = i2_;
}
if (i3) {
* i3 = i3_;
}
}
void * ggml_get_data(const struct ggml_tensor * tensor) {
return tensor->data;
}
float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
assert(tensor->type == GGML_TYPE_F32);
return (float *)(tensor->data);
}
enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
GGML_ASSERT(tensor->op == GGML_OP_UNARY);
return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
}
const char * ggml_get_name(const struct ggml_tensor * tensor) {
return tensor->name;
}
struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
size_t i;
for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) {
tensor->name[i] = name[i];
}
tensor->name[i] = '\0';
return tensor;
}
struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
va_list args;
va_start(args, fmt);
vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
va_end(args);
return tensor;
}
struct ggml_tensor * ggml_view_tensor(
struct ggml_context * ctx,
struct ggml_tensor * src) {
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
ggml_format_name(result, "%s (view)", src->name);
for (int i = 0; i < GGML_MAX_DIMS; i++) {
result->nb[i] = src->nb[i];
}
return result;
}
struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
struct ggml_object * obj = ctx->objects_begin;
char * const mem_buffer = ctx->mem_buffer;
while (obj != NULL) {
if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
return (struct ggml_tensor *)(mem_buffer + obj->offs);
}
obj = obj->next;
}
return NULL;
}
struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
obj = obj->next;
char * const mem_buffer = ctx->mem_buffer;
while (obj != NULL) {
if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
return (struct ggml_tensor *)(mem_buffer + obj->offs);
}
obj = obj->next;
}
return NULL;
}
struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
struct ggml_object * obj = ctx->objects_begin;
char * const mem_buffer = ctx->mem_buffer;
while (obj != NULL) {
if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
if (strcmp(cur->name, name) == 0) {
return cur;
}
}
obj = obj->next;
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////
// ggml_dup
static struct ggml_tensor * ggml_dup_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_DUP;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_dup(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_dup_impl(ctx, a, false);
}
struct ggml_tensor * ggml_dup_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_dup_impl(ctx, a, true);
}
// ggml_add
static struct ggml_tensor * ggml_add_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_can_repeat(b, a));
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_ADD;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_add(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_add_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add_impl(ctx, a, b, true);
}
// ggml_add_cast
static struct ggml_tensor * ggml_add_cast_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
enum ggml_type type) {
// TODO: support less-strict constraint
// GGML_ASSERT(ggml_can_repeat(b, a));
GGML_ASSERT(ggml_can_repeat_rows(b, a));
// currently only supported for quantized input and f16
GGML_ASSERT(ggml_is_quantized(a->type) ||
a->type == GGML_TYPE_F16 ||
a->type == GGML_TYPE_BF16);
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
result->op = GGML_OP_ADD;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_add_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
enum ggml_type type) {
return ggml_add_cast_impl(ctx, a, b, type);
}
// ggml_add1
static struct ggml_tensor * ggml_add1_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_is_scalar(b));
GGML_ASSERT(ggml_is_padded_1d(a));
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_ADD1;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_add1(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add1_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_add1_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add1_impl(ctx, a, b, true);
}
// ggml_acc
static struct ggml_tensor * ggml_acc_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset,
bool inplace) {
GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(a->type == GGML_TYPE_F32);
GGML_ASSERT(b->type == GGML_TYPE_F32);
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ACC;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_acc(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
}
struct ggml_tensor * ggml_acc_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
}
// ggml_sub
static struct ggml_tensor * ggml_sub_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_can_repeat(b, a));
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SUB;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_sub(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_sub_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_sub_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_sub_impl(ctx, a, b, true);
}
// ggml_mul
static struct ggml_tensor * ggml_mul_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_can_repeat(b, a));
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_MUL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_mul(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_mul_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_mul_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_mul_impl(ctx, a, b, true);
}
// ggml_div
static struct ggml_tensor * ggml_div_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_can_repeat(b, a));
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_DIV;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_div(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_div_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_div_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_div_impl(ctx, a, b, true);
}
// ggml_sqr
static struct ggml_tensor * ggml_sqr_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SQR;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_sqr(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqr_impl(ctx, a, false);
}
struct ggml_tensor * ggml_sqr_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqr_impl(ctx, a, true);
}
// ggml_sqrt
static struct ggml_tensor * ggml_sqrt_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SQRT;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_sqrt(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqrt_impl(ctx, a, false);
}
struct ggml_tensor * ggml_sqrt_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqrt_impl(ctx, a, true);
}
// ggml_log
static struct ggml_tensor * ggml_log_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_LOG;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_log(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_log_impl(ctx, a, false);
}
struct ggml_tensor * ggml_log_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_log_impl(ctx, a, true);
}
// ggml_sin
static struct ggml_tensor * ggml_sin_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SIN;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_sin(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sin_impl(ctx, a, false);
}
struct ggml_tensor * ggml_sin_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sin_impl(ctx, a, true);
}
// ggml_cos
static struct ggml_tensor * ggml_cos_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_COS;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_cos(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_cos_impl(ctx, a, false);
}
struct ggml_tensor * ggml_cos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_cos_impl(ctx, a, true);
}
// ggml_sum
struct ggml_tensor * ggml_sum(
struct ggml_context * ctx,
struct ggml_tensor * a) {
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
result->op = GGML_OP_SUM;
result->src[0] = a;
return result;
}
// ggml_sum_rows
struct ggml_tensor * ggml_sum_rows(
struct ggml_context * ctx,
struct ggml_tensor * a) {
int64_t ne[GGML_MAX_DIMS] = { 1 };
for (int i = 1; i < GGML_MAX_DIMS; ++i) {
ne[i] = a->ne[i];
}
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
result->op = GGML_OP_SUM_ROWS;
result->src[0] = a;
return result;
}
// ggml_mean
struct ggml_tensor * ggml_mean(
struct ggml_context * ctx,
struct ggml_tensor * a) {
int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
result->op = GGML_OP_MEAN;
result->src[0] = a;
return result;
}
// ggml_argmax
struct ggml_tensor * ggml_argmax(
struct ggml_context * ctx,
struct ggml_tensor * a) {
GGML_ASSERT(ggml_is_matrix(a));
GGML_ASSERT(a->ne[0] <= INT32_MAX);
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
result->op = GGML_OP_ARGMAX;
result->src[0] = a;
return result;
}
// ggml_count_equal
struct ggml_tensor * ggml_count_equal(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_are_same_shape(a, b));
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, 1);
result->op = GGML_OP_COUNT_EQUAL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_repeat
struct ggml_tensor * ggml_repeat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_repeat(a, b));
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
result->op = GGML_OP_REPEAT;
result->src[0] = a;
return result;
}
// ggml_repeat_back
struct ggml_tensor * ggml_repeat_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_repeat(b, a));
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
result->op = GGML_OP_REPEAT_BACK;
result->src[0] = a;
return result;
}
// ggml_concat
struct ggml_tensor * ggml_concat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int dim) {
GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
int64_t ne[GGML_MAX_DIMS];
for (int d = 0; d < GGML_MAX_DIMS; ++d) {
if (d == dim) {
ne[d] = a->ne[d] + b->ne[d];
continue;
}
GGML_ASSERT(a->ne[d] == b->ne[d]);
ne[d] = a->ne[d];
}
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
ggml_set_op_params_i32(result, 0, dim);
result->op = GGML_OP_CONCAT;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_abs
struct ggml_tensor * ggml_abs(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
}
struct ggml_tensor * ggml_abs_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
}
// ggml_sgn
struct ggml_tensor * ggml_sgn(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
}
struct ggml_tensor * ggml_sgn_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
}
// ggml_neg
struct ggml_tensor * ggml_neg(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
}
struct ggml_tensor * ggml_neg_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
}
// ggml_step
struct ggml_tensor * ggml_step(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
}
struct ggml_tensor * ggml_step_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
}
// ggml_tanh
struct ggml_tensor * ggml_tanh(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
}
struct ggml_tensor * ggml_tanh_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
}
// ggml_elu
struct ggml_tensor * ggml_elu(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
}
struct ggml_tensor * ggml_elu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
}
// ggml_relu
struct ggml_tensor * ggml_relu(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
}
struct ggml_tensor * ggml_relu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
}
// ggml_leaky_relu
struct ggml_tensor * ggml_leaky_relu(
struct ggml_context * ctx,
struct ggml_tensor * a,
float negative_slope,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
result->op = GGML_OP_LEAKY_RELU;
result->src[0] = a;
return result;
}
// ggml_sigmoid
struct ggml_tensor * ggml_sigmoid(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
}
struct ggml_tensor * ggml_sigmoid_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
}
// ggml_gelu
struct ggml_tensor * ggml_gelu(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
}
struct ggml_tensor * ggml_gelu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
}
// ggml_gelu_quick
struct ggml_tensor * ggml_gelu_quick(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
}
struct ggml_tensor * ggml_gelu_quick_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
}
// ggml_silu
struct ggml_tensor * ggml_silu(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
}
struct ggml_tensor * ggml_silu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
}
// ggml_silu_back
struct ggml_tensor * ggml_silu_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SILU_BACK;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml hardswish
struct ggml_tensor * ggml_hardswish(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
}
// ggml hardsigmoid
struct ggml_tensor * ggml_hardsigmoid(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
}
// ggml exp
struct ggml_tensor * ggml_exp(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_EXP);
}
struct ggml_tensor * ggml_exp_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_EXP);
}
// ggml_norm
static struct ggml_tensor * ggml_norm_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &eps, sizeof(eps));
result->op = GGML_OP_NORM;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_norm_impl(ctx, a, eps, false);
}
struct ggml_tensor * ggml_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_norm_impl(ctx, a, eps, true);
}
// ggml_rms_norm
static struct ggml_tensor * ggml_rms_norm_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &eps, sizeof(eps));
result->op = GGML_OP_RMS_NORM;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_rms_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_rms_norm_impl(ctx, a, eps, false);
}
struct ggml_tensor * ggml_rms_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_rms_norm_impl(ctx, a, eps, true);
}
// ggml_rms_norm_back
struct ggml_tensor * ggml_rms_norm_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
float eps) {
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &eps, sizeof(eps));
result->op = GGML_OP_RMS_NORM_BACK;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_group_norm
static struct ggml_tensor * ggml_group_norm_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups,
float eps,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params_i32(result, 0, n_groups);
ggml_set_op_params_f32(result, 1, eps);
result->op = GGML_OP_GROUP_NORM;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_group_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups,
float eps) {
return ggml_group_norm_impl(ctx, a, n_groups, eps, false);
}
struct ggml_tensor * ggml_group_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups,
float eps) {
return ggml_group_norm_impl(ctx, a, n_groups, eps, true);
}
// ggml_mul_mat
static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (t0->ne[0] == t1->ne[0]) &&
(t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
(t1->ne[3]%t0->ne[3] == 0);
}
struct ggml_tensor * ggml_mul_mat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_mul_mat(a, b));
GGML_ASSERT(!ggml_is_transposed(a));
const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
result->op = GGML_OP_MUL_MAT;
result->src[0] = a;
result->src[1] = b;
return result;
}
void ggml_mul_mat_set_prec(
struct ggml_tensor * a,
enum ggml_prec prec) {
GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
const int32_t prec_i32 = (int32_t) prec;
ggml_set_op_params_i32(a, 0, prec_i32);
}
// ggml_mul_mat_id
/*
c = ggml_mul_mat_id(ctx, as, b, ids);
as -> [cols, rows, n_expert]
ids -> [n_experts_used, n_tokens] (i32)
b -> [cols, n_expert_used, n_tokens]
c -> [rows, n_expert_used, n_tokens]
in b, n_experts_used can be broadcasted to match the n_expert_used of ids
c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
*/
struct ggml_tensor * ggml_mul_mat_id(
struct ggml_context * ctx,
struct ggml_tensor * as,
struct ggml_tensor * b,
struct ggml_tensor * ids) {
GGML_ASSERT(!ggml_is_transposed(as));
GGML_ASSERT(ids->type == GGML_TYPE_I32);
GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
GGML_ASSERT(b->ne[3] == 1); // b is 3d
GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
result->op = GGML_OP_MUL_MAT_ID;
result->src[0] = as;
result->src[1] = b;
result->src[2] = ids;
return result;
}
// ggml_out_prod
static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (t0->ne[1] == t1->ne[1]) &&
(t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
(t1->ne[3]%t0->ne[3] == 0);
}
struct ggml_tensor * ggml_out_prod(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_out_prod(a, b));
GGML_ASSERT(!ggml_is_transposed(a));
// a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
result->op = GGML_OP_OUT_PROD;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_scale
static struct ggml_tensor * ggml_scale_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s,
bool inplace) {
GGML_ASSERT(ggml_is_padded_1d(a));
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &s, sizeof(s));
result->op = GGML_OP_SCALE;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_scale(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s) {
return ggml_scale_impl(ctx, a, s, false);
}
struct ggml_tensor * ggml_scale_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s) {
return ggml_scale_impl(ctx, a, s, true);
}
// ggml_set
static struct ggml_tensor * ggml_set_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset,
bool inplace) {
GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
// make a view of the destination
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
GGML_ASSERT(offset < (size_t)(1 << 30));
int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_SET;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_set(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
}
struct ggml_tensor * ggml_set_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
}
struct ggml_tensor * ggml_set_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t offset) {
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
}
struct ggml_tensor * ggml_set_1d_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t offset) {
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
}
struct ggml_tensor * ggml_set_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
}
struct ggml_tensor * ggml_set_2d_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
}
// ggml_cpy
static struct ggml_tensor * ggml_cpy_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
// make a view of the destination
struct ggml_tensor * result = ggml_view_tensor(ctx, b);
if (strlen(b->name) > 0) {
ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
} else {
ggml_format_name(result, "%s (copy)", a->name);
}
result->op = GGML_OP_CPY;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_cpy(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_cpy_impl(ctx, a, b);
}
struct ggml_tensor * ggml_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_type type) {
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
ggml_format_name(result, "%s (copy)", a->name);
result->op = GGML_OP_CPY;
result->src[0] = a;
result->src[1] = result;
return result;
}
// ggml_cont
static struct ggml_tensor * ggml_cont_impl(
struct ggml_context * ctx,
struct ggml_tensor * a) {
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
ggml_format_name(result, "%s (cont)", a->name);
result->op = GGML_OP_CONT;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_cont(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_cont_impl(ctx, a);
}
// make contiguous, with new shape
GGML_API struct ggml_tensor * ggml_cont_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0) {
return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
}
GGML_API struct ggml_tensor * ggml_cont_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1) {
return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
}
GGML_API struct ggml_tensor * ggml_cont_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2) {
return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
}
struct ggml_tensor * ggml_cont_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3) {
GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
ggml_format_name(result, "%s (cont)", a->name);
result->op = GGML_OP_CONT;
result->src[0] = a;
return result;
}
// ggml_reshape
struct ggml_tensor * ggml_reshape(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_is_contiguous(a));
// as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
ggml_format_name(result, "%s (reshaped)", a->name);
result->op = GGML_OP_RESHAPE;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_reshape_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0);
const int64_t ne[1] = { ne0 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
ggml_format_name(result, "%s (reshaped)", a->name);
result->op = GGML_OP_RESHAPE;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_reshape_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
const int64_t ne[2] = { ne0, ne1 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
ggml_format_name(result, "%s (reshaped)", a->name);
result->op = GGML_OP_RESHAPE;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_reshape_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
const int64_t ne[3] = { ne0, ne1, ne2 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
ggml_format_name(result, "%s (reshaped)", a->name);
result->op = GGML_OP_RESHAPE;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_reshape_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
ggml_format_name(result, "%s (reshaped)", a->name);
result->op = GGML_OP_RESHAPE;
result->src[0] = a;
return result;
}
static struct ggml_tensor * ggml_view_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_dims,
const int64_t * ne,
size_t offset) {
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
ggml_format_name(result, "%s (view)", a->name);
ggml_set_op_params(result, &offset, sizeof(offset));
result->op = GGML_OP_VIEW;
result->src[0] = a;
return result;
}
// ggml_view_1d
struct ggml_tensor * ggml_view_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
size_t offset) {
struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
return result;
}
// ggml_view_2d
struct ggml_tensor * ggml_view_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
size_t nb1,
size_t offset) {
const int64_t ne[2] = { ne0, ne1 };
struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
result->nb[1] = nb1;
result->nb[2] = result->nb[1]*ne1;
result->nb[3] = result->nb[2];
return result;
}
// ggml_view_3d
struct ggml_tensor * ggml_view_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
size_t nb1,
size_t nb2,
size_t offset) {
const int64_t ne[3] = { ne0, ne1, ne2 };
struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
result->nb[1] = nb1;
result->nb[2] = nb2;
result->nb[3] = result->nb[2]*ne2;
return result;
}
// ggml_view_4d
struct ggml_tensor * ggml_view_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
result->nb[1] = nb1;
result->nb[2] = nb2;
result->nb[3] = nb3;
return result;
}
// ggml_permute
struct ggml_tensor * ggml_permute(
struct ggml_context * ctx,
struct ggml_tensor * a,
int axis0,
int axis1,
int axis2,
int axis3) {
GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
GGML_ASSERT(axis0 != axis1);
GGML_ASSERT(axis0 != axis2);
GGML_ASSERT(axis0 != axis3);
GGML_ASSERT(axis1 != axis2);
GGML_ASSERT(axis1 != axis3);
GGML_ASSERT(axis2 != axis3);
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
ggml_format_name(result, "%s (permuted)", a->name);
int ne[GGML_MAX_DIMS];
int nb[GGML_MAX_DIMS];
ne[axis0] = a->ne[0];
ne[axis1] = a->ne[1];
ne[axis2] = a->ne[2];
ne[axis3] = a->ne[3];
nb[axis0] = a->nb[0];
nb[axis1] = a->nb[1];
nb[axis2] = a->nb[2];
nb[axis3] = a->nb[3];
result->ne[0] = ne[0];
result->ne[1] = ne[1];
result->ne[2] = ne[2];
result->ne[3] = ne[3];
result->nb[0] = nb[0];
result->nb[1] = nb[1];
result->nb[2] = nb[2];
result->nb[3] = nb[3];
result->op = GGML_OP_PERMUTE;
result->src[0] = a;
int32_t params[] = { axis0, axis1, axis2, axis3 };
ggml_set_op_params(result, params, sizeof(params));
return result;
}
// ggml_transpose
struct ggml_tensor * ggml_transpose(
struct ggml_context * ctx,
struct ggml_tensor * a) {
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
ggml_format_name(result, "%s (transposed)", a->name);
result->ne[0] = a->ne[1];
result->ne[1] = a->ne[0];
result->nb[0] = a->nb[1];
result->nb[1] = a->nb[0];
result->op = GGML_OP_TRANSPOSE;
result->src[0] = a;
return result;
}
// ggml_get_rows
struct ggml_tensor * ggml_get_rows(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(a->ne[2] == b->ne[1]);
GGML_ASSERT(b->ne[3] == 1);
GGML_ASSERT(b->type == GGML_TYPE_I32);
// TODO: implement non F32 return
enum ggml_type type = GGML_TYPE_F32;
if (a->type == GGML_TYPE_I32) {
type = a->type;
}
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
result->op = GGML_OP_GET_ROWS;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_get_rows_back
struct ggml_tensor * ggml_get_rows_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c) {
GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
// TODO: implement non F32 return
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
result->op = GGML_OP_GET_ROWS_BACK;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_diag
struct ggml_tensor * ggml_diag(
struct ggml_context * ctx,
struct ggml_tensor * a) {
GGML_ASSERT(a->ne[1] == 1);
const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
result->op = GGML_OP_DIAG;
result->src[0] = a;
return result;
}
// ggml_diag_mask_inf
static struct ggml_tensor * ggml_diag_mask_inf_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[] = { n_past };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_DIAG_MASK_INF;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_diag_mask_inf(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
}
struct ggml_tensor * ggml_diag_mask_inf_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
}
// ggml_diag_mask_zero
static struct ggml_tensor * ggml_diag_mask_zero_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[] = { n_past };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_DIAG_MASK_ZERO;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_diag_mask_zero(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
}
struct ggml_tensor * ggml_diag_mask_zero_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
}
// ggml_soft_max
static struct ggml_tensor * ggml_soft_max_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale,
float max_bias,
bool inplace) {
GGML_ASSERT(ggml_is_contiguous(a));
if (mask) {
GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(mask));
GGML_ASSERT(ggml_is_matrix(mask));
GGML_ASSERT(mask->ne[0] == a->ne[0]);
GGML_ASSERT(mask->ne[1] >= a->ne[1]);
}
if (max_bias > 0.0f) {
GGML_ASSERT(mask);
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
float params[] = { scale, max_bias };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_SOFT_MAX;
result->src[0] = a;
result->src[1] = mask;
return result;
}
struct ggml_tensor * ggml_soft_max(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
}
struct ggml_tensor * ggml_soft_max_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
}
struct ggml_tensor * ggml_soft_max_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale,
float max_bias) {
return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
}
// ggml_soft_max_ext_back
static struct ggml_tensor * ggml_soft_max_ext_back_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
float scale,
float max_bias,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SOFT_MAX_BACK;
result->src[0] = a;
result->src[1] = b;
memcpy((float *) result->op_params + 0, &scale, sizeof(float));
memcpy((float *) result->op_params + 1, &max_bias, sizeof(float));
return result;
}
struct ggml_tensor * ggml_soft_max_ext_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
float scale,
float max_bias) {
return ggml_soft_max_ext_back_impl(ctx, a, b, scale, max_bias, false);
}
struct ggml_tensor * ggml_soft_max_ext_back_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
float scale,
float max_bias) {
return ggml_soft_max_ext_back_impl(ctx, a, b, scale, max_bias, true);
}
// ggml_rope
static struct ggml_tensor * ggml_rope_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow,
bool inplace) {
GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
GGML_ASSERT(ggml_is_vector(b));
GGML_ASSERT(b->type == GGML_TYPE_I32);
GGML_ASSERT(a->ne[2] == b->ne[0]);
if (c) {
GGML_ASSERT(c->type == GGML_TYPE_F32);
GGML_ASSERT(c->ne[0] >= n_dims / 2);
}
int sections[4] = {0, 0, 0, 0};
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[15] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
memcpy(params + 5, &freq_base, sizeof(float));
memcpy(params + 6, &freq_scale, sizeof(float));
memcpy(params + 7, &ext_factor, sizeof(float));
memcpy(params + 8, &attn_factor, sizeof(float));
memcpy(params + 9, &beta_fast, sizeof(float));
memcpy(params + 10, &beta_slow, sizeof(float));
memcpy(params + 11, &sections, sizeof(int)*4);
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ROPE;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
}
struct ggml_tensor * ggml_rope(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
);
}
struct ggml_tensor * ggml_rope_multi(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int sections[4],
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow) {
// Multimodal Rotary Position Embedding
GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
GGML_ASSERT(ggml_is_vector(b));
GGML_ASSERT(b->type == GGML_TYPE_I32);
GGML_ASSERT(a->ne[2] * 4 == b->ne[0]); // mrope expecting 4 position ids per token
if (c) {
GGML_ASSERT(c->type == GGML_TYPE_F32);
GGML_ASSERT(c->ne[0] >= n_dims / 2);
}
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
int32_t params[11 + 4] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
memcpy(params + 5, &freq_base, sizeof(float));
memcpy(params + 6, &freq_scale, sizeof(float));
memcpy(params + 7, &ext_factor, sizeof(float));
memcpy(params + 8, &attn_factor, sizeof(float));
memcpy(params + 9, &beta_fast, sizeof(float));
memcpy(params + 10, &beta_slow, sizeof(float));
memcpy(&params[11], sections, sizeof(int)*4);
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ROPE;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
}
struct ggml_tensor * ggml_rope_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
);
}
struct ggml_tensor * ggml_rope_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, false
);
}
struct ggml_tensor * ggml_rope_ext_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, true
);
}
struct ggml_tensor * ggml_rope_custom(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, false
);
}
struct ggml_tensor * ggml_rope_custom_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, true
);
}
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
// `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
}
void ggml_rope_yarn_corr_dims(
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
) {
// start and end correction dims
float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
dims[0] = MAX(0, start);
dims[1] = MIN(n_dims - 1, end);
}
// ggml_rope_back
struct ggml_tensor * ggml_rope_ext_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow) {
struct ggml_tensor * result = ggml_rope_ext(
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
result->op = GGML_OP_ROPE_BACK;
return result;
}
struct ggml_tensor * ggml_rope_multi_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int sections[4],
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow) {
struct ggml_tensor * result = ggml_rope_multi(
ctx, a, b, c, n_dims, sections, mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
result->op = GGML_OP_ROPE_BACK;
return result;
}
// ggml_clamp
struct ggml_tensor * ggml_clamp(
struct ggml_context * ctx,
struct ggml_tensor * a,
float min,
float max) {
// TODO: when implement backward, fix this:
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
float params[] = { min, max };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_CLAMP;
result->src[0] = a;
return result;
}
static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
}
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
// a: [OC,IC, KH, KW]
// b: [N, IC, IH, IW]
// result: [N, OH, OW, IC*KH*KW]
struct ggml_tensor * ggml_im2col(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1,
bool is_2D,
enum ggml_type dst_type) {
if (is_2D) {
GGML_ASSERT(a->ne[2] == b->ne[2]);
} else {
//GGML_ASSERT(b->ne[1] % a->ne[1] == 0);
GGML_ASSERT(b->ne[1] == a->ne[1]);
GGML_ASSERT(b->ne[3] == 1);
}
const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
GGML_ASSERT((!is_2D || OH > 0) && "b too small compared to a");
GGML_ASSERT((OW > 0) && "b too small compared to a");
const int64_t ne[4] = {
is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
OW,
is_2D ? OH : b->ne[2],
is_2D ? b->ne[3] : 1,
};
struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_IM2COL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_im2col_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int64_t * ne,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1,
bool is_2D) {
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_IM2COL_BACK;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_conv_1d
struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0) {
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
struct ggml_tensor * result =
ggml_mul_mat(ctx,
ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
return result;
}
// ggml_conv_1d_ph
struct ggml_tensor* ggml_conv_1d_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s,
int d) {
return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
}
// ggml_conv_1d_dw
struct ggml_tensor * ggml_conv_1d_dw(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0) {
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], 1, a->ne[1], a->ne[2]);
struct ggml_tensor * new_b = ggml_reshape_4d(ctx, b, b->ne[0], 1, b->ne[1], b->ne[2]);
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, new_b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16);
struct ggml_tensor * result = ggml_mul_mat(ctx, im2col, a);
result = ggml_reshape_3d(ctx, result, b->ne[0], b->ne[1], 1);
return result;
}
// ggml_conv_1d_dw_ph
struct ggml_tensor * ggml_conv_1d_dw_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int d0) {
return ggml_conv_1d_dw(ctx, a, b, s0, a->ne[0] / 2, d0);
}
// ggml_conv_transpose_1d
static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
}
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0) {
GGML_ASSERT(ggml_is_matrix(b));
GGML_ASSERT(a->ne[2] == b->ne[1]);
GGML_ASSERT(a->ne[3] == 1);
GGML_ASSERT(p0 == 0);
GGML_ASSERT(d0 == 1);
const int64_t ne[4] = {
ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
a->ne[1], b->ne[2], 1,
};
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { s0, p0, d0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_CONV_TRANSPOSE_1D;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_conv_2d
// a: [OC,IC, KH, KW]
// b: [N, IC, IH, IW]
// result: [N, OC, OH, OW]
struct ggml_tensor * ggml_conv_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1) {
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, a->type); // [N, OH, OW, IC * KH * KW]
struct ggml_tensor * result =
ggml_mul_mat(ctx,
ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
return result;
}
// ggml_conv_2d_sk_p0
struct ggml_tensor * ggml_conv_2d_sk_p0(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
}
// ggml_conv_2d_s1_ph
struct ggml_tensor * ggml_conv_2d_s1_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
}
// ggml_conv_2d_dw
struct ggml_tensor * ggml_conv_2d_dw(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1) {
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
return result;
}
// ggml_conv_transpose_2d_p0
static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
return (ins - 1) * s - 2 * p + ks;
}
struct ggml_tensor * ggml_conv_transpose_2d_p0(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int stride) {
GGML_ASSERT(a->ne[3] == b->ne[2]);
const int64_t ne[4] = {
ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
a->ne[2], b->ne[3],
};
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
ggml_set_op_params_i32(result, 0, stride);
result->op = GGML_OP_CONV_TRANSPOSE_2D;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_pool_*
static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
return (ins + 2 * p - ks) / s + 1;
}
// ggml_pool_1d
struct ggml_tensor * ggml_pool_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
int k0,
int s0,
int p0) {
const int64_t ne[4] = {
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
a->ne[1],
a->ne[2],
a->ne[3],
};
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { op, k0, s0, p0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_POOL_1D;
result->src[0] = a;
return result;
}
// ggml_pool_2d
struct ggml_tensor * ggml_pool_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
int k0,
int k1,
int s0,
int s1,
float p0,
float p1) {
struct ggml_tensor * result;
const int64_t ne[4] = {
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
a->ne[2],
a->ne[3],
};
result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_POOL_2D;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_pool_2d_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * af,
enum ggml_op_pool op,
int k0,
int k1,
int s0,
int s1,
float p0,
float p1) {
struct ggml_tensor * result;
result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, af->ne);
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_POOL_2D_BACK;
result->src[0] = a;
result->src[1] = af;
return result;
}
// ggml_upscale
static struct ggml_tensor * ggml_upscale_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int ne0,
int ne1,
int ne2,
int ne3) {
GGML_ASSERT(a->ne[0] <= ne0);
GGML_ASSERT(a->ne[1] <= ne1);
GGML_ASSERT(a->ne[2] <= ne2);
GGML_ASSERT(a->ne[3] <= ne3);
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
result->op = GGML_OP_UPSCALE;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_upscale(
struct ggml_context * ctx,
struct ggml_tensor * a,
int scale_factor) {
return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
}
struct ggml_tensor * ggml_upscale_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
int ne0,
int ne1,
int ne2,
int ne3) {
return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
}
// ggml_pad
struct ggml_tensor * ggml_pad(
struct ggml_context * ctx,
struct ggml_tensor * a,
int p0,
int p1,
int p2,
int p3) {
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
a->ne[0] + p0,
a->ne[1] + p1,
a->ne[2] + p2,
a->ne[3] + p3);
result->op = GGML_OP_PAD;
result->src[0] = a;
return result;
}
// ggml_pad_reflect_1d
struct ggml_tensor * ggml_pad_reflect_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int p0,
int p1) {
GGML_ASSERT(p0 >= 0);
GGML_ASSERT(p1 >= 0);
GGML_ASSERT(p0 < a->ne[0]); // padding length on each size must be less than the
GGML_ASSERT(p1 < a->ne[0]); // existing length of the dimension being padded
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(a->type == GGML_TYPE_F32);
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
a->ne[0] + p0 + p1,
a->ne[1],
a->ne[2],
a->ne[3]);
int32_t params[] = { p0, p1 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_PAD_REFLECT_1D;
result->src[0] = a;
return result;
}
// ggml_arange
struct ggml_tensor * ggml_arange(
struct ggml_context * ctx,
float start,
float stop,
float step) {
GGML_ASSERT(stop > start);
const int64_t steps = (int64_t) ceilf((stop - start) / step);
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
ggml_set_op_params_f32(result, 0, start);
ggml_set_op_params_f32(result, 1, stop);
ggml_set_op_params_f32(result, 2, step);
result->op = GGML_OP_ARANGE;
return result;
}
// ggml_timestep_embedding
struct ggml_tensor * ggml_timestep_embedding(
struct ggml_context * ctx,
struct ggml_tensor * timesteps,
int dim,
int max_period) {
int actual_dim = dim;
if (dim % 2 != 0) {
actual_dim = dim + 1;
}
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
ggml_set_op_params_i32(result, 0, dim);
ggml_set_op_params_i32(result, 1, max_period);
result->op = GGML_OP_TIMESTEP_EMBEDDING;
result->src[0] = timesteps;
return result;
}
// ggml_argsort
struct ggml_tensor * ggml_argsort(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_sort_order order) {
GGML_ASSERT(a->ne[0] <= INT32_MAX);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
ggml_set_op_params_i32(result, 0, (int32_t) order);
result->op = GGML_OP_ARGSORT;
result->src[0] = a;
return result;
}
// ggml_top_k
struct ggml_tensor * ggml_top_k(
struct ggml_context * ctx,
struct ggml_tensor * a,
int k) {
GGML_ASSERT(a->ne[0] >= k);
struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
result = ggml_view_4d(ctx, result,
k, result->ne[1], result->ne[2], result->ne[3],
result->nb[1], result->nb[2], result->nb[3],
0);
return result;
}
// ggml_flash_attn_ext
struct ggml_tensor * ggml_flash_attn_ext(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * mask,
float scale,
float max_bias,
float logit_softcap) {
GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT)
if (mask) {
GGML_ASSERT(ggml_is_contiguous(mask));
GGML_ASSERT(mask->ne[2] == 1);
GGML_ASSERT(mask->ne[3] == 1);
GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
"the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
//GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
}
if (max_bias > 0.0f) {
GGML_ASSERT(mask);
}
// permute(0, 2, 1, 3)
int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
float params[] = { scale, max_bias, logit_softcap };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_FLASH_ATTN_EXT;
result->src[0] = q;
result->src[1] = k;
result->src[2] = v;
result->src[3] = mask;
return result;
}
void ggml_flash_attn_ext_set_prec(
struct ggml_tensor * a,
enum ggml_prec prec) {
GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
const int32_t prec_i32 = (int32_t) prec;
ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second
}
enum ggml_prec ggml_flash_attn_ext_get_prec(
const struct ggml_tensor * a) {
GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
const int32_t prec_i32 = ggml_get_op_params_i32(a, 3);
return (enum ggml_prec) prec_i32;
}
// ggml_flash_attn_back
struct ggml_tensor * ggml_flash_attn_back(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * d,
bool masked) {
GGML_ABORT("TODO: adapt to ggml_flash_attn_ext() changes");
GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT)
// d shape [D,N,ne2,ne3]
// q shape [D,N,ne2,ne3]
// k shape [D,M,kvne2,ne3]
// v shape [M,D,kvne2,ne3]
const int64_t D = q->ne[0];
const int64_t N = q->ne[1];
const int64_t M = k->ne[1];
const int64_t ne2 = q->ne[2];
const int64_t ne3 = q->ne[3];
const int64_t kvne2 = k->ne[2];
GGML_ASSERT(k->ne[0] == D);
GGML_ASSERT(v->ne[0] == M);
GGML_ASSERT(v->ne[1] == D);
GGML_ASSERT(d->ne[0] == D);
GGML_ASSERT(d->ne[1] == N);
GGML_ASSERT(k->ne[2] == kvne2);
GGML_ASSERT(k->ne[3] == ne3);
GGML_ASSERT(v->ne[2] == kvne2);
GGML_ASSERT(v->ne[3] == ne3);
GGML_ASSERT(d->ne[2] == ne2);
GGML_ASSERT(d->ne[3] == ne3);
GGML_ASSERT(ne2 % kvne2 == 0);
// store gradients of q, k and v as continuous tensors concatenated in result.
// note: v and gradv are actually transposed, i.e. v->ne[0] != D.
const int64_t elem_q = ggml_nelements(q);
const int64_t elem_k = ggml_nelements(k);
const int64_t elem_v = ggml_nelements(v);
enum ggml_type result_type = GGML_TYPE_F32;
GGML_ASSERT(ggml_blck_size(result_type) == 1);
const size_t tsize = ggml_type_size(result_type);
const size_t offs_q = 0;
const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
const size_t nelements = (end + tsize - 1)/tsize;
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
int32_t masked_i = masked ? 1 : 0;
ggml_set_op_params(result, &masked_i, sizeof(masked_i));
result->op = GGML_OP_FLASH_ATTN_BACK;
result->src[0] = q;
result->src[1] = k;
result->src[2] = v;
result->src[3] = d;
return result;
}
// ggml_ssm_conv
struct ggml_tensor * ggml_ssm_conv(
struct ggml_context * ctx,
struct ggml_tensor * sx,
struct ggml_tensor * c) {
GGML_ASSERT(ggml_is_3d(sx));
GGML_ASSERT(ggml_is_matrix(c));
const int64_t d_conv = c->ne[0];
const int64_t d_inner = c->ne[1];
const int64_t n_t = sx->ne[0] - d_conv + 1; // tokens per sequence
const int64_t n_s = sx->ne[2];
// TODO: maybe support other strides than 1?
// FIXME: this is always true?
GGML_ASSERT(sx->ne[0] == d_conv - 1 + n_t);
GGML_ASSERT(sx->ne[1] == d_inner);
GGML_ASSERT(n_t >= 0);
struct ggml_tensor * result = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_t, n_s);
result->op = GGML_OP_SSM_CONV;
result->src[0] = sx;
result->src[1] = c;
return result;
}
// ggml_ssm_scan
struct ggml_tensor * ggml_ssm_scan(
struct ggml_context * ctx,
struct ggml_tensor * s,
struct ggml_tensor * x,
struct ggml_tensor * dt,
struct ggml_tensor * A,
struct ggml_tensor * B,
struct ggml_tensor * C) {
GGML_ASSERT(ggml_is_contiguous(s));
GGML_ASSERT(ggml_is_contiguous(x));
GGML_ASSERT(ggml_is_contiguous(dt));
GGML_ASSERT(ggml_is_contiguous(A));
GGML_ASSERT(ggml_is_matrix(A));
GGML_ASSERT(ggml_is_3d(B));
GGML_ASSERT(ggml_is_3d(s));
GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
GGML_ASSERT(ggml_are_same_shape(x, dt));
GGML_ASSERT(ggml_are_same_shape(B, C));
{
const int64_t d_state = s->ne[0];
const int64_t d_inner = s->ne[1];
const int64_t n_seq_tokens = x->ne[1];
const int64_t n_seqs = x->ne[2];
GGML_ASSERT(s->ne[2] == n_seqs);
GGML_ASSERT(x->ne[0] == d_inner);
GGML_ASSERT(A->ne[0] == d_state);
GGML_ASSERT(A->ne[1] == d_inner);
GGML_ASSERT(B->ne[0] == d_state);
GGML_ASSERT(B->ne[1] == n_seq_tokens);
GGML_ASSERT(B->ne[2] == n_seqs);
}
// concatenated y + ssm_states
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
result->op = GGML_OP_SSM_SCAN;
result->src[0] = s;
result->src[1] = x;
result->src[2] = dt;
result->src[3] = A;
result->src[4] = B;
result->src[5] = C;
return result;
}
// ggml_win_part
struct ggml_tensor * ggml_win_part(
struct ggml_context * ctx,
struct ggml_tensor * a,
int w) {
GGML_ASSERT(a->ne[3] == 1);
GGML_ASSERT(a->type == GGML_TYPE_F32);
// padding
const int px = (w - a->ne[1]%w)%w;
const int py = (w - a->ne[2]%w)%w;
const int npx = (px + a->ne[1])/w;
const int npy = (py + a->ne[2])/w;
const int np = npx*npy;
const int64_t ne[4] = { a->ne[0], w, w, np, };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { npx, npy, w };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_WIN_PART;
result->src[0] = a;
return result;
}
// ggml_win_unpart
struct ggml_tensor * ggml_win_unpart(
struct ggml_context * ctx,
struct ggml_tensor * a,
int w0,
int h0,
int w) {
GGML_ASSERT(a->type == GGML_TYPE_F32);
const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
int32_t params[] = { w };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_WIN_UNPART;
result->src[0] = a;
return result;
}
// ggml_get_rel_pos
struct ggml_tensor * ggml_get_rel_pos(
struct ggml_context * ctx,
struct ggml_tensor * a,
int qh,
int kh) {
GGML_ASSERT(qh == kh);
GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
result->op = GGML_OP_GET_REL_POS;
result->src[0] = a;
return result;
}
// ggml_add_rel_pos
static struct ggml_tensor * ggml_add_rel_pos_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph,
bool inplace) {
GGML_ASSERT(ggml_are_same_shape(pw, ph));
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_is_contiguous(pw));
GGML_ASSERT(ggml_is_contiguous(ph));
GGML_ASSERT(ph->type == GGML_TYPE_F32);
GGML_ASSERT(pw->type == GGML_TYPE_F32);
GGML_ASSERT(pw->ne[3] == a->ne[2]);
GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
result->op = GGML_OP_ADD_REL_POS;
result->src[0] = a;
result->src[1] = pw;
result->src[2] = ph;
return result;
}
struct ggml_tensor * ggml_add_rel_pos(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph) {
return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
}
struct ggml_tensor * ggml_add_rel_pos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph) {
return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
}
// ggml_rwkv_wkv6
struct ggml_tensor * ggml_rwkv_wkv6(
struct ggml_context * ctx,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * r,
struct ggml_tensor * tf,
struct ggml_tensor * td,
struct ggml_tensor * state) {
GGML_ASSERT(ggml_is_contiguous(k));
GGML_ASSERT(ggml_is_contiguous(v));
GGML_ASSERT(ggml_is_contiguous(r));
GGML_ASSERT(ggml_is_contiguous(tf));
GGML_ASSERT(ggml_is_contiguous(td));
GGML_ASSERT(ggml_is_contiguous(state));
const int64_t S = k->ne[0];
const int64_t H = k->ne[1];
const int64_t n_tokens = k->ne[2];
const int64_t n_seqs = state->ne[1];
{
GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens);
GGML_ASSERT(r->ne[0] == S && r->ne[1] == H && r->ne[2] == n_tokens);
GGML_ASSERT(td->ne[0] == S && td->ne[1] == H && td->ne[2] == n_tokens);
GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
}
// concat output and new_state
const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
result->op = GGML_OP_RWKV_WKV6;
result->src[0] = k;
result->src[1] = v;
result->src[2] = r;
result->src[3] = tf;
result->src[4] = td;
result->src[5] = state;
return result;
}
// ggml_gated_linear_attn
struct ggml_tensor * ggml_gated_linear_attn(
struct ggml_context * ctx,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * q,
struct ggml_tensor * g,
struct ggml_tensor * state,
float scale) {
GGML_ASSERT(ggml_is_contiguous(k));
GGML_ASSERT(ggml_is_contiguous(v));
GGML_ASSERT(ggml_is_contiguous(q));
GGML_ASSERT(ggml_is_contiguous(g));
GGML_ASSERT(ggml_is_contiguous(state));
const int64_t S = k->ne[0];
const int64_t H = k->ne[1];
const int64_t n_tokens = k->ne[2];
const int64_t n_seqs = state->ne[1];
{
GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens);
GGML_ASSERT(q->ne[0] == S && q->ne[1] == H && q->ne[2] == n_tokens);
GGML_ASSERT(g->ne[0] == S && g->ne[1] == H && g->ne[2] == n_tokens);
GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
}
// concat output and new_state
const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
ggml_set_op_params_f32(result, 0, scale);
result->op = GGML_OP_GATED_LINEAR_ATTN;
result->src[0] = k;
result->src[1] = v;
result->src[2] = q;
result->src[3] = g;
result->src[4] = state;
return result;
}
// ggml_unary
static struct ggml_tensor * ggml_unary_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op,
bool inplace) {
GGML_ASSERT(ggml_is_contiguous_1(a));
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params_i32(result, 0, (int32_t) op);
result->op = GGML_OP_UNARY;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_unary(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op) {
return ggml_unary_impl(ctx, a, op, false);
}
struct ggml_tensor * ggml_unary_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op) {
return ggml_unary_impl(ctx, a, op, true);
}
// ggml_map_unary
static struct ggml_tensor * ggml_map_unary_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_UNARY;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun) {
return ggml_map_unary_impl_f32(ctx, a, fun, false);
}
struct ggml_tensor * ggml_map_unary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun) {
return ggml_map_unary_impl_f32(ctx, a, fun, true);
}
// ggml_map_binary
static struct ggml_tensor * ggml_map_binary_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun,
bool inplace) {
GGML_ASSERT(ggml_are_same_shape(a, b));
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_BINARY;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_map_binary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun) {
return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
}
struct ggml_tensor * ggml_map_binary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun) {
return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
}
// ggml_map_custom1_f32
static struct ggml_tensor * ggml_map_custom1_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_f32_t fun,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_CUSTOM1_F32;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_map_custom1_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_f32_t fun) {
return ggml_map_custom1_impl_f32(ctx, a, fun, false);
}
struct ggml_tensor * ggml_map_custom1_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_f32_t fun) {
return ggml_map_custom1_impl_f32(ctx, a, fun, true);
}
// ggml_map_custom2_f32
static struct ggml_tensor * ggml_map_custom2_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_f32_t fun,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_CUSTOM2_F32;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_map_custom2_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_f32_t fun) {
return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
}
struct ggml_tensor * ggml_map_custom2_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_f32_t fun) {
return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
}
// ggml_map_custom3_f32
static struct ggml_tensor * ggml_map_custom3_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_f32_t fun,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_CUSTOM3_F32;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
}
struct ggml_tensor * ggml_map_custom3_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_f32_t fun) {
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
}
struct ggml_tensor * ggml_map_custom3_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_f32_t fun) {
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
}
// ggml_map_custom1
static struct ggml_tensor * ggml_map_custom1_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_t fun,
int n_tasks,
void * userdata,
bool inplace) {
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
struct ggml_map_custom1_op_params params = {
/*.fun =*/ fun,
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, (const void *) &params, sizeof(params));
result->op = GGML_OP_MAP_CUSTOM1;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_map_custom1(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
}
struct ggml_tensor * ggml_map_custom1_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
}
// ggml_map_custom2
static struct ggml_tensor * ggml_map_custom2_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_t fun,
int n_tasks,
void * userdata,
bool inplace) {
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
struct ggml_map_custom2_op_params params = {
/*.fun =*/ fun,
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, (const void *) &params, sizeof(params));
result->op = GGML_OP_MAP_CUSTOM2;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_map_custom2(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
}
struct ggml_tensor * ggml_map_custom2_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
}
// ggml_map_custom3
static struct ggml_tensor * ggml_map_custom3_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_t fun,
int n_tasks,
void * userdata,
bool inplace) {
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
struct ggml_map_custom3_op_params params = {
/*.fun =*/ fun,
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, (const void *) &params, sizeof(params));
result->op = GGML_OP_MAP_CUSTOM3;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
}
struct ggml_tensor * ggml_map_custom3(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
}
struct ggml_tensor * ggml_map_custom3_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
}
// ggml_cross_entropy_loss
struct ggml_tensor * ggml_cross_entropy_loss(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_are_same_shape(a, b));
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
result->op = GGML_OP_CROSS_ENTROPY_LOSS;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_cross_entropy_loss_back
struct ggml_tensor * ggml_cross_entropy_loss_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c) {
GGML_ASSERT(ggml_is_scalar(a));
GGML_ASSERT(ggml_are_same_shape(b, c));
struct ggml_tensor * result = ggml_dup_tensor(ctx, b);
result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
}
// opt_step_adamw
struct ggml_tensor * ggml_opt_step_adamw(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * grad,
struct ggml_tensor * m,
struct ggml_tensor * v,
struct ggml_tensor * adamw_params) {
GGML_ASSERT(a->flags & GGML_TENSOR_FLAG_PARAM);
GGML_ASSERT(ggml_are_same_shape(a, grad));
GGML_ASSERT(ggml_are_same_shape(a, m));
GGML_ASSERT(ggml_are_same_shape(a, v));
GGML_ASSERT(adamw_params->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_nelements(adamw_params) == 7);
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
result->op = GGML_OP_OPT_STEP_ADAMW;
result->src[0] = a;
result->src[1] = grad;
result->src[2] = m;
result->src[3] = v;
result->src[4] = adamw_params;
return result;
}
////////////////////////////////////////////////////////////////////////////////
struct ggml_hash_set ggml_hash_set_new(size_t size) {
size = ggml_hash_size(size);
struct ggml_hash_set result;
result.size = size;
result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
result.used = GGML_CALLOC(ggml_bitset_size(size), sizeof(ggml_bitset_t));
return result;
}
void ggml_hash_set_reset(struct ggml_hash_set * hash_set) {
memset(hash_set->used, 0, sizeof(ggml_bitset_t) * ggml_bitset_size(hash_set->size));
}
void ggml_hash_set_free(struct ggml_hash_set * hash_set) {
GGML_FREE(hash_set->used);
GGML_FREE(hash_set->keys);
}
size_t ggml_hash_size(size_t min_sz) {
// next primes after powers of two
static const size_t primes[] = {
2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
2053, 4099, 8209, 16411, 32771, 65537, 131101,
262147, 524309, 1048583, 2097169, 4194319, 8388617,
16777259, 33554467, 67108879, 134217757, 268435459,
536870923, 1073741827, 2147483659
};
static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
// find the smallest prime that is larger or equal than min_sz
size_t l = 0;
size_t r = n_primes;
while (l < r) {
size_t m = (l + r)/2;
if (primes[m] < min_sz) {
l = m + 1;
} else {
r = m;
}
}
size_t sz = l < n_primes ? primes[l] : min_sz | 1;
return sz;
}
struct hash_map {
struct ggml_hash_set set;
struct ggml_tensor ** vals;
};
static struct hash_map * ggml_new_hash_map(size_t size) {
struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
result->set = ggml_hash_set_new(size);
result->vals = GGML_CALLOC(result->set.size, sizeof(struct ggml_tensor *));
return result;
}
static void ggml_hash_map_free(struct hash_map * map) {
ggml_hash_set_free(&map->set);
GGML_FREE(map->vals);
GGML_FREE(map);
}
// utility functions to change gradients
// isrc is the index of tensor in cgraph->visited_has_set.keys
// the corresponding gradient (accumulators) are also at position isrc
// if tensor has a gradient accumulator, modify that accumulator in-place
// else if there is no gradient for tensor, set the corresponding value
// else, just add/subtract/etc. the gradients
static void ggml_add_or_set(
struct ggml_context * ctx,
struct ggml_cgraph * cgraph,
size_t isrc,
struct ggml_tensor * tensor) {
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
GGML_ASSERT(src);
if (cgraph->grads[isrc]) {
cgraph->grads[isrc] = ggml_add_impl(ctx, cgraph->grads[isrc], tensor, /*inplace =*/ cgraph->grad_accs[isrc]);
} else {
cgraph->grads[isrc] = tensor;
}
ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
}
static void ggml_acc_or_set(
struct ggml_context * ctx,
struct ggml_cgraph * cgraph,
size_t isrc,
struct ggml_tensor * tensor,
const size_t nb1,
const size_t nb2,
const size_t nb3,
const size_t offset) {
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
GGML_ASSERT(src);
if (cgraph->grads[isrc]) {
cgraph->grads[isrc] = ggml_acc_impl(ctx, cgraph->grads[isrc], tensor, nb1, nb2, nb3, offset, cgraph->grad_accs[isrc]);
} else {
struct ggml_tensor * a_zero = ggml_scale(ctx, src, 0.0f); // FIXME this is going to produce NaN if a contains inf/NaN
cgraph->grads[isrc] = ggml_acc_impl(ctx, a_zero, tensor, nb1, nb2, nb3, offset, false);
}
ggml_format_name(cgraph->grads[isrc], "grad for %s", cgraph->visited_hash_set.keys[isrc]->name);
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
}
static void ggml_add1_or_set(
struct ggml_context * ctx,
struct ggml_cgraph * cgraph,
size_t isrc,
struct ggml_tensor * tensor) {
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
GGML_ASSERT(src);
if (cgraph->grads[isrc]) {
cgraph->grads[isrc] = ggml_add1_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]);
} else {
cgraph->grads[isrc] = ggml_repeat(ctx, tensor, src);
}
ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
}
static void ggml_sub_or_set(
struct ggml_context * ctx,
struct ggml_cgraph * cgraph,
size_t isrc,
struct ggml_tensor * tensor) {
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
GGML_ASSERT(src);
if (cgraph->grads[isrc]) {
cgraph->grads[isrc] = ggml_sub_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]);
} else {
cgraph->grads[isrc] = ggml_neg(ctx, tensor);
}
ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
}
static void ggml_compute_backward(
struct ggml_context * ctx, struct ggml_cgraph * cgraph, int i, const bool * grads_needed) {
struct ggml_tensor * tensor = cgraph->nodes[i];
struct ggml_tensor * grad = ggml_graph_get_grad(cgraph, tensor);
if (!grad) {
return;
}
struct ggml_tensor * src0 = tensor->src[0];
struct ggml_tensor * src1 = tensor->src[1];
struct ggml_tensor * src2 = tensor->src[2];
struct ggml_hash_set * hash_set = &cgraph->visited_hash_set;
const size_t isrc0 = src0 ? ggml_hash_find(hash_set, src0) : (size_t) -1;
const size_t isrc1 = src1 ? ggml_hash_find(hash_set, src1) : (size_t) -1;
const size_t isrc2 = src2 ? ggml_hash_find(hash_set, src2) : (size_t) -1;
const bool src0_needs_grads = src0 && isrc0 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc0) && grads_needed[isrc0];
const bool src1_needs_grads = src1 && isrc1 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc1) && grads_needed[isrc1];
const bool src2_needs_grads = src2 && isrc2 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc2) && grads_needed[isrc2];
switch (tensor->op) {
case GGML_OP_DUP: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, grad);
}
} break;
case GGML_OP_ADD: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, grad);
}
if (src1_needs_grads) {
struct ggml_tensor * tmp = grad;
if (!ggml_are_same_shape(src0, src1)) {
tmp = ggml_repeat_back(ctx, tmp, src1);
}
ggml_add_or_set(ctx, cgraph, isrc1, tmp);
}
} break;
case GGML_OP_ADD1: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, grad);
}
if (src1_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc1, ggml_mean(ctx, grad)); // TODO: should probably be sum instead of mean
}
} break;
case GGML_OP_ACC: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, grad);
}
if (src1_needs_grads) {
const size_t nb1 = ((int32_t *) tensor->op_params)[0];
const size_t nb2 = ((int32_t *) tensor->op_params)[1];
const size_t nb3 = ((int32_t *) tensor->op_params)[2];
const size_t offset = ((int32_t *) tensor->op_params)[3];
struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
nb1, nb2, nb3, offset);
ggml_add_or_set(ctx, cgraph, isrc1, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1));
}
} break;
case GGML_OP_SUB: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, grad);
}
if (src1_needs_grads) {
ggml_sub_or_set(ctx, cgraph, isrc1, grad);
}
} break;
case GGML_OP_MUL: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, src1));
}
if (src1_needs_grads) {
struct ggml_tensor * tmp = ggml_mul(ctx, src0, grad);
if (!ggml_are_same_shape(src0, src1)) {
tmp = ggml_repeat_back(ctx, tmp, src1);
}
ggml_add_or_set(ctx, cgraph, isrc1, tmp);
}
} break;
case GGML_OP_DIV: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_div(ctx, grad, src1));
}
if (src1_needs_grads) {
ggml_sub_or_set(ctx, cgraph, isrc1, ggml_mul(ctx, grad, ggml_div(ctx, tensor, src1)));
}
} break;
case GGML_OP_SQR: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale(ctx, ggml_mul(ctx, src0, grad), 2.0f));
}
} break;
case GGML_OP_SQRT: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale(ctx, ggml_div(ctx, grad, tensor), 0.5f));
}
} break;
case GGML_OP_LOG: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_div(ctx, grad, src0));
}
} break;
case GGML_OP_SIN: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, ggml_cos(ctx, src0)));
}
} break;
case GGML_OP_COS: {
if (src0_needs_grads) {
ggml_sub_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, ggml_sin(ctx, src0)));
}
} break;
case GGML_OP_SUM: {
if (src0_needs_grads) {
ggml_add1_or_set(ctx, cgraph, isrc0, grad);
}
} break;
case GGML_OP_SUM_ROWS: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat(ctx, grad, src0));
}
} break;
case GGML_OP_MEAN: {
if (src0_needs_grads) {
ggml_add1_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, 1.0f/src0->ne[0], false));
}
} break;
case GGML_OP_REPEAT: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat_back(ctx, grad, src0));
}
} break;
case GGML_OP_REPEAT_BACK: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat(ctx, grad, src0));
}
} break;
case GGML_OP_RMS_NORM: {
if (src0_needs_grads) {
float eps;
memcpy(&eps, tensor->op_params, sizeof(float));
ggml_add_or_set(ctx, cgraph, isrc0, ggml_rms_norm_back(ctx, grad, src0, eps));
}
} break;
case GGML_OP_MUL_MAT: {
// https://cs231n.github.io/optimization-2/#staged
// # forward pass
// s0 = np.random.randn(5, 10)
// s1 = np.random.randn(10, 3)
// t = s0.dot(s1)
// # now suppose we had the gradient on t from above in the circuit
// dt = np.random.randn(*t.shape) # same shape as t
// ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
// ds1 = t.T.dot(dt)
// tensor.shape [m,p,qq,rr]
// src0.shape [n,m,q1,r1]
// src1.shape [n,p,qq,rr]
if (src0_needs_grads) {
GGML_ASSERT(grad->ne[2] == src1->ne[2]);
GGML_ASSERT(grad->ne[3] == src1->ne[3]);
struct ggml_tensor * tmp =
ggml_out_prod(ctx, // [n,m,qq,rr]
src1, // [n,p,qq,rr]
grad); // [m,p,qq,rr]
if (!ggml_are_same_shape(tmp, src0)) {
GGML_ASSERT(tmp->ne[0] == src0->ne[0]);
GGML_ASSERT(tmp->ne[1] == src0->ne[1]);
GGML_ASSERT(tmp->ne[3] == 1);
const int64_t nr2 = tmp->ne[2] / src0->ne[2];
const size_t nb2 = tmp->nb[2] * nr2;
const size_t nb3 = tmp->nb[2];
tmp = ggml_view_4d(ctx, tmp, src0->ne[0], src0->ne[1], src0->ne[2], nr2, tmp->nb[1], nb2, nb3, 0);
tmp = ggml_repeat_back(ctx, tmp, src0);
}
ggml_add_or_set(ctx, cgraph, isrc0, tmp);
}
if (src1_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc1,
// ggml_mul_mat(ctx, // [n,p,qq,rr]
// ggml_cont(ctx, // [m,n,q1,r1]
// ggml_transpose(ctx, src0)), // [m,n,q1,r1]
// grad), // [m,p,qq,rr]
// when src0 is bigger than tensor->grad (this is mostly the case in llama),
// avoid transpose of src0, rather transpose smaller tensor->grad
// and then use ggml_out_prod
ggml_out_prod(ctx, // [n,p,qq,rr]
src0, // [n,m,q1,r1]
ggml_transpose(ctx, // [p,m,qq,rr]
grad))); // [m,p,qq,rr]
}
} break;
case GGML_OP_SCALE: {
if (src0_needs_grads) {
float s;
memcpy(&s, tensor->op_params, sizeof(float));
ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, s, false));
}
} break;
case GGML_OP_SET: {
const size_t nb1 = ((const int32_t *) tensor->op_params)[0];
const size_t nb2 = ((const int32_t *) tensor->op_params)[1];
const size_t nb3 = ((const int32_t *) tensor->op_params)[2];
const size_t offset = ((const int32_t *) tensor->op_params)[3];
struct ggml_tensor * tensor_grad_view = NULL;
if (src0_needs_grads || src1_needs_grads) {
GGML_ASSERT(src0->type == tensor->type);
GGML_ASSERT(!cgraph->grads[isrc0] || cgraph->grads[isrc0]->type == grad->type);
GGML_ASSERT(!cgraph->grads[isrc1] || !src1_needs_grads || cgraph->grads[isrc1]->type == grad->type);
tensor_grad_view = ggml_view_4d(ctx,
grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
nb1, nb2, nb3, offset);
}
if (src0_needs_grads) {
struct ggml_tensor * tmp = ggml_neg(ctx, tensor_grad_view);
ggml_add_or_set(ctx, cgraph, isrc0, ggml_acc_impl(ctx, grad, tmp, nb1, nb2, nb3, offset, false));
}
if (src1_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc1, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1));
}
} break;
case GGML_OP_CPY: {
// cpy overwrites value of src1 by src0 and returns view(src1)
// the overwriting is mathematically equivalent to:
// tensor = src0 * 1 + src1 * 0
if (src0_needs_grads) {
// dsrc0 = dtensor * 1
ggml_add_or_set(ctx, cgraph, isrc0, grad);
}
if (src1_needs_grads) {
// dsrc1 = dtensor * 0 -> noop
}
} break;
case GGML_OP_CONT: {
// same as cpy
if (src0_needs_grads) {
GGML_ASSERT(!cgraph->grads[isrc0] || ggml_is_contiguous(cgraph->grads[isrc0]));
GGML_ASSERT(ggml_is_contiguous(grad));
GGML_ASSERT(ggml_nelements(tensor) == ggml_nelements(src0));
ggml_add_or_set(ctx, cgraph, isrc0,
ggml_are_same_shape(tensor, src0) ? grad : ggml_reshape(ctx, grad, src0));
}
} break;
case GGML_OP_RESHAPE: {
if (src0_needs_grads) {
struct ggml_tensor * grad_cont = ggml_is_contiguous(grad) ? grad : ggml_cont(ctx, grad);
ggml_add_or_set(ctx, cgraph, isrc0, ggml_reshape(ctx, grad_cont, src0));
}
} break;
case GGML_OP_VIEW: {
if (src0_needs_grads) {
size_t offset;
memcpy(&offset, tensor->op_params, sizeof(offset));
size_t nb1 = tensor->nb[1];
size_t nb2 = tensor->nb[2];
size_t nb3 = tensor->nb[3];
if (cgraph->grads[isrc0] && src0->type != cgraph->grads[isrc0]->type) {
// gradient is typically F32, but src0 could be other type
size_t ng = ggml_element_size(cgraph->grads[isrc0]);
size_t n0 = ggml_element_size(src0);
GGML_ASSERT(offset % n0 == 0);
GGML_ASSERT(nb1 % n0 == 0);
GGML_ASSERT(nb2 % n0 == 0);
GGML_ASSERT(nb3 % n0 == 0);
offset = (offset / n0) * ng;
nb1 = (nb1 / n0) * ng;
nb2 = (nb2 / n0) * ng;
nb3 = (nb3 / n0) * ng;
}
ggml_acc_or_set(ctx, cgraph, isrc0, grad, nb1, nb2, nb3, offset);
}
} break;
case GGML_OP_PERMUTE: {
if (src0_needs_grads) {
const int32_t * axes = (const int32_t *) tensor->op_params;
const int axis0 = axes[0] & 0x3;
const int axis1 = axes[1] & 0x3;
const int axis2 = axes[2] & 0x3;
const int axis3 = axes[3] & 0x3;
int axb[4] = {0,0,0,0}; // axes backward
axb[axis0] = 0;
axb[axis1] = 1;
axb[axis2] = 2;
axb[axis3] = 3;
ggml_add_or_set(ctx, cgraph, isrc0, ggml_permute(ctx, grad, axb[0], axb[1], axb[2], axb[3]));
}
} break;
case GGML_OP_TRANSPOSE: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_transpose(ctx, grad));
}
} break;
case GGML_OP_GET_ROWS: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_get_rows_back(ctx, grad, src1, src0));
}
if (src1_needs_grads) {
// noop
}
} break;
case GGML_OP_DIAG_MASK_INF: {
if (src0_needs_grads) {
/* ggml_diag_mask_inf_impl() shouldn't be here */
/* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
const int n_past = ((const int32_t *) tensor->op_params)[0];
ggml_add_or_set(ctx, cgraph, isrc0, ggml_diag_mask_zero_impl(ctx, grad, n_past, false));
}
} break;
case GGML_OP_DIAG_MASK_ZERO: {
if (src0_needs_grads) {
const int n_past = ((const int32_t *) tensor->op_params)[0];
ggml_add_or_set(ctx, cgraph, isrc0, ggml_diag_mask_zero_impl(ctx, grad, n_past, false));
}
} break;
case GGML_OP_SOFT_MAX: {
if (src0_needs_grads) {
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (const float *) tensor->op_params + 0, sizeof(float));
memcpy(&max_bias, (const float *) tensor->op_params + 1, sizeof(float));
ggml_add_or_set(ctx, cgraph, isrc0, ggml_soft_max_ext_back(ctx, grad, tensor, scale, max_bias));
}
GGML_ASSERT((!src1 || !src1_needs_grads) && "backward pass for softmax mask not implemented");
} break;
case GGML_OP_ROPE: {
if (src0_needs_grads) {
//const int n_past = ((int32_t *) tensor->op_params)[0];
const int n_dims = ((const int32_t *) tensor->op_params)[1];
const int mode = ((const int32_t *) tensor->op_params)[2];
//const int n_ctx = ((int32_t *) tensor->op_params)[3];
const int n_ctx_orig = ((const int32_t *) tensor->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
int sections[4] = {0, 0, 0, 0};
memcpy(&freq_base, (const float *) tensor->op_params + 5, sizeof(float));
memcpy(&freq_scale, (const float *) tensor->op_params + 6, sizeof(float));
memcpy(&ext_factor, (const float *) tensor->op_params + 7, sizeof(float));
memcpy(&attn_factor, (const float *) tensor->op_params + 8, sizeof(float));
memcpy(&beta_fast, (const float *) tensor->op_params + 9, sizeof(float));
memcpy(&beta_slow, (const float *) tensor->op_params + 10, sizeof(float));
memcpy(&sections, tensor->op_params + 11, sizeof(sections));
struct ggml_tensor * rope_back = grad->ne[2] == src1->ne[0] ?
ggml_rope_ext_back(ctx, grad, src1, src2, n_dims,
mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow) :
ggml_rope_multi_back(ctx, grad, src1, src2, n_dims, sections,
mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
ggml_add_or_set(ctx, cgraph, isrc0, rope_back);
}
GGML_ASSERT((!src2 || !src2_needs_grads) && "gradients for freq factors not implemented");
} break;
case GGML_OP_IM2COL: {
if (src1_needs_grads) {
const int32_t s0 = ggml_get_op_params_i32(tensor, 0);
const int32_t s1 = ggml_get_op_params_i32(tensor, 1);
const int32_t p0 = ggml_get_op_params_i32(tensor, 2);
const int32_t p1 = ggml_get_op_params_i32(tensor, 3);
const int32_t d0 = ggml_get_op_params_i32(tensor, 4);
const int32_t d1 = ggml_get_op_params_i32(tensor, 5);
const bool is_2D = ggml_get_op_params_i32(tensor, 6) == 1;
ggml_add_or_set(ctx, cgraph, isrc1, ggml_im2col_back(ctx, grad, src0, src1->ne, s0, s1, p0, p1, d0, d1, is_2D));
}
} break;
case GGML_OP_POOL_2D: {
if (src0_needs_grads) {
const enum ggml_op_pool op = ggml_get_op_params_i32(tensor, 0);
const int32_t k0 = ggml_get_op_params_i32(tensor, 1);
const int32_t k1 = ggml_get_op_params_i32(tensor, 2);
const int32_t s0 = ggml_get_op_params_i32(tensor, 3);
const int32_t s1 = ggml_get_op_params_i32(tensor, 4);
const int32_t p0 = ggml_get_op_params_i32(tensor, 5);
const int32_t p1 = ggml_get_op_params_i32(tensor, 6);
ggml_add_or_set(ctx, cgraph, isrc0, ggml_pool_2d_back(ctx, grad, src0, op, k0, k1, s0, s1, p0, p1));
}
} break;
case GGML_OP_WIN_PART:
case GGML_OP_WIN_UNPART:
case GGML_OP_UNARY: {
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_ABS: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, ggml_sgn(ctx, src0), grad));
}
} break;
case GGML_UNARY_OP_SGN: {
// noop
} break;
case GGML_UNARY_OP_NEG: {
if (src0_needs_grads) {
ggml_sub_or_set(ctx, cgraph, isrc0, grad);
}
} break;
case GGML_UNARY_OP_STEP: {
// noop
} break;
case GGML_UNARY_OP_RELU: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, ggml_step(ctx, src0), grad));
}
} break;
case GGML_UNARY_OP_SILU: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_silu_back(ctx, grad, src0));
}
} break;
case GGML_UNARY_OP_EXP: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, tensor, grad));
}
} break;
default: {
fprintf(stderr, "%s: unsupported unary op for backward pass: %s\n",
__func__, ggml_unary_op_name(ggml_get_unary_op(tensor)));
GGML_ABORT("fatal error");
} //break;
}
} break;
case GGML_OP_CROSS_ENTROPY_LOSS: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_cross_entropy_loss_back(ctx, grad, src0, src1));
}
GGML_ASSERT(!src1_needs_grads && "backward pass for labels not implemented");
} break;
case GGML_OP_NONE: {
// noop
} break;
case GGML_OP_COUNT:
default: {
fprintf(stderr, "%s: unsupported ggml op for backward pass: %s\n", __func__, ggml_op_name(tensor->op));
GGML_ABORT("fatal error");
} //break;
}
GGML_ASSERT(!src0_needs_grads || ggml_are_same_shape(src0, cgraph->grads[isrc0]));
GGML_ASSERT(!src1_needs_grads || ggml_are_same_shape(src1, cgraph->grads[isrc1]));
GGML_ASSERT(!src2_needs_grads || ggml_are_same_shape(src2, cgraph->grads[isrc2]));
}
static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
// check if already visited
if (ggml_hash_insert(&cgraph->visited_hash_set, node) == GGML_HASHSET_ALREADY_EXISTS) {
return;
}
for (int i = 0; i < GGML_MAX_SRC; ++i) {
const int k =
(cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
(cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
/* unknown order, just fall back to using i*/ i;
if (node->src[k]) {
ggml_visit_parents(cgraph, node->src[k]);
}
}
if (node->op == GGML_OP_NONE && !(node->flags & GGML_TENSOR_FLAG_PARAM)) {
// reached a leaf node, not part of the gradient graph (e.g. a constant)
GGML_ASSERT(cgraph->n_leafs < cgraph->size);
if (strlen(node->name) == 0) {
ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
}
cgraph->leafs[cgraph->n_leafs] = node;
cgraph->n_leafs++;
} else {
GGML_ASSERT(cgraph->n_nodes < cgraph->size);
if (strlen(node->name) == 0) {
ggml_format_name(node, "node_%d", cgraph->n_nodes);
}
cgraph->nodes[cgraph->n_nodes] = node;
cgraph->n_nodes++;
}
}
static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
if (!expand) {
// TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
ggml_graph_clear(cgraph);
}
const int n0 = cgraph->n_nodes;
ggml_visit_parents(cgraph, tensor);
const int n_new = cgraph->n_nodes - n0;
GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
if (n_new > 0) {
// the last added node should always be starting point
GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
}
}
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
ggml_build_forward_impl(cgraph, tensor, true);
}
void ggml_build_backward_expand(
struct ggml_context * ctx_static,
struct ggml_context * ctx_compute,
struct ggml_cgraph * cgraph,
bool accumulate) {
GGML_ASSERT(cgraph->n_nodes > 0);
GGML_ASSERT(cgraph->grads);
GGML_ASSERT(cgraph->grad_accs);
const int n_nodes_f = cgraph->n_nodes;
memset(cgraph->grads, 0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *));
memset(cgraph->grad_accs, 0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *));
bool * grads_needed = calloc(cgraph->visited_hash_set.size, sizeof(bool));
{
bool any_params = false;
bool any_loss = false;
for (int i = 0; i < n_nodes_f; ++i) {
struct ggml_tensor * node = cgraph->nodes[i];
any_params = any_params || (node->flags & GGML_TENSOR_FLAG_PARAM);
any_loss = any_loss || (node->flags & GGML_TENSOR_FLAG_LOSS);
}
GGML_ASSERT(any_params && "no trainable parameters found, did you forget to call ggml_set_param?");
GGML_ASSERT(any_loss && "no training loss found, did you forget to call ggml_set_loss?");
}
for (int i = 0; i < n_nodes_f; ++i) {
struct ggml_tensor * node = cgraph->nodes[i];
if (node->type == GGML_TYPE_I32) {
continue;
}
bool node_needs_grad = (node->flags & GGML_TENSOR_FLAG_PARAM) || (node->flags & GGML_TENSOR_FLAG_LOSS);
bool ignore_src[GGML_MAX_SRC] = {false};
switch (node->op) {
// gradients in node->src[0] for one reason or another have no effect on output gradients
case GGML_OP_IM2COL: // only used for its shape
case GGML_OP_IM2COL_BACK: // same as IM2COL
ignore_src[0] = true;
break;
case GGML_OP_UNARY: {
const enum ggml_unary_op uop = ggml_get_unary_op(node);
// SGN and STEP unary ops are piecewise constant
if (uop == GGML_UNARY_OP_SGN || uop == GGML_UNARY_OP_STEP) {
ignore_src[0] = true;
}
} break;
// gradients in node->src[1] for one reason or another have no effect on output gradients
case GGML_OP_CPY: // gradients in CPY target are irrelevant
case GGML_OP_GET_ROWS: // row indices not differentiable
case GGML_OP_GET_ROWS_BACK: // same as for GET_ROWS
case GGML_OP_ROPE: // positions not differentiable
ignore_src[1] = true;
break;
default:
break;
}
for (int j = 0; j < GGML_MAX_SRC; ++j) {
if (!node->src[j] || ignore_src[j] || !grads_needed[ggml_hash_find(&cgraph->visited_hash_set, node->src[j])]) {
continue;
}
GGML_ASSERT(node->src[j]->type == GGML_TYPE_F32 || node->src[j]->type == GGML_TYPE_F16);
node_needs_grad = true;
break;
}
if (!node_needs_grad) {
continue;
}
// inplace operations are currently not supported
GGML_ASSERT(!node->view_src || node->op == GGML_OP_CPY || node->op == GGML_OP_VIEW ||
node->op == GGML_OP_RESHAPE || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE);
const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node);
GGML_ASSERT(igrad != GGML_HASHSET_FULL);
GGML_ASSERT(ggml_bitset_get(cgraph->visited_hash_set.used, igrad));
if ((accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) || (node->flags & GGML_TENSOR_FLAG_LOSS)) {
cgraph->grad_accs[igrad] = ggml_dup_tensor(ctx_static, node);
cgraph->grads[igrad] = cgraph->grad_accs[igrad];
ggml_format_name(cgraph->grad_accs[igrad], "grad acc for %s", node->name);
}
grads_needed[igrad] = true;
}
for (int i = n_nodes_f - 1; i >= 0; --i) {
// inplace operations to add gradients are not created by ggml_compute_backward except for gradient accumulation
// use allocator to automatically make inplace operations
ggml_compute_backward(ctx_compute, cgraph, i, grads_needed);
}
free(grads_needed);
}
static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
void * ptr = *p;
ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
*p = (void *) ((char *) ptr + size);
return ptr;
}
static size_t ggml_graph_nbytes(size_t size, bool grads) {
size_t hash_size = ggml_hash_size(size * 2);
void * p = 0;
incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1);
incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // nodes
incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // leafs
incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // hash keys
if (grads) {
incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grads
incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grad_accs
}
incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
size_t nbytes = (size_t) p;
return nbytes;
}
size_t ggml_graph_overhead_custom(size_t size, bool grads) {
return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
}
size_t ggml_graph_overhead(void) {
return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
}
struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
const size_t obj_size = ggml_graph_nbytes(size, grads);
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
// the size of the hash table is doubled since it needs to hold both nodes and leafs
size_t hash_size = ggml_hash_size(size * 2);
void * p = cgraph + 1;
struct ggml_tensor ** nodes_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
struct ggml_tensor ** leafs_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
struct ggml_tensor ** hash_keys_ptr = incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
struct ggml_tensor ** grads_ptr = grads ? incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
struct ggml_tensor ** grad_accs_ptr = grads ? incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
ggml_bitset_t * hash_used = incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
// check that we allocated the correct amount of memory
assert(obj_size == (size_t)((char *)p - (char *)cgraph));
*cgraph = (struct ggml_cgraph) {
/*.size =*/ size,
/*.n_nodes =*/ 0,
/*.n_leafs =*/ 0,
/*.nodes =*/ nodes_ptr,
/*.grads =*/ grads_ptr,
/*.grad_accs =*/ grad_accs_ptr,
/*.leafs =*/ leafs_ptr,
/*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr },
/*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
};
ggml_hash_set_reset(&cgraph->visited_hash_set);
if (grads) {
memset(cgraph->grads, 0, hash_size*sizeof(struct ggml_tensor *));
memset(cgraph->grad_accs, 0, hash_size*sizeof(struct ggml_tensor *));
}
return cgraph;
}
struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
}
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
struct ggml_cgraph cgraph = {
/*.size =*/ 0,
/*.n_nodes =*/ i1 - i0,
/*.n_leafs =*/ 0,
/*.nodes =*/ cgraph0->nodes + i0,
/*.grads =*/ NULL, // gradients would need visited_hash_set
/*.grad_accs =*/ NULL,
/*.leafs =*/ NULL,
/*.visited_hash_set =*/ { 0, NULL, NULL },
/*.order =*/ cgraph0->order,
};
return cgraph;
}
void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
GGML_ASSERT(dst->size >= src->n_leafs);
GGML_ASSERT(dst->size >= src->n_nodes);
GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size);
dst->n_leafs = src->n_leafs;
dst->n_nodes = src->n_nodes;
dst->order = src->order;
for (int i = 0; i < src->n_leafs; ++i) {
dst->leafs[i] = src->leafs[i];
}
for (int i = 0; i < src->n_nodes; ++i) {
dst->nodes[i] = src->nodes[i];
}
for (size_t i = 0; i < src->visited_hash_set.size; ++i) {
// copy all hashset keys (tensors) that are in use
if (ggml_bitset_get(src->visited_hash_set.used, i)) {
ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]);
}
}
if (dst->grads) {
memset(dst->grads, 0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *));
memset(dst->grad_accs, 0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *));
}
if (src->grads) {
GGML_ASSERT(dst->grads != NULL);
GGML_ASSERT(dst->grad_accs != NULL);
for (int i = 0; i < src->n_nodes; ++i) {
const size_t igrad_src = ggml_hash_find(&src->visited_hash_set, src->nodes[i]);
const size_t igrad_dst = ggml_hash_find(&dst->visited_hash_set, dst->nodes[i]);
GGML_ASSERT(igrad_src != GGML_HASHSET_FULL);
GGML_ASSERT(ggml_bitset_get(src->visited_hash_set.used, igrad_src));
GGML_ASSERT(igrad_dst != GGML_HASHSET_FULL);
GGML_ASSERT(ggml_bitset_get(dst->visited_hash_set.used, igrad_dst));
dst->grads[igrad_dst] = src->grads[igrad_src];
dst->grad_accs[igrad_dst] = src->grad_accs[igrad_src];
}
}
}
struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
ggml_graph_cpy(cgraph, result);
return result;
}
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
if (ggml_is_empty(tensor)) {
return tensor;
}
if (tensor->buffer) {
ggml_backend_tensor_memset(tensor, 0, 0, ggml_nbytes(tensor));
} else {
GGML_ASSERT(tensor->data);
memset(tensor->data, 0, ggml_nbytes(tensor));
}
return tensor;
}
void ggml_graph_reset(struct ggml_cgraph * cgraph) {
GGML_ASSERT(cgraph->grads != NULL);
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
struct ggml_tensor * grad_acc = ggml_graph_get_grad_acc(cgraph, node);
if (node->op == GGML_OP_OPT_STEP_ADAMW) {
// clear momenta
ggml_set_zero(node->src[2]);
ggml_set_zero(node->src[3]);
}
// initial gradients of loss should be 1, 0 otherwise
if (grad_acc) {
if (node->flags & GGML_TENSOR_FLAG_LOSS) {
GGML_ASSERT(grad_acc->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_scalar(grad_acc));
const float onef = 1.0f;
if (grad_acc->buffer) {
ggml_backend_tensor_set(grad_acc, &onef, 0, sizeof(float));
} else {
GGML_ASSERT(grad_acc->data);
*((float *) grad_acc->data) = onef;
}
} else {
ggml_set_zero(grad_acc);
}
}
}
}
void ggml_graph_clear(struct ggml_cgraph * cgraph) {
cgraph->n_leafs = 0;
cgraph->n_nodes = 0;
ggml_hash_set_reset(&cgraph->visited_hash_set);
}
int ggml_graph_size(struct ggml_cgraph * cgraph) {
return cgraph->size;
}
struct ggml_tensor * ggml_graph_node(struct ggml_cgraph * cgraph, int i) {
if (i < 0) {
GGML_ASSERT(cgraph->n_nodes + i >= 0);
return cgraph->nodes[cgraph->n_nodes + i];
}
GGML_ASSERT(i < cgraph->n_nodes);
return cgraph->nodes[i];
}
struct ggml_tensor ** ggml_graph_nodes(struct ggml_cgraph * cgraph) {
return cgraph->nodes;
}
int ggml_graph_n_nodes(struct ggml_cgraph * cgraph) {
return cgraph->n_nodes;
}
void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
GGML_ASSERT(cgraph->size > cgraph->n_nodes);
cgraph->nodes[cgraph->n_nodes] = tensor;
cgraph->n_nodes++;
}
struct ggml_tensor * ggml_graph_get_tensor(const struct ggml_cgraph * cgraph, const char * name) {
for (int i = 0; i < cgraph->n_leafs; i++) {
struct ggml_tensor * leaf = cgraph->leafs[i];
if (strcmp(leaf->name, name) == 0) {
return leaf;
}
}
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
if (strcmp(node->name, name) == 0) {
return node;
}
}
return NULL;
}
struct ggml_tensor * ggml_graph_get_grad(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node);
return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) && cgraph->grads ? cgraph->grads[igrad] : NULL;
}
struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node);
return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) && cgraph->grad_accs ? cgraph->grad_accs[igrad] : NULL;
}
void ggml_graph_print(const struct ggml_cgraph * cgraph) {
GGML_LOG_INFO("=== GRAPH ===\n");
GGML_LOG_INFO("n_nodes = %d\n", cgraph->n_nodes);
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
i,
node->ne[0], node->ne[1], node->ne[2],
ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" :
ggml_graph_get_grad(cgraph, node) ? "g" : " ");
}
GGML_LOG_INFO("n_leafs = %d\n", cgraph->n_leafs);
for (int i = 0; i < cgraph->n_leafs; i++) {
struct ggml_tensor * node = cgraph->leafs[i];
GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
i,
node->ne[0], node->ne[1],
ggml_op_name(node->op),
ggml_get_name(node));
}
GGML_LOG_INFO("========================================\n");
}
// check if node is part of the graph
static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
if (cgraph == NULL) {
return true;
}
for (int i = 0; i < cgraph->n_nodes; i++) {
if (cgraph->nodes[i] == node) {
return true;
}
}
return false;
}
static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * parent = cgraph->nodes[i];
struct ggml_tensor * grad = ggml_graph_get_grad(cgraph, parent);
if (grad == node) {
return parent;
}
}
return NULL;
}
static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
gparent0 ? (void *) gparent0 : (void *) parent,
gparent0 ? "g" : "x",
gparent ? (void *) gparent : (void *) node,
gparent ? "g" : "x",
gparent ? "empty" : "vee",
gparent ? "dashed" : "solid",
label);
}
static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
(void *) parent, "x",
(void *) node, "x",
label);
}
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
char color[16];
FILE * fp = ggml_fopen(filename, "w");
GGML_ASSERT(fp);
fprintf(fp, "digraph G {\n");
fprintf(fp, " newrank = true;\n");
fprintf(fp, " rankdir = TB;\n");
for (int i = 0; i < gb->n_nodes; i++) {
struct ggml_tensor * node = gb->nodes[i];
struct ggml_tensor * grad = ggml_graph_get_grad(gb, node);
if (ggml_graph_get_parent(gb, node) != NULL) {
continue;
}
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
snprintf(color, sizeof(color), "yellow");
} else if (grad) {
if (ggml_graph_find(gf, node)) {
snprintf(color, sizeof(color), "green");
} else {
snprintf(color, sizeof(color), "lightblue");
}
} else {
snprintf(color, sizeof(color), "white");
}
fprintf(fp, " \"%p\" [ "
"style = filled; fillcolor = %s; shape = record; "
"label=\"",
(void *) node, color);
if (strlen(node->name) > 0) {
fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
} else {
fprintf(fp, "(%s)|", ggml_type_name(node->type));
}
if (ggml_is_matrix(node)) {
fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
} else {
fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
}
if (grad) {
fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(grad->op));
} else {
fprintf(fp, "\"; ]\n");
}
}
for (int i = 0; i < gb->n_leafs; i++) {
struct ggml_tensor * node = gb->leafs[i];
snprintf(color, sizeof(color), "pink");
fprintf(fp, " \"%p\" [ "
"style = filled; fillcolor = %s; shape = record; "
"label=\"<x>",
(void *) node, color);
if (strlen(node->name) > 0) {
fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
} else {
fprintf(fp, "(%s)|", ggml_type_name(node->type));
}
fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
if (ggml_nelements(node) < 5 && node->data != NULL) {
fprintf(fp, " | (");
for (int j = 0; j < ggml_nelements(node); j++) {
// FIXME: use ggml-backend to obtain the tensor data
//if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
// fprintf(fp, "%d", ggml_get_i32_1d(node, j));
//}
//else if (node->type == GGML_TYPE_F32 ||
// node->type == GGML_TYPE_F16 ||
// node->type == GGML_TYPE_BF16) {
// fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
//}
//else
{
fprintf(fp, "#");
}
if (j < ggml_nelements(node) - 1) {
fprintf(fp, ", ");
}
}
fprintf(fp, ")");
}
fprintf(fp, "\"; ]\n");
}
for (int i = 0; i < gb->n_nodes; i++) {
struct ggml_tensor * node = gb->nodes[i];
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j]) {
char label[16];
snprintf(label, sizeof(label), "src %d", j);
ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
}
}
}
for (int i = 0; i < gb->n_leafs; i++) {
struct ggml_tensor * node = gb->leafs[i];
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j]) {
char label[16];
snprintf(label, sizeof(label), "src %d", j);
ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
}
}
}
fprintf(fp, "}\n");
fclose(fp);
GGML_LOG_INFO("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
}
////////////////////////////////////////////////////////////////////////////////
void ggml_set_input(struct ggml_tensor * tensor) {
tensor->flags |= GGML_TENSOR_FLAG_INPUT;
}
void ggml_set_output(struct ggml_tensor * tensor) {
tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
}
void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor) {
GGML_UNUSED(ctx); // TODO: remove this parameter
tensor->flags |= GGML_TENSOR_FLAG_PARAM;
}
void ggml_set_loss(struct ggml_tensor * tensor) {
GGML_ASSERT(ggml_is_scalar(tensor));
GGML_ASSERT(tensor->type == GGML_TYPE_F32);
tensor->flags |= GGML_TENSOR_FLAG_LOSS;
}
////////////////////////////////////////////////////////////////////////////////
void ggml_quantize_init(enum ggml_type type) {
ggml_critical_section_start();
switch (type) {
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
default: // nothing
break;
}
ggml_critical_section_end();
}
void ggml_quantize_free(void) {
ggml_critical_section_start();
iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
iq2xs_free_impl(GGML_TYPE_IQ2_XS);
iq2xs_free_impl(GGML_TYPE_IQ1_S);
iq3xs_free_impl(256);
ggml_critical_section_end();
}
bool ggml_quantize_requires_imatrix(enum ggml_type type) {
return
type == GGML_TYPE_IQ2_XXS ||
type == GGML_TYPE_IQ2_XS ||
type == GGML_TYPE_IQ1_S;// ||
//type == GGML_TYPE_IQ1_M;
}
size_t ggml_quantize_chunk(
enum ggml_type type,
const float * src,
void * dst,
int64_t start,
int64_t nrows,
int64_t n_per_row,
const float * imatrix) {
const int64_t n = (int64_t) nrows * n_per_row;
if (ggml_quantize_requires_imatrix(type)) {
GGML_ASSERT(imatrix != NULL);
}
GGML_ASSERT(start % type_traits[type].blck_size == 0);
GGML_ASSERT(start % n_per_row == 0);
ggml_quantize_init(type); // this is noop if already initialized
const size_t start_row = start / n_per_row;
const size_t row_size = ggml_row_size(type, n_per_row);
size_t result = 0;
switch (type) {
case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_TQ1_0: result = quantize_tq1_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_TQ2_0: result = quantize_tq2_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_F16:
{
size_t elemsize = sizeof(ggml_fp16_t);
ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
result = n * elemsize;
} break;
case GGML_TYPE_BF16:
{
size_t elemsize = sizeof(ggml_bf16_t);
ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n);
result = n * elemsize;
} break;
case GGML_TYPE_F32:
{
size_t elemsize = sizeof(float);
result = n * elemsize;
memcpy((uint8_t *)dst + start * elemsize, src + start, result);
} break;
default:
assert(false);
}
GGML_ASSERT(result == nrows * row_size);
return result;
}
////////////////////////////////////////////////////////////////////////////////
void ggml_log_set(ggml_log_callback log_callback, void * user_data) {
g_logger_state.log_callback = log_callback ? log_callback : ggml_log_callback_default;
g_logger_state.log_callback_user_data = user_data;
}
void ggml_threadpool_params_init(struct ggml_threadpool_params * p, int n_threads) {
p->n_threads = n_threads;
p->prio = 0; // default priority (usually means normal or inherited)
p->poll = 50; // hybrid-polling enabled
p->strict_cpu = false; // no strict placement (all threads share same cpumask)
p->paused = false; // threads are ready to go
memset(p->cpumask, 0, GGML_MAX_N_THREADS); // all-zero means use the default affinity (usually inherited)
}
struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads) {
struct ggml_threadpool_params p;
ggml_threadpool_params_init(&p, n_threads);
return p;
}
bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1) {
if (p0->n_threads != p1->n_threads ) return false;
if (p0->prio != p1->prio ) return false;
if (p0->poll != p1->poll ) return false;
if (p0->strict_cpu != p1->strict_cpu ) return false;
return memcmp(p0->cpumask, p1->cpumask, GGML_MAX_N_THREADS) == 0;
}