diff --git "a/llama.cpp/convert_hf_to_gguf.py" "b/llama.cpp/convert_hf_to_gguf.py"
new file mode 100644--- /dev/null
+++ "b/llama.cpp/convert_hf_to_gguf.py"
@@ -0,0 +1,5112 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+
+from __future__ import annotations
+
+import ast
+import logging
+import argparse
+import contextlib
+import json
+import os
+import re
+import sys
+from enum import IntEnum
+from pathlib import Path
+from hashlib import sha256
+from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
+from itertools import chain
+
+import math
+import numpy as np
+import torch
+
+if TYPE_CHECKING:
+    from torch import Tensor
+
+if 'NO_LOCAL_GGUF' not in os.environ:
+    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
+import gguf
+
+logger = logging.getLogger("hf-to-gguf")
+
+
+###### MODEL DEFINITIONS ######
+
+class SentencePieceTokenTypes(IntEnum):
+    NORMAL = 1
+    UNKNOWN = 2
+    CONTROL = 3
+    USER_DEFINED = 4
+    UNUSED = 5
+    BYTE = 6
+
+
+AnyModel = TypeVar("AnyModel", bound="type[Model]")
+
+
+class Model:
+    _model_classes: dict[str, type[Model]] = {}
+
+    dir_model: Path
+    ftype: gguf.LlamaFileType
+    fname_out: Path
+    is_big_endian: bool
+    endianess: gguf.GGUFEndian
+    use_temp_file: bool
+    lazy: bool
+    part_names: list[str]
+    is_safetensors: bool
+    hparams: dict[str, Any]
+    block_count: int
+    tensor_map: gguf.TensorNameMap
+    tensor_names: set[str] | None
+    gguf_writer: gguf.GGUFWriter
+    model_name: str | None
+    metadata_override: Path | None
+    dir_model_card: Path
+
+    # subclasses should define this!
+    model_arch: gguf.MODEL_ARCH
+
+    def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
+                 use_temp_file: bool = False, eager: bool = False,
+                 metadata_override: Path | None = None, model_name: str | None = None,
+                 split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
+                 small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
+        if type(self) is Model:
+            raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
+
+        self.dir_model = dir_model
+        self.ftype = ftype
+        self.fname_out = fname_out
+        self.is_big_endian = is_big_endian
+        self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
+        self.use_temp_file = use_temp_file
+        self.lazy = not eager
+        self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
+        self.is_safetensors = len(self.part_names) > 0
+        if not self.is_safetensors:
+            self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
+        self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
+        self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
+        self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
+        self.tensor_names = None
+        self.metadata_override = metadata_override
+        self.model_name = model_name
+        self.dir_model_card = dir_model  # overridden in convert_lora_to_gguf.py
+
+        # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
+        if self.ftype == gguf.LlamaFileType.GUESSED:
+            # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
+            _, first_tensor = next(self.get_tensors())
+            if first_tensor.dtype == torch.float16:
+                logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
+                self.ftype = gguf.LlamaFileType.MOSTLY_F16
+            else:
+                logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
+                self.ftype = gguf.LlamaFileType.MOSTLY_BF16
+
+        # Configure GGUF Writer
+        self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
+                                           split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
+
+    @classmethod
+    def __init_subclass__(cls):
+        # can't use an abstract property, because overriding it without type errors
+        # would require using decorated functions instead of simply defining the property
+        if "model_arch" not in cls.__dict__:
+            raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
+
+    def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
+        key = next((k for k in keys if k in self.hparams), None)
+        if key is not None:
+            return self.hparams[key]
+        if optional:
+            return None
+        raise KeyError(f"could not find any of: {keys}")
+
+    def set_vocab(self):
+        self._set_vocab_gpt2()
+
+    def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
+        tensor_names_from_parts: set[str] = set()
+
+        index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
+        index_name += ".index.json"
+        index_file = self.dir_model / index_name
+
+        if index_file.is_file():
+            self.tensor_names = set()
+            logger.info(f"gguf: loading model weight map from '{index_name}'")
+            with open(index_file, "r", encoding="utf-8") as f:
+                index: dict[str, Any] = json.load(f)
+                weight_map = index.get("weight_map")
+                if weight_map is None or not isinstance(weight_map, dict):
+                    raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
+                self.tensor_names.update(weight_map.keys())
+        else:
+            self.tensor_names = tensor_names_from_parts
+            weight_map = {}
+
+        for part_name in self.part_names:
+            logger.info(f"gguf: loading model part '{part_name}'")
+            ctx: ContextManager[Any]
+            if self.is_safetensors:
+                from safetensors import safe_open
+                ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
+            else:
+                ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
+
+            with ctx as model_part:
+                tensor_names_from_parts.update(model_part.keys())
+
+                for name in model_part.keys():
+                    if self.is_safetensors:
+                        if self.lazy:
+                            data = model_part.get_slice(name)
+                            data = LazyTorchTensor.from_safetensors_slice(data)
+                        else:
+                            data = model_part.get_tensor(name)
+                    else:
+                        data = model_part[name]
+                        if self.lazy:
+                            data = LazyTorchTensor.from_eager(data)
+                    yield name, data
+
+        # verify tensor name presence and identify potentially missing files
+        if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
+            missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
+            extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
+            missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
+            if len(extra) == 0 and len(missing_files) > 0:
+                raise ValueError(f"Missing or incomplete model files: {missing_files}")
+            else:
+                raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
+                                 f"Missing tensors: {missing}\n"
+                                 f"Extra tensors: {extra}")
+
+    def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
+        if key not in gguf.MODEL_TENSORS[self.model_arch]:
+            raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
+        name: str = gguf.TENSOR_NAMES[key]
+        if "{bid}" in name:
+            assert bid is not None
+            name = name.format(bid=bid)
+        return name + suffix
+
+    def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
+        if key not in gguf.MODEL_TENSORS[self.model_arch]:
+            return False
+        key_name: str = gguf.TENSOR_NAMES[key]
+        if "{bid}" in key_name:
+            if bid is None:
+                return False
+            key_name = key_name.format(bid=bid)
+        else:
+            if bid is not None:
+                return False
+        return name == (key_name + suffix)
+
+    def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
+        new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
+        if new_name is None:
+            raise ValueError(f"Can not map tensor {name!r}")
+        return new_name
+
+    def set_gguf_parameters(self):
+        self.gguf_writer.add_block_count(self.block_count)
+
+        if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
+            self.gguf_writer.add_context_length(n_ctx)
+            logger.info(f"gguf: context length = {n_ctx}")
+
+        if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
+            self.gguf_writer.add_embedding_length(n_embd)
+            logger.info(f"gguf: embedding length = {n_embd}")
+
+        if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
+            self.gguf_writer.add_feed_forward_length(n_ff)
+            logger.info(f"gguf: feed forward length = {n_ff}")
+
+        if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
+            self.gguf_writer.add_head_count(n_head)
+            logger.info(f"gguf: head count = {n_head}")
+
+        if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
+            self.gguf_writer.add_head_count_kv(n_head_kv)
+            logger.info(f"gguf: key-value head count = {n_head_kv}")
+
+        if (rope_theta := self.hparams.get("rope_theta")) is not None:
+            self.gguf_writer.add_rope_freq_base(rope_theta)
+            logger.info(f"gguf: rope theta = {rope_theta}")
+        if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
+            self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
+            logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
+        if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
+            self.gguf_writer.add_layer_norm_eps(f_norm_eps)
+            logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
+        if (n_experts := self.hparams.get("num_local_experts")) is not None:
+            self.gguf_writer.add_expert_count(n_experts)
+            logger.info(f"gguf: expert count = {n_experts}")
+        if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
+            self.gguf_writer.add_expert_used_count(n_experts_used)
+            logger.info(f"gguf: experts used count = {n_experts_used}")
+
+        if (head_dim := self.hparams.get("head_dim")) is not None:
+            self.gguf_writer.add_key_length(head_dim)
+            self.gguf_writer.add_value_length(head_dim)
+
+        self.gguf_writer.add_file_type(self.ftype)
+        logger.info(f"gguf: file type = {self.ftype}")
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
+        del name, new_name, bid, n_dims  # unused
+
+        return False
+
+    # some models need extra generated tensors (like rope_freqs)
+    def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
+        return ()
+
+    def prepare_tensors(self):
+        max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
+
+        for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
+            # we don't need these
+            if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
+                continue
+
+            old_dtype = data_torch.dtype
+
+            # convert any unsupported data types to float32
+            if data_torch.dtype not in (torch.float16, torch.float32):
+                data_torch = data_torch.to(torch.float32)
+
+            # use the first number-like part of the tensor name as the block id
+            bid = None
+            for part in name.split("."):
+                if part.isdecimal():
+                    bid = int(part)
+                    break
+
+            for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
+                # TODO: why do we squeeze here?
+                # data = data_torch.squeeze().numpy()
+                data = data_torch.numpy()
+
+                # if data ends up empty, it means data_torch was a scalar tensor -> restore
+                if len(data.shape) == 0:
+                    data = data_torch.numpy()
+
+                n_dims = len(data.shape)
+                data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
+
+                # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
+                if n_dims <= 1 or new_name.endswith("_norm.weight"):
+                    data_qtype = gguf.GGMLQuantizationType.F32
+
+                # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
+                # Some tensor types are always in float32
+                if data_qtype is False and (
+                    any(
+                        self.match_model_tensor_name(new_name, key, bid)
+                        for key in (
+                            gguf.MODEL_TENSOR.FFN_GATE_INP,
+                            gguf.MODEL_TENSOR.POS_EMBD,
+                            gguf.MODEL_TENSOR.TOKEN_TYPES,
+                            gguf.MODEL_TENSOR.SSM_CONV1D,
+                            gguf.MODEL_TENSOR.TIME_MIX_FIRST,
+                            gguf.MODEL_TENSOR.TIME_MIX_W1,
+                            gguf.MODEL_TENSOR.TIME_MIX_W2,
+                            gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
+                            gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
+                            gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
+                            gguf.MODEL_TENSOR.POSNET_NORM1,
+                            gguf.MODEL_TENSOR.POSNET_NORM2,
+                        )
+                    )
+                    or not new_name.endswith(".weight")
+                ):
+                    data_qtype = gguf.GGMLQuantizationType.F32
+
+                if data_qtype is False and any(
+                    self.match_model_tensor_name(new_name, key, bid)
+                    for key in (
+                        gguf.MODEL_TENSOR.TOKEN_EMBD,
+                        gguf.MODEL_TENSOR.OUTPUT,
+                    )
+                ):
+                    if self.ftype in (
+                        gguf.LlamaFileType.MOSTLY_TQ1_0,
+                        gguf.LlamaFileType.MOSTLY_TQ2_0,
+                    ):
+                        # TODO: use Q4_K and Q6_K
+                        data_qtype = gguf.GGMLQuantizationType.F16
+
+                # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
+                if isinstance(data_qtype, bool):
+                    if self.ftype == gguf.LlamaFileType.ALL_F32:
+                        data_qtype = gguf.GGMLQuantizationType.F32
+                    elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
+                        data_qtype = gguf.GGMLQuantizationType.F16
+                    elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
+                        data_qtype = gguf.GGMLQuantizationType.BF16
+                    elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
+                        data_qtype = gguf.GGMLQuantizationType.Q8_0
+                    elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
+                        data_qtype = gguf.GGMLQuantizationType.TQ1_0
+                    elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
+                        data_qtype = gguf.GGMLQuantizationType.TQ2_0
+                    else:
+                        raise ValueError(f"Unknown file type: {self.ftype.name}")
+
+                try:
+                    data = gguf.quants.quantize(data, data_qtype)
+                except gguf.QuantError as e:
+                    logger.warning("%s, %s", e, "falling back to F16")
+                    data_qtype = gguf.GGMLQuantizationType.F16
+                    data = gguf.quants.quantize(data, data_qtype)
+
+                shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
+
+                # reverse shape to make it similar to the internal ggml dimension order
+                shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
+
+                # n_dims is implicit in the shape
+                logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
+
+                self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
+
+    def set_type(self):
+        self.gguf_writer.add_type(gguf.GGUFType.MODEL)
+
+    def prepare_metadata(self, vocab_only: bool):
+
+        total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
+
+        self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
+
+        # Fallback to model directory name if metadata name is still missing
+        if self.metadata.name is None:
+            self.metadata.name = self.dir_model.name
+
+        # Generate parameter weight class (useful for leader boards) if not yet determined
+        if self.metadata.size_label is None and total_params > 0:
+            self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
+
+        # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
+        output_type: str = self.ftype.name.partition("_")[2]
+
+        # Filename Output
+        if self.fname_out.is_dir():
+            # Generate default filename based on model specification and available metadata
+            if not vocab_only:
+                fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
+            else:
+                fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
+
+            # Use the default filename
+            self.fname_out = self.fname_out / f"{fname_default}.gguf"
+        else:
+            # Output path is a custom defined templated filename
+            # Note: `not is_dir()` is used because `.is_file()` will not detect
+            #       file template strings as it doesn't actually exist as a file
+
+            # Process templated file name with the output ftype, useful with the "auto" ftype
+            self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
+
+        self.set_type()
+
+        logger.info("Set meta model")
+        self.metadata.set_gguf_meta_model(self.gguf_writer)
+
+        logger.info("Set model parameters")
+        self.set_gguf_parameters()
+
+        logger.info("Set model tokenizer")
+        self.set_vocab()
+
+        logger.info("Set model quantization version")
+        self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
+
+    def write(self):
+        self.prepare_tensors()
+        self.prepare_metadata(vocab_only=False)
+        self.gguf_writer.write_header_to_file(path=self.fname_out)
+        self.gguf_writer.write_kv_data_to_file()
+        self.gguf_writer.write_tensors_to_file(progress=True)
+        self.gguf_writer.close()
+
+    def write_vocab(self):
+        if len(self.gguf_writer.tensors) != 1:
+            raise ValueError('Splitting the vocabulary is not supported')
+
+        self.prepare_metadata(vocab_only=True)
+        self.gguf_writer.write_header_to_file(path=self.fname_out)
+        self.gguf_writer.write_kv_data_to_file()
+        self.gguf_writer.close()
+
+    @staticmethod
+    def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
+        part_names: list[str] = []
+        for filename in os.listdir(dir_model):
+            if filename.startswith(prefix) and filename.endswith(suffix):
+                part_names.append(filename)
+
+        part_names.sort()
+
+        return part_names
+
+    @staticmethod
+    def load_hparams(dir_model: Path):
+        with open(dir_model / "config.json", "r", encoding="utf-8") as f:
+            return json.load(f)
+
+    @classmethod
+    def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
+        assert names
+
+        def func(modelcls: AnyModel) -> AnyModel:
+            for name in names:
+                cls._model_classes[name] = modelcls
+            return modelcls
+        return func
+
+    @classmethod
+    def print_registered_models(cls):
+        for name in sorted(cls._model_classes.keys()):
+            logger.error(f"- {name}")
+
+    @classmethod
+    def from_model_architecture(cls, arch: str) -> type[Model]:
+        try:
+            return cls._model_classes[arch]
+        except KeyError:
+            raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
+
+    def does_token_look_special(self, token: str | bytes) -> bool:
+        if isinstance(token, (bytes, bytearray)):
+            token_text = token.decode(encoding="utf-8")
+        elif isinstance(token, memoryview):
+            token_text = token.tobytes().decode(encoding="utf-8")
+        else:
+            token_text = token
+
+        # Some models mark some added tokens which ought to be control tokens as not special.
+        # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
+        seems_special = token_text in (
+            "<pad>",  # deepseek-coder
+            "<mask>", "<2mass>", "[@BOS@]",  # gemma{,-2}
+        )
+
+        seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
+        seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))  # deepseek-coder
+
+        # TODO: should these be marked as UNUSED instead? (maybe not)
+        seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">"))  # gemma{,-2}
+
+        return seems_special
+
+    # used for GPT-2 BPE and WordPiece vocabs
+    def get_vocab_base(self) -> tuple[list[str], list[int], str]:
+        tokens: list[str] = []
+        toktypes: list[int] = []
+
+        from transformers import AutoTokenizer
+        tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
+        vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
+        assert max(tokenizer.vocab.values()) < vocab_size
+
+        tokpre = self.get_vocab_base_pre(tokenizer)
+
+        reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
+        added_vocab = tokenizer.get_added_vocab()
+
+        for i in range(vocab_size):
+            if i not in reverse_vocab:
+                tokens.append(f"[PAD{i}]")
+                toktypes.append(gguf.TokenType.UNUSED)
+            else:
+                token: str = reverse_vocab[i]
+                if token in added_vocab:
+                    # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
+                    # To avoid unexpected issues - we make sure to normalize non-normalized tokens
+                    if not tokenizer.added_tokens_decoder[i].normalized:
+                        previous_token = token
+                        token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
+                        if previous_token != token:
+                            logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
+
+                    if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
+                        toktypes.append(gguf.TokenType.CONTROL)
+                    else:
+                        # NOTE: this was added for Gemma.
+                        # Encoding and decoding the tokens above isn't sufficient for this case.
+                        token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ")  # pre-normalize user-defined spaces
+                        toktypes.append(gguf.TokenType.USER_DEFINED)
+                else:
+                    toktypes.append(gguf.TokenType.NORMAL)
+                tokens.append(token)
+
+        return tokens, toktypes, tokpre
+
+    # NOTE: this function is generated by convert_hf_to_gguf_update.py
+    #       do not modify it manually!
+    # ref:  https://github.com/ggerganov/llama.cpp/pull/6920
+    # Marker: Start get_vocab_base_pre
+    def get_vocab_base_pre(self, tokenizer) -> str:
+        # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
+        # is specific for the BPE pre-tokenizer used by the model
+        # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
+        # use in llama.cpp to implement the same pre-tokenizer
+
+        chktxt = '\n \n\n \n\n\n \t \t\t \t\n  \n   \n    \n     \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
+
+        chktok = tokenizer.encode(chktxt)
+        chkhsh = sha256(str(chktok).encode()).hexdigest()
+
+        logger.debug(f"chktok: {chktok}")
+        logger.debug(f"chkhsh: {chkhsh}")
+
+        res = None
+
+        # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
+        #       or pull the latest version of the model from Huggingface
+        #       don't edit the hashes manually!
+        if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
+            # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
+            res = "llama-bpe"
+        if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
+            # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
+            res = "deepseek-llm"
+        if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
+            # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
+            res = "deepseek-coder"
+        if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
+            # ref: https://huggingface.co/tiiuae/falcon-7b
+            res = "falcon"
+        if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
+            # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
+            res = "falcon3"
+        if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
+            # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
+            res = "bert-bge"
+        if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
+            # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
+            res = "bert-bge-large"
+        if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
+            # ref: https://huggingface.co/mosaicml/mpt-7b
+            res = "mpt"
+        if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
+            # ref: https://huggingface.co/bigcode/starcoder2-3b
+            res = "starcoder"
+        if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
+            # ref: https://huggingface.co/openai-community/gpt2
+            res = "gpt-2"
+        if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
+            # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
+            res = "stablelm2"
+        if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
+            # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
+            res = "refact"
+        if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
+            # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
+            res = "command-r"
+        if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
+            # ref: https://huggingface.co/Qwen/Qwen1.5-7B
+            res = "qwen2"
+        if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
+            # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
+            res = "olmo"
+        if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
+            # ref: https://huggingface.co/databricks/dbrx-base
+            res = "dbrx"
+        if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
+            # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
+            res = "jina-v1-en"
+        if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
+            # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
+            res = "jina-v2-en"
+        if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
+            # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
+            res = "jina-v2-es"
+        if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
+            # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
+            res = "jina-v2-de"
+        if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
+            # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
+            res = "smaug-bpe"
+        if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
+            # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
+            res = "poro-chat"
+        if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
+            # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
+            res = "jina-v2-code"
+        if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
+            # ref: https://huggingface.co/THUDM/glm-4-9b-chat
+            res = "chatglm-bpe"
+        if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
+            # ref: https://huggingface.co/LumiOpen/Viking-7B
+            res = "viking"
+        if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
+            # ref: https://huggingface.co/core42/jais-13b
+            res = "jais"
+        if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
+            # ref: https://huggingface.co/WisdomShell/CodeShell-7B
+            res = "codeshell"
+        if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
+            # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
+            res = "tekken"
+        if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
+            # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
+            res = "smollm"
+        if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
+            # ref: https://huggingface.co/bigscience/bloom
+            res = "bloom"
+        if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
+            # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
+            res = "gpt3-finnish"
+        if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
+            # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
+            res = "exaone"
+        if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
+            # ref: https://huggingface.co/microsoft/phi-2
+            res = "phi-2"
+        if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
+            # ref: https://huggingface.co/facebook/chameleon-7b
+            res = "chameleon"
+        if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
+            # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
+            res = "minerva-7b"
+        if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
+            # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
+            res = "roberta-bpe"
+        if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
+            # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
+            res = "gigachat"
+        if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
+            # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
+            res = "megrez"
+        if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
+            # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
+            res = "deepseek-v3"
+        if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
+            # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
+            res = "deepseek-r1-qwen"
+
+        if res is None:
+            logger.warning("\n")
+            logger.warning("**************************************************************************************")
+            logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
+            logger.warning("**          There are 2 possible reasons for this:")
+            logger.warning("**          - the model has not been added to convert_hf_to_gguf_update.py yet")
+            logger.warning("**          - the pre-tokenization config has changed upstream")
+            logger.warning("**          Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
+            logger.warning("** ref:     https://github.com/ggerganov/llama.cpp/pull/6920")
+            logger.warning("**")
+            logger.warning(f"** chkhsh:  {chkhsh}")
+            logger.warning("**************************************************************************************")
+            logger.warning("\n")
+            raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
+
+        logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
+        logger.debug(f"chkhsh: {chkhsh}")
+
+        return res
+        # Marker: End get_vocab_base_pre
+
+    def _set_vocab_none(self) -> None:
+        self.gguf_writer.add_tokenizer_model("none")
+
+    def _set_vocab_gpt2(self) -> None:
+        tokens, toktypes, tokpre = self.get_vocab_base()
+        self.gguf_writer.add_tokenizer_model("gpt2")
+        self.gguf_writer.add_tokenizer_pre(tokpre)
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_types(toktypes)
+
+        special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def _set_vocab_qwen(self):
+        dir_model = self.dir_model
+        hparams = self.hparams
+        tokens: list[str] = []
+        toktypes: list[int] = []
+
+        from transformers import AutoTokenizer
+        tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
+        vocab_size = hparams["vocab_size"]
+        assert max(tokenizer.get_vocab().values()) < vocab_size
+
+        tokpre = self.get_vocab_base_pre(tokenizer)
+
+        merges = []
+        vocab = {}
+        mergeable_ranks = tokenizer.mergeable_ranks
+        for token, rank in mergeable_ranks.items():
+            vocab[QwenModel.token_bytes_to_string(token)] = rank
+            if len(token) == 1:
+                continue
+            merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
+            assert len(merged) == 2
+            merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
+
+        # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
+        added_vocab = tokenizer.special_tokens
+        reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
+
+        for i in range(vocab_size):
+            if i not in reverse_vocab:
+                tokens.append(f"[PAD{i}]")
+                toktypes.append(gguf.TokenType.UNUSED)
+            elif reverse_vocab[i] in added_vocab:
+                tokens.append(reverse_vocab[i])
+                toktypes.append(gguf.TokenType.CONTROL)
+            else:
+                tokens.append(reverse_vocab[i])
+                toktypes.append(gguf.TokenType.NORMAL)
+
+        self.gguf_writer.add_tokenizer_model("gpt2")
+        self.gguf_writer.add_tokenizer_pre(tokpre)
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_types(toktypes)
+
+        special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
+        special_vocab.merges = merges
+        # only add special tokens when they were not already loaded from config.json
+        if len(special_vocab.special_token_ids) == 0:
+            special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
+            special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
+        # this one is usually not in config.json anyway
+        special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def _set_vocab_sentencepiece(self, add_to_gguf=True):
+        tokens, scores, toktypes = self._create_vocab_sentencepiece()
+
+        self.gguf_writer.add_tokenizer_model("llama")
+        self.gguf_writer.add_tokenizer_pre("default")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_scores(scores)
+        self.gguf_writer.add_token_types(toktypes)
+
+        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def _create_vocab_sentencepiece(self):
+        from sentencepiece import SentencePieceProcessor
+
+        tokenizer_path = self.dir_model / 'tokenizer.model'
+
+        if not tokenizer_path.is_file():
+            raise FileNotFoundError(f"File not found: {tokenizer_path}")
+
+        tokenizer = SentencePieceProcessor()
+        tokenizer.LoadFromFile(str(tokenizer_path))
+
+        vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+        tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
+        scores: list[float] = [-10000.0] * vocab_size
+        toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
+
+        for token_id in range(tokenizer.vocab_size()):
+            piece = tokenizer.IdToPiece(token_id)
+            text = piece.encode("utf-8")
+            score = tokenizer.GetScore(token_id)
+
+            toktype = SentencePieceTokenTypes.NORMAL
+            if tokenizer.IsUnknown(token_id):
+                toktype = SentencePieceTokenTypes.UNKNOWN
+            elif tokenizer.IsControl(token_id):
+                toktype = SentencePieceTokenTypes.CONTROL
+            elif tokenizer.IsUnused(token_id):
+                toktype = SentencePieceTokenTypes.UNUSED
+            elif tokenizer.IsByte(token_id):
+                toktype = SentencePieceTokenTypes.BYTE
+
+            tokens[token_id] = text
+            scores[token_id] = score
+            toktypes[token_id] = toktype
+
+        added_tokens_file = self.dir_model / 'added_tokens.json'
+        if added_tokens_file.is_file():
+            with open(added_tokens_file, "r", encoding="utf-8") as f:
+                added_tokens_json = json.load(f)
+                for key in added_tokens_json:
+                    token_id = added_tokens_json[key]
+                    if token_id >= vocab_size:
+                        logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
+                        continue
+
+                    tokens[token_id] = key.encode("utf-8")
+                    scores[token_id] = -1000.0
+                    toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+
+        tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
+        if tokenizer_config_file.is_file():
+            with open(tokenizer_config_file, "r", encoding="utf-8") as f:
+                tokenizer_config_json = json.load(f)
+                added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
+                for token_id, token_data in added_tokens_decoder.items():
+                    token_id = int(token_id)
+                    token: str = token_data["content"]
+                    if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
+                        if tokens[token_id] != token.encode("utf-8"):
+                            logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
+                    if token_data.get("special") or self.does_token_look_special(token):
+                        toktypes[token_id] = SentencePieceTokenTypes.CONTROL
+                    else:
+                        token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ")  # pre-normalize user-defined spaces
+                        toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+
+                    scores[token_id] = -1000.0
+                    tokens[token_id] = token.encode("utf-8")
+
+        if vocab_size > len(tokens):
+            pad_count = vocab_size - len(tokens)
+            logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
+            for i in range(1, pad_count + 1):
+                tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
+                scores.append(-1000.0)
+                toktypes.append(SentencePieceTokenTypes.UNUSED)
+
+        return tokens, scores, toktypes
+
+    def _set_vocab_llama_hf(self):
+        vocab = gguf.LlamaHfVocab(self.dir_model)
+        tokens = []
+        scores = []
+        toktypes = []
+
+        for text, score, toktype in vocab.all_tokens():
+            tokens.append(text)
+            scores.append(score)
+            toktypes.append(toktype)
+
+        assert len(tokens) == vocab.vocab_size
+
+        self.gguf_writer.add_tokenizer_model("llama")
+        self.gguf_writer.add_tokenizer_pre("default")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_scores(scores)
+        self.gguf_writer.add_token_types(toktypes)
+
+        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
+        tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
+        logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
+        vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
+
+        default_pre = "mpt" if model_name == "gpt-neox" else "default"
+
+        field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
+        assert field  # tokenizer model
+        self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
+
+        field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
+        self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
+
+        field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
+        assert field  # token list
+        self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
+
+        if model_name == "llama-spm":
+            field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
+            assert field  # token scores
+            self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
+
+        field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
+        assert field  # token types
+        self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
+
+        if model_name != "llama-spm":
+            field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
+            assert field  # token merges
+            self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
+
+        if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
+            self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
+        if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
+            self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
+        if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
+            self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
+        if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
+            self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
+        if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
+            self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
+        if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
+            self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
+
+
+@Model.register("GPTNeoXForCausalLM")
+class GPTNeoXModel(Model):
+    model_arch = gguf.MODEL_ARCH.GPTNEOX
+
+    def set_gguf_parameters(self):
+        block_count = self.hparams["num_hidden_layers"]
+
+        self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
+        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+        self.gguf_writer.add_rope_dimension_count(
+            int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
+        )
+        self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
+        self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
+        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
+        n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
+
+        tensors: list[tuple[str, Tensor]] = []
+
+        if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
+            # Map bloom-style qkv_linear to gpt-style qkv_linear
+            # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252  # noqa
+            # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312  # noqa
+            qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
+            data_torch = torch.cat(
+                (
+                    qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
+                    qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
+                    qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
+                ),
+                dim=0,
+            )
+            logger.info("re-format attention.linear_qkv.weight")
+        elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
+            qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
+            data_torch = torch.cat(
+                (
+                    qkv_bias[:, 0, :].reshape((n_embed,)),
+                    qkv_bias[:, 1, :].reshape((n_embed,)),
+                    qkv_bias[:, 2, :].reshape((n_embed,)),
+                ),
+                dim=0,
+            )
+            logger.info("re-format attention.linear_qkv.bias")
+
+        tensors.append((self.map_tensor_name(name), data_torch))
+
+        return tensors
+
+
+@Model.register("BloomForCausalLM", "BloomModel")
+class BloomModel(Model):
+    model_arch = gguf.MODEL_ARCH.BLOOM
+
+    def set_gguf_parameters(self):
+        n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
+        n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
+        self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
+        self.gguf_writer.add_embedding_length(n_embed)
+        self.gguf_writer.add_feed_forward_length(4 * n_embed)
+        self.gguf_writer.add_block_count(self.hparams["n_layer"])
+        self.gguf_writer.add_head_count(n_head)
+        self.gguf_writer.add_head_count_kv(n_head)
+        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
+        n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
+
+        name = re.sub(r'transformer\.', '', name)
+
+        tensors: list[tuple[str, Tensor]] = []
+
+        if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
+            # Map bloom-style qkv_linear to gpt-style qkv_linear
+            # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252  # noqa
+            # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312  # noqa
+            qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
+            data_torch = torch.cat(
+                (
+                    qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
+                    qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
+                    qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
+                ),
+                dim=0,
+            )
+            logger.info("re-format attention.linear_qkv.weight")
+        elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
+            qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
+            data_torch = torch.cat(
+                (
+                    qkv_bias[:, 0, :].reshape((n_embed,)),
+                    qkv_bias[:, 1, :].reshape((n_embed,)),
+                    qkv_bias[:, 2, :].reshape((n_embed,)),
+                ),
+                dim=0,
+            )
+            logger.info("re-format attention.linear_qkv.bias")
+
+        tensors.append((self.map_tensor_name(name), data_torch))
+
+        if name == "word_embeddings.weight":
+            assert self.tensor_names is not None
+
+            # TODO: tie them at runtime, don't duplicate in the model file
+            if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
+                tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
+
+        return tensors
+
+
+@Model.register("MPTForCausalLM")
+class MPTModel(Model):
+    model_arch = gguf.MODEL_ARCH.MPT
+
+    def set_vocab(self):
+        try:
+            self._set_vocab_gpt2()
+        except Exception:
+            # Fallback for SEA-LION model
+            self._set_vocab_sentencepiece()
+            self.gguf_writer.add_add_bos_token(False)
+            self.gguf_writer.add_pad_token_id(3)
+            self.gguf_writer.add_eos_token_id(1)
+            self.gguf_writer.add_unk_token_id(0)
+
+    def set_gguf_parameters(self):
+        block_count = self.hparams["n_layers"]
+        self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
+        self.gguf_writer.add_embedding_length(self.hparams["d_model"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
+        self.gguf_writer.add_head_count(self.hparams["n_heads"])
+        if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
+            self.gguf_writer.add_head_count_kv(kv_n_heads)
+        self.gguf_writer.add_layer_norm_eps(1e-5)
+        if self.hparams["attn_config"]["clip_qkv"] is not None:
+            self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
+        if self.hparams["attn_config"]["alibi"]:
+            self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
+        else:
+            self.gguf_writer.add_max_alibi_bias(0.0)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        if "scales" in name:
+            new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
+            new_name = new_name.replace("scales", "act.scales")
+        else:
+            new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
+
+        return [(new_name, data_torch)]
+
+
+@Model.register("OrionForCausalLM")
+class OrionModel(Model):
+    model_arch = gguf.MODEL_ARCH.ORION
+
+    def set_vocab(self):
+        self._set_vocab_sentencepiece()
+
+    def set_gguf_parameters(self):
+        block_count = self.hparams["num_hidden_layers"]
+        head_count = self.hparams["num_attention_heads"]
+        head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+
+        ctx_length = 0
+        if "max_sequence_length" in self.hparams:
+            ctx_length = self.hparams["max_sequence_length"]
+        elif "max_position_embeddings" in self.hparams:
+            ctx_length = self.hparams["max_position_embeddings"]
+        elif "model_max_length" in self.hparams:
+            ctx_length = self.hparams["model_max_length"]
+        else:
+            raise ValueError("gguf: can not find ctx length parameter.")
+
+        self.gguf_writer.add_file_type(self.ftype)
+        self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
+        self.gguf_writer.add_context_length(ctx_length)
+        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+        self.gguf_writer.add_head_count(head_count)
+        self.gguf_writer.add_head_count_kv(head_count_kv)
+        # note: config provides rms norm but it is actually layer norm
+        # ref:  https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
+        self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
+
+
+@Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
+class BaichuanModel(Model):
+    model_arch = gguf.MODEL_ARCH.BAICHUAN
+
+    def set_vocab(self):
+        self._set_vocab_sentencepiece()
+
+    def set_gguf_parameters(self):
+        block_count = self.hparams["num_hidden_layers"]
+        head_count = self.hparams["num_attention_heads"]
+        head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+
+        ctx_length = 0
+        if "max_sequence_length" in self.hparams:
+            ctx_length = self.hparams["max_sequence_length"]
+        elif "max_position_embeddings" in self.hparams:
+            ctx_length = self.hparams["max_position_embeddings"]
+        elif "model_max_length" in self.hparams:
+            ctx_length = self.hparams["model_max_length"]
+        else:
+            raise ValueError("gguf: can not find ctx length parameter.")
+
+        self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
+        self.gguf_writer.add_context_length(ctx_length)
+        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+        self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+        self.gguf_writer.add_head_count(head_count)
+        self.gguf_writer.add_head_count_kv(head_count_kv)
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+            if self.hparams["rope_scaling"].get("type") == "linear":
+                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        head_count = self.hparams["num_attention_heads"]
+        head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+
+        tensors: list[tuple[str, Tensor]] = []
+
+        if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
+            logger.info(f"Unpacking and permuting layer {bid}")
+            tensors = [
+                (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
+                    self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
+                (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
+                    self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
+                (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
+                    self._reverse_hf_part(data_torch, 2)),
+            ]
+        else:
+            tensors = [(self.map_tensor_name(name), data_torch)]
+
+        return tensors
+
+    def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
+        if n_kv_head is not None and n_head != n_kv_head:
+            n_head //= n_kv_head
+
+        return (
+            weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+            .swapaxes(1, 2)
+            .reshape(weights.shape)
+        )
+
+    def _reverse_hf_permute_part(
+        self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
+    ) -> Tensor:
+        r = weights.shape[0] // 3
+        return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
+
+    def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
+        r = weights.shape[0] // 3
+        return weights[r * n_part:r * n_part + r, ...]
+
+
+@Model.register("XverseForCausalLM")
+class XverseModel(Model):
+    model_arch = gguf.MODEL_ARCH.XVERSE
+
+    def set_vocab(self):
+        assert (self.dir_model / "tokenizer.json").is_file()
+        dir_model = self.dir_model
+        hparams = self.hparams
+
+        tokens: list[bytes] = []
+        toktypes: list[int] = []
+
+        from transformers import AutoTokenizer
+        tokenizer = AutoTokenizer.from_pretrained(dir_model)
+        vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
+        # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
+        # because vocab_size is the count of items, and indexes start at 0.
+        max_vocab_index = max(tokenizer.get_vocab().values())
+        if max_vocab_index >= vocab_size:
+            raise ValueError("Vocabulary size exceeds expected maximum size.")
+
+        reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
+        added_vocab = tokenizer.get_added_vocab()
+
+        for token_id in range(vocab_size):
+            token_text = reverse_vocab[token_id].encode('utf-8')
+            # replace "\x00" to string with length > 0
+            if token_text == b"\x00":
+                toktype = gguf.TokenType.BYTE  # special
+                token_text = f"<{token_text}>".encode('utf-8')
+            elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
+                toktype = gguf.TokenType.BYTE  # special
+            elif reverse_vocab[token_id] in added_vocab:
+                if tokenizer.added_tokens_decoder[token_id].special:
+                    toktype = gguf.TokenType.CONTROL
+                else:
+                    toktype = gguf.TokenType.USER_DEFINED
+            else:
+                toktype = gguf.TokenType.NORMAL
+
+            tokens.append(token_text)
+            toktypes.append(toktype)
+
+        self.gguf_writer.add_tokenizer_model("llama")
+        self.gguf_writer.add_tokenizer_pre("default")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_types(toktypes)
+
+        special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def set_gguf_parameters(self):
+        block_count = self.hparams["num_hidden_layers"]
+        head_count = self.hparams["num_attention_heads"]
+        head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+
+        ctx_length = 0
+        if "max_sequence_length" in self.hparams:
+            ctx_length = self.hparams["max_sequence_length"]
+        elif "max_position_embeddings" in self.hparams:
+            ctx_length = self.hparams["max_position_embeddings"]
+        elif "model_max_length" in self.hparams:
+            ctx_length = self.hparams["model_max_length"]
+        else:
+            raise ValueError("gguf: can not find ctx length parameter.")
+
+        self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
+        self.gguf_writer.add_context_length(ctx_length)
+        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+        self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+        self.gguf_writer.add_head_count(head_count)
+        self.gguf_writer.add_head_count_kv(head_count_kv)
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+            if self.hparams["rope_scaling"].get("type") == "linear":
+                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        head_count = self.hparams["num_attention_heads"]
+        head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+
+        # HF models permute some of the tensors, so we need to undo that
+        if name.endswith("q_proj.weight"):
+            data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
+        if name.endswith("k_proj.weight"):
+            data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
+        if n_kv_head is not None and n_head != n_kv_head:
+            n_head //= n_kv_head
+
+        return (
+            weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+            .swapaxes(1, 2)
+            .reshape(weights.shape)
+        )
+
+
+@Model.register("FalconForCausalLM", "RWForCausalLM")
+class FalconModel(Model):
+    model_arch = gguf.MODEL_ARCH.FALCON
+
+    def set_gguf_parameters(self):
+        block_count = self.hparams.get("num_hidden_layers")
+        if block_count is None:
+            block_count = self.hparams["n_layer"]  # old name
+
+        n_head = self.hparams.get("num_attention_heads")
+        if n_head is None:
+            n_head = self.hparams["n_head"]  # old name
+
+        n_head_kv = self.hparams.get("num_kv_heads")
+        if n_head_kv is None:
+            n_head_kv = self.hparams.get("n_head_kv", 1)  # old name
+
+        self.gguf_writer.add_context_length(2048)  # not in config.json
+        self.gguf_writer.add_tensor_data_layout("jploski")  # qkv tensor transform
+        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+        self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_head_count(n_head)
+        self.gguf_writer.add_head_count_kv(n_head_kv)
+        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        # QKV tensor transform
+        # The original query_key_value tensor contains n_head_kv "kv groups",
+        # each consisting of n_head/n_head_kv query weights followed by one key
+        # and one value weight (shared by all query heads in the kv group).
+        # This layout makes it a big pain to work with in GGML.
+        # So we rearrange them here,, so that we have n_head query weights
+        # followed by n_head_kv key weights followed by n_head_kv value weights,
+        # in contiguous fashion.
+        # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
+
+        if "query_key_value" in name:
+            n_head = self.find_hparam(["num_attention_heads", "n_head"])
+            n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
+            head_dim = self.hparams["hidden_size"] // n_head
+
+            qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
+            q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
+            k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
+            v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
+            data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("GPTBigCodeForCausalLM")
+class StarCoderModel(Model):
+    model_arch = gguf.MODEL_ARCH.STARCODER
+
+    def set_gguf_parameters(self):
+        block_count = self.hparams["n_layer"]
+
+        self.gguf_writer.add_context_length(self.hparams["n_positions"])
+        self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
+        self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_head_count(self.hparams["n_head"])
+        self.gguf_writer.add_head_count_kv(1)
+        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+
+@Model.register("GPTRefactForCausalLM")
+class RefactModel(Model):
+    model_arch = gguf.MODEL_ARCH.REFACT
+
+    def set_vocab(self):
+        super().set_vocab()
+
+        # TODO: how to determine special FIM tokens automatically?
+        special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
+                                          special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
+        special_vocab._set_special_token("prefix", 1)
+        special_vocab._set_special_token("suffix", 3)
+        special_vocab._set_special_token("middle", 2)
+        special_vocab.chat_template = None  # do not add it twice
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def set_gguf_parameters(self):
+        hidden_dim = self.hparams["n_embd"]
+        inner_dim = 4 * hidden_dim
+        hidden_dim = int(2 * inner_dim / 3)
+        multiple_of = 256
+        ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
+
+        block_count = self.hparams["n_layer"]
+
+        # refact uses Alibi. So this is from config.json which might be used by training.
+        self.gguf_writer.add_context_length(self.hparams["n_positions"])
+        self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
+
+        self.gguf_writer.add_feed_forward_length(ff_dim)
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_head_count(self.hparams["n_head"])
+        self.gguf_writer.add_head_count_kv(1)
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        hidden_dim = self.hparams["n_embd"]
+        inner_dim = 4 * hidden_dim
+        hidden_dim = int(2 * inner_dim / 3)
+        multiple_of = 256
+        ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
+        n_head = self.hparams["n_head"]
+        n_head_kv = 1
+        head_dim = self.hparams["n_embd"] // n_head
+
+        tensors: list[tuple[str, Tensor]] = []
+
+        if bid is not None:
+            if name == f"transformer.h.{bid}.attn.kv.weight":
+                tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
+                tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
+            elif name == f"transformer.h.{bid}.attn.q.weight":
+                tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
+            elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
+                tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
+                tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
+
+        if len(tensors) == 0:
+            tensors.append((self.map_tensor_name(name), data_torch))
+
+        return tensors
+
+
+@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
+class StableLMModel(Model):
+    model_arch = gguf.MODEL_ARCH.STABLELM
+
+    def set_vocab(self):
+        if (self.dir_model / "tokenizer.json").is_file():
+            self._set_vocab_gpt2()
+        else:
+            # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
+            self._set_vocab_qwen()
+
+    def set_gguf_parameters(self):
+        hparams = self.hparams
+        block_count = hparams["num_hidden_layers"]
+
+        self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
+        self.gguf_writer.add_embedding_length(hparams["hidden_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+        rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
+        self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
+        self.gguf_writer.add_head_count(hparams["num_attention_heads"])
+        self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
+        self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
+        self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
+        self.gguf_writer.add_file_type(self.ftype)
+
+    _q_norms: list[dict[str, Tensor]] | None = None
+    _k_norms: list[dict[str, Tensor]] | None = None
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        n_head = self.hparams["num_attention_heads"]
+        n_kv_head = self.hparams["num_key_value_heads"]
+
+        if name.find("q_layernorm.norms") != -1:
+            assert bid is not None
+
+            if self._q_norms is None:
+                self._q_norms = [{} for _ in range(self.block_count)]
+
+            self._q_norms[bid][name] = data_torch
+
+            if len(self._q_norms[bid]) >= n_head:
+                return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
+            else:
+                return []
+
+        if name.find("k_layernorm.norms") != -1:
+            assert bid is not None
+
+            if self._k_norms is None:
+                self._k_norms = [{} for _ in range(self.block_count)]
+
+            self._k_norms[bid][name] = data_torch
+
+            if len(self._k_norms[bid]) >= n_kv_head:
+                return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
+            else:
+                return []
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
+        datas: list[Tensor] = []
+        # extract the norms in order
+        for xid in range(n_head):
+            ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
+            datas.append(norms[ename])
+            del norms[ename]
+        data_torch = torch.stack(datas, dim=0)
+
+        merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
+        new_name = self.map_tensor_name(merged_name)
+
+        return [(new_name, data_torch)]
+
+    def prepare_tensors(self):
+        super().prepare_tensors()
+
+        if self._q_norms is not None or self._k_norms is not None:
+            # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
+            norms = (
+                [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
+            ) + (
+                [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
+            )
+            if len(norms) > 0:
+                raise ValueError(f"Unprocessed norms: {norms}")
+
+
+@Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
+class LlamaModel(Model):
+    model_arch = gguf.MODEL_ARCH.LLAMA
+
+    def set_vocab(self):
+        try:
+            self._set_vocab_sentencepiece()
+        except FileNotFoundError:
+            try:
+                self._set_vocab_llama_hf()
+            except (FileNotFoundError, TypeError):
+                # Llama 3
+                self._set_vocab_gpt2()
+
+        # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
+        if self.hparams.get("vocab_size", 32000) == 32016:
+            special_vocab = gguf.SpecialVocab(
+                self.dir_model, load_merges=False,
+                special_token_types = ['prefix', 'suffix', 'middle', 'eot']
+            )
+            special_vocab._set_special_token("prefix", 32007)
+            special_vocab._set_special_token("suffix", 32008)
+            special_vocab._set_special_token("middle", 32009)
+            special_vocab._set_special_token("eot",    32010)
+            special_vocab.add_to_gguf(self.gguf_writer)
+
+        tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
+        if tokenizer_config_file.is_file():
+            with open(tokenizer_config_file, "r", encoding="utf-8") as f:
+                tokenizer_config_json = json.load(f)
+                if "add_prefix_space" in tokenizer_config_json:
+                    self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
+
+        # Apply to granite small models only
+        if self.hparams.get("vocab_size", 32000) == 49152:
+            self.gguf_writer.add_add_bos_token(False)
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        hparams = self.hparams
+        self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+
+        if "head_dim" in hparams:
+            rope_dim = hparams["head_dim"]
+        else:
+            rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
+        self.gguf_writer.add_rope_dimension_count(rope_dim)
+
+        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+            if self.hparams["rope_scaling"].get("type") == "linear":
+                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
+    @staticmethod
+    def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
+        if n_head_kv is not None and n_head != n_head_kv:
+            n_head = n_head_kv
+        return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+                .swapaxes(1, 2)
+                .reshape(weights.shape))
+
+    _experts: list[dict[str, Tensor]] | None = None
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        n_head = self.hparams["num_attention_heads"]
+        n_kv_head = self.hparams.get("num_key_value_heads")
+
+        if name.endswith(("q_proj.weight", "q_proj.bias")):
+            data_torch = LlamaModel.permute(data_torch, n_head, n_head)
+        if name.endswith(("k_proj.weight", "k_proj.bias")):
+            data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
+
+        # process the experts separately
+        if name.find("block_sparse_moe.experts") != -1:
+            n_experts = self.hparams["num_local_experts"]
+
+            assert bid is not None
+
+            if self._experts is None:
+                self._experts = [{} for _ in range(self.block_count)]
+
+            self._experts[bid][name] = data_torch
+
+            if len(self._experts[bid]) >= n_experts * 3:
+                tensors: list[tuple[str, Tensor]] = []
+
+                # merge the experts into a single 3d tensor
+                for wid in ["w1", "w2", "w3"]:
+                    datas: list[Tensor] = []
+
+                    for xid in range(n_experts):
+                        ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
+                        datas.append(self._experts[bid][ename])
+                        del self._experts[bid][ename]
+
+                    data_torch = torch.stack(datas, dim=0)
+
+                    merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
+
+                    new_name = self.map_tensor_name(merged_name)
+
+                    tensors.append((new_name, data_torch))
+                return tensors
+            else:
+                return []
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
+        if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
+            if rope_scaling.get("rope_type", '').lower() == "llama3":
+                base = self.hparams.get("rope_theta", 10000.0)
+                dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+                freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
+
+                factor = rope_scaling.get("factor", 8.0)
+                low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
+                high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
+                old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
+
+                low_freq_wavelen = old_context_len / low_freq_factor
+                high_freq_wavelen = old_context_len / high_freq_factor
+                assert low_freq_wavelen != high_freq_wavelen
+
+                rope_factors = []
+                for freq in freqs:
+                    wavelen = 2 * math.pi / freq
+                    if wavelen < high_freq_wavelen:
+                        rope_factors.append(1)
+                    elif wavelen > low_freq_wavelen:
+                        rope_factors.append(factor)
+                    else:
+                        smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
+                        rope_factors.append(1 / ((1 - smooth) / factor + smooth))
+
+                yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
+
+    def prepare_tensors(self):
+        super().prepare_tensors()
+
+        if self._experts is not None:
+            # flatten `list[dict[str, Tensor]]` into `list[str]`
+            experts = [k for d in self._experts for k in d.keys()]
+            if len(experts) > 0:
+                raise ValueError(f"Unprocessed experts: {experts}")
+
+
+@Model.register("DeciLMForCausalLM")
+class DeciModel(Model):
+    model_arch = gguf.MODEL_ARCH.DECI
+
+    @staticmethod
+    def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
+        # DeciLM-specific code
+        intermediate_size = int(2 * ffn_mult * n_embd / 3)
+        return DeciModel._find_multiple(intermediate_size, 256)
+
+    @staticmethod
+    def _find_multiple(n: int, k: int) -> int:
+        # DeciLM-specific code
+        if n % k == 0:
+            return n
+        return n + k - (n % k)
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+
+        if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
+            _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
+            assert self.block_count == len(_block_configs)
+            self._num_kv_heads = list()
+            self._num_heads = list()
+            _ffn_multipliers = list()
+            # ***linear attention layer***
+            # if n_heads_in_group is None and replace_with_linear is True
+            # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
+            # ***attention-free layer***
+            # if n_heads_in_group is None and replace_with_linear is False
+            # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
+            # ***normal attention-layer***
+            # if n_heads_in_group is not None, then
+            # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
+            # _num_heads[il] is num_attention_head
+            for il in range(len(_block_configs)):
+                if _block_configs[il]["attention"]["n_heads_in_group"] is None:
+                    if _block_configs[il]["attention"]["replace_with_linear"] is True:
+                        self._num_kv_heads.append(0)
+                        self._num_heads.append(self.hparams["num_attention_heads"])
+                    else:
+                        self._num_kv_heads.append(0)
+                        self._num_heads.append(0)
+                else:
+                    self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
+                    self._num_heads.append(self.hparams["num_attention_heads"])
+                _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
+            assert self.block_count == len(self._num_kv_heads)
+            assert self.block_count == len(self._num_heads)
+            assert self.block_count == len(_ffn_multipliers)
+            assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
+            assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
+            assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
+            self._ffn_dims: list[int] = [
+                DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
+                for multiplier in _ffn_multipliers
+            ]
+
+    def set_vocab(self):
+        # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
+        # eos_token from '|eot_id|' to '|end_of_text|'
+        if self.hparams.get("vocab_size", 128256) == 128256:
+            tokens, toktypes, tokpre = self.get_vocab_base()
+            self.gguf_writer.add_tokenizer_model("gpt2")
+            self.gguf_writer.add_tokenizer_pre(tokpre)
+            self.gguf_writer.add_token_list(tokens)
+            self.gguf_writer.add_token_types(toktypes)
+
+            special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
+            special_vocab.add_to_gguf(self.gguf_writer)
+        else:
+            # DeciLM-7B
+            self._set_vocab_llama_hf()
+
+    def set_gguf_parameters(self):
+        if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
+            assert self.block_count == len(self._num_kv_heads)
+            assert self.block_count == len(self._num_heads)
+            assert self.block_count == len(self._ffn_dims)
+            if (rope_theta := self.hparams.get("rope_theta")) is not None:
+                self.gguf_writer.add_rope_freq_base(rope_theta)
+            self.gguf_writer.add_head_count_kv(self._num_kv_heads)
+            self.gguf_writer.add_head_count(self._num_heads)
+            self.gguf_writer.add_feed_forward_length(self._ffn_dims)
+            self.gguf_writer.add_block_count(self.block_count)
+            self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
+            self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+            self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+            self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+            self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+            self.gguf_writer.add_file_type(self.ftype)
+        else: # DeciLM-7B
+            super().set_gguf_parameters()
+            if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
+                self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
+                assert self.block_count == len(self._num_kv_heads)
+                self.gguf_writer.add_head_count_kv(self._num_kv_heads)
+        hparams = self.hparams
+        self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+
+        if "head_dim" in hparams:
+            rope_dim = hparams["head_dim"]
+        else:
+            rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
+        self.gguf_writer.add_rope_dimension_count(rope_dim)
+
+        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+            if self.hparams["rope_scaling"].get("type") == "linear":
+                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
+    @staticmethod
+    def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
+        if n_head_kv is not None and n_head != n_head_kv:
+            n_head = n_head_kv
+        return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+                .swapaxes(1, 2)
+                .reshape(weights.shape))
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        n_head = self.hparams["num_attention_heads"]
+        if bid is not None:
+            if "num_key_value_heads_per_layer" in self.hparams:
+                n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
+            elif "block_configs" in self.hparams:
+                n_kv_head = self._num_kv_heads[bid]
+                n_head = self._num_heads[bid]
+            else:
+                n_kv_head = self.hparams.get("num_key_value_heads")
+        else:
+            n_kv_head = self.hparams.get("num_key_value_heads")
+
+        if name.endswith(("q_proj.weight", "q_proj.bias")):
+            data_torch = DeciModel.permute(data_torch, n_head, n_head)
+        if name.endswith(("k_proj.weight", "k_proj.bias")):
+            data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
+        if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
+            if rope_scaling.get("rope_type", '').lower() == "llama3":
+                base = self.hparams.get("rope_theta", 10000.0)
+                dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+                freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
+
+                factor = rope_scaling.get("factor", 8.0)
+                low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
+                high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
+                old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
+
+                low_freq_wavelen = old_context_len / low_freq_factor
+                high_freq_wavelen = old_context_len / high_freq_factor
+                assert low_freq_wavelen != high_freq_wavelen
+
+                rope_factors = []
+                for freq in freqs:
+                    wavelen = 2 * math.pi / freq
+                    if wavelen < high_freq_wavelen:
+                        rope_factors.append(1)
+                    elif wavelen > low_freq_wavelen:
+                        rope_factors.append(factor)
+                    else:
+                        smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
+                        rope_factors.append(1 / ((1 - smooth) / factor + smooth))
+
+                yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
+
+    def prepare_tensors(self):
+        super().prepare_tensors()
+
+
+@Model.register("BitnetForCausalLM")
+class BitnetModel(Model):
+    model_arch = gguf.MODEL_ARCH.BITNET
+
+    def set_vocab(self):
+        self._set_vocab_sentencepiece()
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+        self.gguf_writer.add_rope_scaling_factor(1.0)
+
+    def weight_quant(self, weight: Tensor) -> Tensor:
+        dtype = weight.dtype
+        weight = weight.float()
+        scale = weight.abs().mean().clamp(min=1e-5)
+        iscale = 1 / scale
+        # TODO: multiply by the scale directly instead of inverting it twice
+        # (this is also unnecessarily doubly inverted upstream)
+        # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
+        result = (weight * iscale).round().clamp(-1, 1) / iscale
+        return result.type(dtype)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        new_name = self.map_tensor_name(name)
+
+        if any(self.match_model_tensor_name(new_name, key, bid) for key in [
+            gguf.MODEL_TENSOR.ATTN_Q,
+            gguf.MODEL_TENSOR.ATTN_K,
+            gguf.MODEL_TENSOR.ATTN_V,
+            gguf.MODEL_TENSOR.ATTN_OUT,
+            gguf.MODEL_TENSOR.FFN_UP,
+            gguf.MODEL_TENSOR.FFN_DOWN,
+            gguf.MODEL_TENSOR.FFN_GATE,
+        ]):
+            # transform weight into 1/0/-1 (in fp32)
+            data_torch = self.weight_quant(data_torch)
+
+        yield (new_name, data_torch)
+
+
+@Model.register("GrokForCausalLM")
+class GrokModel(Model):
+    model_arch = gguf.MODEL_ARCH.GROK
+
+    def set_vocab(self):
+        self._set_vocab_sentencepiece()
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+
+    _experts: list[dict[str, Tensor]] | None = None
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        # process the experts separately
+        if name.find(".moe.") != -1:
+            n_experts = self.hparams["num_local_experts"]
+
+            assert bid is not None
+
+            if self._experts is None:
+                self._experts = [{} for _ in range(self.block_count)]
+
+            self._experts[bid][name] = data_torch
+
+            if len(self._experts[bid]) >= n_experts * 3:
+                tensors: list[tuple[str, Tensor]] = []
+
+                # merge the experts into a single 3d tensor
+                for wid in ["linear", "linear_1", "linear_v"]:
+                    datas: list[Tensor] = []
+
+                    for xid in range(n_experts):
+                        ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
+                        datas.append(self._experts[bid][ename])
+                        del self._experts[bid][ename]
+
+                    data_torch = torch.stack(datas, dim=0)
+
+                    merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
+
+                    new_name = self.map_tensor_name(merged_name)
+
+                    tensors.append((new_name, data_torch))
+                return tensors
+            else:
+                return []
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("DbrxForCausalLM")
+class DbrxModel(Model):
+    model_arch = gguf.MODEL_ARCH.DBRX
+
+    def set_gguf_parameters(self):
+        ffn_config = self.hparams["ffn_config"]
+        attn_config = self.hparams["attn_config"]
+        self.gguf_writer.add_block_count(self.hparams["n_layers"])
+
+        self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
+        self.gguf_writer.add_embedding_length(self.hparams["d_model"])
+        self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
+
+        self.gguf_writer.add_head_count(self.hparams["n_heads"])
+        self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
+
+        self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
+
+        self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
+
+        self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
+        self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
+
+        self.gguf_writer.add_layer_norm_eps(1e-5)
+
+        self.gguf_writer.add_file_type(self.ftype)
+        logger.info(f"gguf: file type = {self.ftype}")
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        n_expert = self.hparams["ffn_config"]["moe_num_experts"]
+        n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
+        n_embd = self.hparams["d_model"]
+
+        # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
+        # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
+        # But llama.cpp moe graph works differently
+        # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
+        # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
+        exp_tensor_names = {"ffn.experts.mlp.w1": None,       # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff,   n_expert}
+                            "ffn.experts.mlp.w2": (0, 2, 1),  # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff,   n_embd, n_expert}
+                            "ffn.experts.mlp.v1": None}       # LLM_TENSOR_FFN_UP_EXPS   ggml_tensor->ne{n_embd, n_ff,   n_expert}
+        experts = False
+
+        for exp_tensor_name in exp_tensor_names.keys():
+            if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
+                experts = True
+                data_torch = data_torch.view(n_expert, n_ff, n_embd)
+                if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
+                    data_torch = data_torch.permute(*permute_tensor)
+                break
+
+        # map tensor names
+        # In MoE models the ffn tensors are typically most of the model weights,
+        # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
+        # Every other model has the weight names ending in .weight,
+        # let's assume that is the convention which is not the case for dbrx:
+        # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
+        new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
+
+        return [(new_name, data_torch)]
+
+    def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
+        del name, new_name, bid  # unused
+
+        return n_dims > 1
+
+
+@Model.register("MiniCPMForCausalLM")
+class MiniCPMModel(Model):
+    model_arch = gguf.MODEL_ARCH.MINICPM
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        embedding_scale = float(self.hparams["scale_emb"])
+        self.gguf_writer.add_embedding_scale(embedding_scale)
+        logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
+        residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
+        self.gguf_writer.add_residual_scale(residual_scale)
+        logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
+        logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
+        self.gguf_writer.add_logit_scale(logit_scale)
+        logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
+        if self.hparams.get("rope_scaling") is not None:
+            if self.hparams["rope_scaling"].get("type") == "longrope":
+                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
+                logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
+
+    def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
+        rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
+
+        rope_scaling = self.find_hparam(['rope_scaling'], True)
+        if rope_scaling is not None:
+            long_factors = rope_scaling.get('long_factor', None)
+            short_factors = rope_scaling.get('short_factor', None)
+
+            if long_factors is None or short_factors is None:
+                raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
+
+            if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
+                raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
+
+            yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
+            yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
+
+    def set_vocab(self):
+        self._set_vocab_sentencepiece()
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        n_head = self.hparams["num_attention_heads"]
+        n_kv_head = self.hparams.get("num_key_value_heads")
+
+        # HF models permute some of the tensors, so we need to undo that
+        if name.endswith(("q_proj.weight")):
+            data_torch = LlamaModel.permute(data_torch, n_head, n_head)
+        if name.endswith(("k_proj.weight")):
+            data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("MiniCPM3ForCausalLM")
+class MiniCPM3Model(Model):
+    model_arch = gguf.MODEL_ARCH.MINICPM3
+
+    def set_gguf_parameters(self):
+        hparams = self.hparams
+
+        self.gguf_writer.add_file_type(self.ftype)
+        self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
+        self.gguf_writer.add_embedding_length(hparams["hidden_size"])
+        self.gguf_writer.add_block_count(self.block_count)
+        self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+        self.gguf_writer.add_head_count(hparams["num_attention_heads"])
+        self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
+        self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
+        self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+        if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
+            self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
+        self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
+        self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
+        self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
+
+    def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
+        rope_scaling = self.find_hparam(['rope_scaling'], True)
+        if rope_scaling is not None:
+            rope_dims = self.hparams["qk_rope_head_dim"]
+
+            long_factors = rope_scaling.get('long_factor', None)
+            short_factors = rope_scaling.get('short_factor', None)
+
+            if long_factors is None or short_factors is None:
+                raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
+
+            if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
+                raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
+
+            yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
+            yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
+
+    def set_vocab(self):
+        self._set_vocab_sentencepiece()
+
+    def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
+        if n_kv_head is not None and n_head != n_kv_head:
+            n_head //= n_kv_head
+
+        return (
+            weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+            .swapaxes(1, 2)
+            .reshape(weights.shape)
+        )
+
+
+@Model.register("QWenLMHeadModel")
+class QwenModel(Model):
+    model_arch = gguf.MODEL_ARCH.QWEN
+
+    @staticmethod
+    def token_bytes_to_string(b):
+        from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
+        byte_encoder = bytes_to_unicode()
+        return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
+
+    @staticmethod
+    def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
+        parts = [bytes([b]) for b in token]
+        while True:
+            min_idx = None
+            min_rank = None
+            for i, pair in enumerate(zip(parts[:-1], parts[1:])):
+                rank = mergeable_ranks.get(pair[0] + pair[1])
+                if rank is not None and (min_rank is None or rank < min_rank):
+                    min_idx = i
+                    min_rank = rank
+            if min_rank is None or (max_rank is not None and min_rank >= max_rank):
+                break
+            assert min_idx is not None
+            parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
+        return parts
+
+    def set_vocab(self):
+        self._set_vocab_qwen()
+
+    def set_gguf_parameters(self):
+        self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
+        self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
+        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+        self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
+        self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+        self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+
+@Model.register("Qwen2ForCausalLM")
+class Qwen2Model(Model):
+    model_arch = gguf.MODEL_ARCH.QWEN2
+
+    def set_vocab(self):
+        try:
+            self._set_vocab_sentencepiece()
+        except FileNotFoundError:
+            self._set_vocab_gpt2()
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+            if self.hparams["rope_scaling"].get("type") == "yarn":
+                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
+                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+                self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
+
+
+@Model.register("Qwen2VLForConditionalGeneration")
+class Qwen2VLModel(Model):
+    model_arch = gguf.MODEL_ARCH.QWEN2VL
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        mrope_section = self.hparams["rope_scaling"]["mrope_section"]
+        mrope_section += [0] * max(0, 4 - len(mrope_section))
+        self.gguf_writer.add_rope_dimension_sections(mrope_section)
+
+    def set_vocab(self):
+        try:
+            self._set_vocab_sentencepiece()
+        except FileNotFoundError:
+            self._set_vocab_gpt2()
+
+    def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
+        for name, data in super().get_tensors():
+            if name.startswith("visual."):
+                continue
+            yield name, data
+
+
+@Model.register("WavTokenizerDec")
+class WavTokenizerDecModel(Model):
+    model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        if \
+                name.endswith("codebook.cluster_size") or \
+                name.endswith("codebook.embed_avg") or \
+                name.endswith("codebook.inited"):
+            logger.debug(f"Skipping {name!r}")
+            return []
+
+        logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def set_vocab(self):
+        self._set_vocab_none()
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        self.gguf_writer.add_vocab_size         (self.hparams["vocab_size"])
+        self.gguf_writer.add_features_length    (self.hparams["n_embd_features"])
+        self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
+        self.gguf_writer.add_group_norm_eps     (self.hparams["group_norm_epsilon"])
+        self.gguf_writer.add_group_norm_groups  (self.hparams["group_norm_groups"])
+
+        self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
+        self.gguf_writer.add_posnet_block_count     (self.hparams["posnet"]["n_layer"])
+
+        self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
+        self.gguf_writer.add_convnext_block_count     (self.hparams["convnext"]["n_layer"])
+
+        self.gguf_writer.add_causal_attention(False)
+
+
+@Model.register("Qwen2MoeForCausalLM")
+class Qwen2MoeModel(Model):
+    model_arch = gguf.MODEL_ARCH.QWEN2MOE
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        if (n_experts := self.hparams.get("num_experts")) is not None:
+            self.gguf_writer.add_expert_count(n_experts)
+        if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
+            self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
+            logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
+        if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
+            self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
+            logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
+
+    _experts: list[dict[str, Tensor]] | None = None
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        # process the experts separately
+        if name.find("experts") != -1:
+            n_experts = self.hparams["num_experts"]
+            assert bid is not None
+
+            if self._experts is None:
+                self._experts = [{} for _ in range(self.block_count)]
+
+            self._experts[bid][name] = data_torch
+
+            if len(self._experts[bid]) >= n_experts * 3:
+                tensors: list[tuple[str, Tensor]] = []
+
+                # merge the experts into a single 3d tensor
+                for w_name in ["down_proj", "gate_proj", "up_proj"]:
+                    datas: list[Tensor] = []
+
+                    for xid in range(n_experts):
+                        ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
+                        datas.append(self._experts[bid][ename])
+                        del self._experts[bid][ename]
+
+                    data_torch = torch.stack(datas, dim=0)
+
+                    merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
+
+                    new_name = self.map_tensor_name(merged_name)
+
+                    tensors.append((new_name, data_torch))
+                return tensors
+            else:
+                return []
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def prepare_tensors(self):
+        super().prepare_tensors()
+
+        if self._experts is not None:
+            # flatten `list[dict[str, Tensor]]` into `list[str]`
+            experts = [k for d in self._experts for k in d.keys()]
+            if len(experts) > 0:
+                raise ValueError(f"Unprocessed experts: {experts}")
+
+
+@Model.register("GPT2LMHeadModel")
+class GPT2Model(Model):
+    model_arch = gguf.MODEL_ARCH.GPT2
+
+    def set_gguf_parameters(self):
+        self.gguf_writer.add_block_count(self.hparams["n_layer"])
+        self.gguf_writer.add_context_length(self.hparams["n_ctx"])
+        self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
+        self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
+        self.gguf_writer.add_head_count(self.hparams["n_head"])
+        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        tensors: list[tuple[str, Tensor]] = []
+
+        # we don't need these
+        if name.endswith((".attn.bias", ".attn.masked_bias")):
+            return tensors
+
+        if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
+            data_torch = data_torch.transpose(1, 0)
+
+        new_name = self.map_tensor_name(name)
+
+        tensors.append((new_name, data_torch))
+
+        # note: GPT2 output is tied to (same as) wte in original model
+        if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
+            tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
+
+        return tensors
+
+
+@Model.register("PhiForCausalLM")
+class Phi2Model(Model):
+    model_arch = gguf.MODEL_ARCH.PHI2
+
+    def set_gguf_parameters(self):
+        block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
+
+        rot_pct = self.find_hparam(["partial_rotary_factor"])
+        n_embd = self.find_hparam(["hidden_size", "n_embd"])
+        n_head = self.find_hparam(["num_attention_heads", "n_head"])
+
+        self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
+
+        self.gguf_writer.add_embedding_length(n_embd)
+        self.gguf_writer.add_feed_forward_length(4 * n_embd)
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_head_count(n_head)
+        self.gguf_writer.add_head_count_kv(n_head)
+        self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
+        self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
+        self.gguf_writer.add_file_type(self.ftype)
+        self.gguf_writer.add_add_bos_token(False)
+
+
+@Model.register("Phi3ForCausalLM")
+class Phi3MiniModel(Model):
+    model_arch = gguf.MODEL_ARCH.PHI3
+
+    def set_vocab(self):
+        # Phi-4 model uses GPT2Tokenizer
+        tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
+        if tokenizer_config_file.is_file():
+            with open(tokenizer_config_file, "r", encoding="utf-8") as f:
+                tokenizer_config_json = json.load(f)
+                tokenizer_class = tokenizer_config_json['tokenizer_class']
+                if tokenizer_class == 'GPT2Tokenizer':
+                    return self._set_vocab_gpt2()
+
+        from sentencepiece import SentencePieceProcessor
+
+        tokenizer_path = self.dir_model / 'tokenizer.model'
+
+        if not tokenizer_path.is_file():
+            raise ValueError(f'Error: Missing {tokenizer_path}')
+
+        tokenizer = SentencePieceProcessor()
+        tokenizer.LoadFromFile(str(tokenizer_path))
+
+        vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+        tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
+        scores: list[float] = [-10000.0] * vocab_size
+        toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
+
+        for token_id in range(tokenizer.vocab_size()):
+
+            piece = tokenizer.IdToPiece(token_id)
+            text = piece.encode("utf-8")
+            score = tokenizer.GetScore(token_id)
+
+            toktype = SentencePieceTokenTypes.NORMAL
+            if tokenizer.IsUnknown(token_id):
+                toktype = SentencePieceTokenTypes.UNKNOWN
+            elif tokenizer.IsControl(token_id):
+                toktype = SentencePieceTokenTypes.CONTROL
+            elif tokenizer.IsUnused(token_id):
+                toktype = SentencePieceTokenTypes.UNUSED
+            elif tokenizer.IsByte(token_id):
+                toktype = SentencePieceTokenTypes.BYTE
+
+            tokens[token_id] = text
+            scores[token_id] = score
+            toktypes[token_id] = toktype
+
+        added_tokens_file = self.dir_model / 'added_tokens.json'
+        if added_tokens_file.is_file():
+            with open(added_tokens_file, "r", encoding="utf-8") as f:
+                added_tokens_json = json.load(f)
+
+                for key in added_tokens_json:
+                    token_id = added_tokens_json[key]
+                    if token_id >= vocab_size:
+                        logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
+                        continue
+
+                    tokens[token_id] = key.encode("utf-8")
+                    scores[token_id] = -1000.0
+                    toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+
+        tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
+        if tokenizer_config_file.is_file():
+            with open(tokenizer_config_file, "r", encoding="utf-8") as f:
+                tokenizer_config_json = json.load(f)
+                added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
+                for token_id, foken_data in added_tokens_decoder.items():
+                    token_id = int(token_id)
+                    token = foken_data["content"].encode("utf-8")
+                    if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
+                        if tokens[token_id] != token:
+                            logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
+                    tokens[token_id] = token
+                    scores[token_id] = -1000.0
+                    toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+                    if foken_data.get("special"):
+                        toktypes[token_id] = SentencePieceTokenTypes.CONTROL
+
+        tokenizer_file = self.dir_model / 'tokenizer.json'
+        if tokenizer_file.is_file():
+            with open(tokenizer_file, "r", encoding="utf-8") as f:
+                tokenizer_json = json.load(f)
+                added_tokens = tokenizer_json.get("added_tokens", [])
+                for foken_data in added_tokens:
+                    token_id = int(foken_data["id"])
+                    token = foken_data["content"].encode("utf-8")
+                    if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
+                        if tokens[token_id] != token:
+                            logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
+                    tokens[token_id] = token
+                    scores[token_id] = -1000.0
+                    toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+                    if foken_data.get("special"):
+                        toktypes[token_id] = SentencePieceTokenTypes.CONTROL
+
+        self.gguf_writer.add_tokenizer_model("llama")
+        self.gguf_writer.add_tokenizer_pre("default")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_scores(scores)
+        self.gguf_writer.add_token_types(toktypes)
+
+        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def set_gguf_parameters(self):
+        block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
+
+        n_embd = self.find_hparam(["hidden_size", "n_embd"])
+        n_head = self.find_hparam(["num_attention_heads", "n_head"])
+        n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
+        rms_eps = self.find_hparam(["rms_norm_eps"])
+        max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
+        orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
+        rope_dims = n_embd // n_head
+
+        self.gguf_writer.add_context_length(max_pos_embds)
+        self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
+        self.gguf_writer.add_embedding_length(n_embd)
+        self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_head_count(n_head)
+        self.gguf_writer.add_head_count_kv(n_head_kv)
+        self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
+        self.gguf_writer.add_rope_dimension_count(rope_dims)
+        self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
+        self.gguf_writer.add_file_type(self.ftype)
+        sliding_window = self.hparams.get("sliding_window")
+        # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
+        if sliding_window is None:
+            sliding_window = 0
+        self.gguf_writer.add_sliding_window(sliding_window)
+
+    def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
+        n_embd = self.find_hparam(["hidden_size", "n_embd"])
+        n_head = self.find_hparam(["num_attention_heads", "n_head"])
+        max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
+        orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
+        rope_dims = n_embd // n_head
+
+        # write rope scaling for long context (128k) model
+        rope_scaling = self.find_hparam(['rope_scaling'], True)
+        if rope_scaling is None:
+            return
+
+        scale = max_pos_embds / orig_max_pos_embds
+
+        rope_scaling_type = rope_scaling.get('type', '').lower()
+        if len(rope_scaling_type) == 0:
+            raise KeyError('Missing the required key rope_scaling.type')
+
+        if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
+            attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
+        elif rope_scaling_type == 'yarn':
+            attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
+        else:
+            raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
+
+        self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
+
+        long_factors = rope_scaling.get('long_factor', None)
+        short_factors = rope_scaling.get('short_factor', None)
+
+        if long_factors is None or short_factors is None:
+            raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
+
+        if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
+            raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
+
+        yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
+        yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
+
+
+@Model.register("PhiMoEForCausalLM")
+class PhiMoeModel(Phi3MiniModel):
+    model_arch = gguf.MODEL_ARCH.PHIMOE
+
+    _experts: list[dict[str, Tensor]] | None = None
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
+        self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        # process the experts separately
+        if name.find("block_sparse_moe.experts") != -1:
+            n_experts = self.hparams["num_local_experts"]
+            assert bid is not None
+
+            if self._experts is None:
+                self._experts = [{} for _ in range(self.block_count)]
+
+            self._experts[bid][name] = data_torch
+
+            if len(self._experts[bid]) >= n_experts * 3:
+                tensors: list[tuple[str, Tensor]] = []
+
+                # merge the experts into a single 3d tensor
+                for w_name in ["w1", "w2", "w3"]:
+                    datas: list[Tensor] = []
+
+                    for xid in range(n_experts):
+                        ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
+                        datas.append(self._experts[bid][ename])
+                        del self._experts[bid][ename]
+
+                    data_torch = torch.stack(datas, dim=0)
+
+                    merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
+
+                    new_name = self.map_tensor_name(merged_name)
+
+                    tensors.append((new_name, data_torch))
+                return tensors
+            else:
+                return []
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def prepare_tensors(self):
+        super().prepare_tensors()
+
+        if self._experts is not None:
+            # flatten `list[dict[str, Tensor]]` into `list[str]`
+            experts = [k for d in self._experts for k in d.keys()]
+            if len(experts) > 0:
+                raise ValueError(f"Unprocessed experts: {experts}")
+
+
+@Model.register("PlamoForCausalLM")
+class PlamoModel(Model):
+    model_arch = gguf.MODEL_ARCH.PLAMO
+
+    def set_vocab(self):
+        self._set_vocab_sentencepiece()
+
+    def set_gguf_parameters(self):
+        hparams = self.hparams
+        block_count = hparams["num_hidden_layers"]
+
+        self.gguf_writer.add_context_length(4096)  # not in config.json
+        self.gguf_writer.add_embedding_length(hparams["hidden_size"])
+        self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_head_count(hparams["num_attention_heads"])
+        self.gguf_writer.add_head_count_kv(5)  # hparams["num_key_value_heads"]) is wrong
+        self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+    def shuffle_attn_q_weight(self, data_torch):
+        assert data_torch.size() == (5120, 5120)
+        data_torch = data_torch.reshape(8, 5, 128, 5120)
+        data_torch = torch.permute(data_torch, (1, 0, 2, 3))
+        data_torch = torch.reshape(data_torch, (5120, 5120))
+        return data_torch
+
+    def shuffle_attn_output_weight(self, data_torch):
+        assert data_torch.size() == (5120, 5120)
+        data_torch = data_torch.reshape(5120, 8, 5, 128)
+        data_torch = torch.permute(data_torch, (0, 2, 1, 3))
+        data_torch = torch.reshape(data_torch, (5120, 5120))
+        return data_torch
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        new_name = self.map_tensor_name(name)
+
+        # shuffle for broadcasting of gqa in ggml_mul_mat
+        if new_name.endswith("attn_q.weight"):
+            data_torch = self.shuffle_attn_q_weight(data_torch)
+        elif new_name.endswith("attn_output.weight"):
+            data_torch = self.shuffle_attn_output_weight(data_torch)
+
+        return [(new_name, data_torch)]
+
+
+@Model.register("CodeShellForCausalLM")
+class CodeShellModel(Model):
+    model_arch = gguf.MODEL_ARCH.CODESHELL
+
+    def set_gguf_parameters(self):
+        block_count = self.hparams["n_layer"]
+
+        self.gguf_writer.add_context_length(self.hparams["n_positions"])
+        self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
+        self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_head_count(self.hparams["n_head"])
+        self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
+        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_file_type(self.ftype)
+        self.gguf_writer.add_rope_freq_base(10000.0)
+        self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+        self.gguf_writer.add_rope_scaling_factor(1.0)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        new_name = self.map_tensor_name(name)
+
+        tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
+
+        if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
+            assert self.tensor_names is not None
+
+            if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
+                # copy tok_embd.weight to output.weight
+                tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
+
+        return tensors
+
+
+@Model.register("InternLM2ForCausalLM")
+class InternLM2Model(Model):
+    model_arch = gguf.MODEL_ARCH.INTERNLM2
+
+    def set_vocab(self):
+        # (TODO): Is there a better way?
+        # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
+        # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
+        # recognized as an empty string in C++.
+        from sentencepiece import SentencePieceProcessor
+        from sentencepiece import sentencepiece_model_pb2 as model
+
+        tokenizer_path = self.dir_model / 'tokenizer.model'
+
+        tokens: list[bytes] = []
+        scores: list[float] = []
+        toktypes: list[int] = []
+
+        if not tokenizer_path.is_file():
+            logger.error(f'Error: Missing {tokenizer_path}')
+            sys.exit(1)
+
+        sentencepiece_model = model.ModelProto()  # pyright: ignore[reportAttributeAccessIssue]
+        sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
+        add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
+
+        tokenizer = SentencePieceProcessor()
+        tokenizer.LoadFromFile(str(tokenizer_path))
+
+        vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+        for token_id in range(vocab_size):
+            piece = tokenizer.IdToPiece(token_id)
+            text = piece.encode("utf-8")
+            score = tokenizer.GetScore(token_id)
+            if text == b"\x00":
+                # (TODO): fixme
+                # Hack here and replace the \x00 characters.
+                logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
+                text = "🐉".encode("utf-8")
+
+            toktype = SentencePieceTokenTypes.NORMAL
+            if tokenizer.IsUnknown(token_id):
+                toktype = SentencePieceTokenTypes.UNKNOWN
+            elif tokenizer.IsControl(token_id):
+                toktype = SentencePieceTokenTypes.CONTROL
+            elif tokenizer.IsUnused(token_id):
+                toktype = SentencePieceTokenTypes.UNUSED
+            elif tokenizer.IsByte(token_id):
+                toktype = SentencePieceTokenTypes.BYTE
+            # take care of ununsed raw token
+            if piece.startswith('[UNUSED'):
+                toktype = SentencePieceTokenTypes.UNUSED
+
+            tokens.append(text)
+            scores.append(score)
+            toktypes.append(toktype)
+
+        added_tokens_file = self.dir_model / 'added_tokens.json'
+        if added_tokens_file.is_file():
+            with open(added_tokens_file, "r", encoding="utf-8") as f:
+                added_tokens_json = json.load(f)
+
+                for key in added_tokens_json:
+                    tokens.append(key.encode("utf-8"))
+                    scores.append(-1000.0)
+                    toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
+
+        chat_eos_token = '<|im_end|>'
+        chat_eos_token_id = None
+
+        tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
+        if tokenizer_config_file.is_file():
+            with open(tokenizer_config_file, "r", encoding="utf-8") as f:
+                tokenizer_config_json = json.load(f)
+                added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
+                for token_id, foken_data in added_tokens_decoder.items():
+                    token_id = int(token_id)
+                    token = foken_data["content"]
+                    if token == chat_eos_token:
+                        chat_eos_token_id = token_id
+                    token = token.encode("utf-8")
+                    if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
+                        if tokens[token_id] != token:
+                            logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
+                    tokens[token_id] = token
+                    scores[token_id] = -1000.0
+                    toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+                    if foken_data.get("special"):
+                        toktypes[token_id] = SentencePieceTokenTypes.CONTROL
+
+        tokenizer_file = self.dir_model / 'tokenizer.json'
+        if tokenizer_file.is_file():
+            with open(tokenizer_file, "r", encoding="utf-8") as f:
+                tokenizer_json = json.load(f)
+                added_tokens = tokenizer_json.get("added_tokens", [])
+                for foken_data in added_tokens:
+                    token_id = int(foken_data["id"])
+                    token = foken_data["content"]
+                    if token == chat_eos_token:
+                        chat_eos_token_id = token_id
+                    token = token.encode("utf-8")
+                    if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
+                        if tokens[token_id] != token:
+                            logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
+                    tokens[token_id] = token
+                    scores[token_id] = -1000.0
+                    toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+                    if foken_data.get("special"):
+                        toktypes[token_id] = SentencePieceTokenTypes.CONTROL
+
+        self.gguf_writer.add_tokenizer_model("llama")
+        self.gguf_writer.add_tokenizer_pre("default")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_scores(scores)
+        self.gguf_writer.add_token_types(toktypes)
+        self.gguf_writer.add_add_space_prefix(add_prefix)
+
+        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+        old_eos = special_vocab.special_token_ids["eos"]
+        if chat_eos_token_id is not None:
+            # For the chat model, we replace the eos with '<|im_end|>'.
+            # TODO: this is a hack, should be fixed
+            #       https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
+            special_vocab.special_token_ids["eos"] = chat_eos_token_id
+            logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
+                           " in chat mode so that the conversation can end normally.")
+
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def set_gguf_parameters(self):
+        self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
+        self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
+        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+        self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
+        self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+        self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
+        self.gguf_writer.add_file_type(self.ftype)
+        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+            if self.hparams["rope_scaling"].get("type") == "linear":
+                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        num_heads = self.hparams["num_attention_heads"]
+        num_kv_heads = self.hparams["num_key_value_heads"]
+        n_embd = self.hparams["hidden_size"]
+        q_per_kv = num_heads // num_kv_heads
+        head_dim = n_embd // num_heads
+        num_groups = num_heads // q_per_kv
+
+        if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
+            qkv = data_torch
+
+            qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
+            q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
+
+            # The model weights of q and k equire additional reshape.
+            q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
+            k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
+            v = v.reshape((-1, v.shape[-1]))
+
+            return [
+                (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
+                (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
+                (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
+            ]
+        else:
+            return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("InternLM3ForCausalLM")
+class InternLM3Model(Model):
+    model_arch = gguf.MODEL_ARCH.LLAMA
+
+    def set_vocab(self):
+        tokens, scores, toktypes = self._create_vocab_sentencepiece()
+
+        self.gguf_writer.add_tokenizer_model("llama")
+        self.gguf_writer.add_tokenizer_pre("default")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_scores(scores)
+        self.gguf_writer.add_token_types(toktypes)
+
+        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+
+        tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
+        if tokenizer_config_file.is_file():
+            with open(tokenizer_config_file, "r", encoding="utf-8") as f:
+                tokenizer_config_json = json.load(f)
+                if "add_prefix_space" in tokenizer_config_json:
+                    self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
+
+                if "added_tokens_decoder" in tokenizer_config_json:
+                    for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
+                        if token_data.get("special"):
+                            token_id = int(token_id)
+                            token = token_data["content"]
+                            special_vocab._set_special_token(token, token_id)
+                            # update eos token
+                            if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
+                                special_vocab.special_token_ids["eos"] = token_id
+
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        hparams = self.hparams
+        self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+
+        if "head_dim" in hparams:
+            rope_dim = hparams["head_dim"]
+        else:
+            rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
+        self.gguf_writer.add_rope_dimension_count(rope_dim)
+
+        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+            if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
+                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        n_head = self.hparams["num_attention_heads"]
+        n_kv_head = self.hparams.get("num_key_value_heads")
+        if name.endswith(("q_proj.weight", "q_proj.bias")):
+            data_torch = LlamaModel.permute(data_torch, n_head, n_head)
+        if name.endswith(("k_proj.weight", "k_proj.bias")):
+            data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
+        return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
+class BertModel(Model):
+    model_arch = gguf.MODEL_ARCH.BERT
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        self.vocab_size = None
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        self.gguf_writer.add_causal_attention(False)
+
+        # get pooling path
+        pooling_path = None
+        module_path = self.dir_model / "modules.json"
+        if module_path.is_file():
+            with open(module_path, encoding="utf-8") as f:
+                modules = json.load(f)
+            for mod in modules:
+                if mod["type"] == "sentence_transformers.models.Pooling":
+                    pooling_path = mod["path"]
+                    break
+
+        # get pooling type
+        if pooling_path is not None:
+            with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
+                pooling = json.load(f)
+            if pooling["pooling_mode_mean_tokens"]:
+                pooling_type = gguf.PoolingType.MEAN
+            elif pooling["pooling_mode_cls_token"]:
+                pooling_type = gguf.PoolingType.CLS
+            else:
+                raise NotImplementedError("Only MEAN and CLS pooling types supported")
+            self.gguf_writer.add_pooling_type(pooling_type)
+
+    def set_vocab(self):
+        tokens, toktypes, tokpre = self.get_vocab_base()
+        self.vocab_size = len(tokens)
+
+        # we need this to validate the size of the token_type embeddings
+        # though currently we are passing all zeros to the token_type embeddings
+        # "Sequence A" or "Sequence B"
+        self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
+
+        # convert to phantom space vocab
+        def phantom(tok):
+            if tok.startswith("[") and tok.endswith("]"):
+                return tok
+            if tok.startswith("##"):
+                return tok[2:]
+            return "\u2581" + tok
+        tokens = list(map(phantom, tokens))
+
+        # add vocab to gguf
+        self.gguf_writer.add_tokenizer_model("bert")
+        self.gguf_writer.add_tokenizer_pre(tokpre)
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_types(toktypes)
+
+        # handle special tokens
+        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        if name.startswith("bert."):
+            name = name[5:]
+
+        if name.endswith(".gamma"):
+            name = name[:-6] + ".weight"
+
+        if name.endswith(".beta"):
+            name = name[:-5] + ".bias"
+
+        # we are only using BERT for embeddings so we don't need the pooling layer
+        if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
+            return [] # we don't need these
+
+        if name.startswith("cls.predictions"):
+            return []
+
+        if name.startswith("cls.seq_relationship"):
+            return []
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("RobertaModel")
+class RobertaModel(BertModel):
+    model_arch = gguf.MODEL_ARCH.BERT
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+
+        # we need the pad_token_id to know how to chop down position_embd matrix
+        if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
+            self._position_offset = 1 + pad_token_id
+            if "max_position_embeddings" in self.hparams:
+                self.hparams["max_position_embeddings"] -= self._position_offset
+        else:
+            self._position_offset = None
+
+    def set_vocab(self):
+        """Support BPE tokenizers for roberta models"""
+        bpe_tok_path = self.dir_model / "tokenizer.json"
+        if bpe_tok_path.exists():
+            self._set_vocab_gpt2()
+            self.gguf_writer.add_add_bos_token(True)
+            self.gguf_writer.add_add_eos_token(True)
+
+            # we need this to validate the size of the token_type embeddings
+            # though currently we are passing all zeros to the token_type embeddings
+            # "Sequence A" or "Sequence B"
+            self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
+
+        else:
+            return super().set_vocab()
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        # if name starts with "roberta.", remove the prefix
+        # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
+        if name.startswith("roberta."):
+            name = name[8:]
+
+        # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
+        if name == "embeddings.position_embeddings.weight":
+            if self._position_offset is not None:
+                data_torch = data_torch[self._position_offset:,:]
+
+        return super().modify_tensors(data_torch, name, bid)
+
+
+@Model.register("NomicBertModel")
+class NomicBertModel(BertModel):
+    model_arch = gguf.MODEL_ARCH.NOMIC_BERT
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+
+        # the HF config claims n_ctx=8192, but it uses RoPE scaling
+        self.hparams["n_ctx"] = 2048
+
+        # SwigLU activation
+        assert self.hparams["activation_function"] == "swiglu"
+        # this doesn't do anything in the HF version
+        assert self.hparams["causal"] is False
+        # no bias tensors
+        assert self.hparams["qkv_proj_bias"] is False
+        assert self.hparams["mlp_fc1_bias"] is False
+        assert self.hparams["mlp_fc2_bias"] is False
+        # norm at end of layer
+        assert self.hparams["prenorm"] is False
+        # standard RoPE
+        assert self.hparams["rotary_emb_fraction"] == 1.0
+        assert self.hparams["rotary_emb_interleaved"] is False
+        assert self.hparams["rotary_emb_scale_base"] is None
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
+
+
+@Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
+class XLMRobertaModel(BertModel):
+    model_arch = gguf.MODEL_ARCH.BERT
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+
+        # we need the pad_token_id to know how to chop down position_embd matrix
+        if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
+            self._position_offset = 1 + pad_token_id
+            if "max_position_embeddings" in self.hparams:
+                self.hparams["max_position_embeddings"] -= self._position_offset
+        else:
+            self._position_offset = None
+
+    def set_vocab(self):
+        # to avoid TypeError: Descriptors cannot be created directly
+        # exception when importing sentencepiece_model_pb2
+        os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
+        from sentencepiece import SentencePieceProcessor
+        from sentencepiece import sentencepiece_model_pb2 as model
+
+        tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
+        if not tokenizer_path.is_file():
+            raise FileNotFoundError(f"File not found: {tokenizer_path}")
+
+        sentencepiece_model = model.ModelProto()  # pyright: ignore[reportAttributeAccessIssue]
+        sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
+        assert sentencepiece_model.trainer_spec.model_type == 1  # UNIGRAM
+
+        add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
+        remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
+        precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
+
+        tokenizer = SentencePieceProcessor()
+        tokenizer.LoadFromFile(str(tokenizer_path))
+
+        vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+        tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
+        scores: list[float] = [-10000.0] * vocab_size
+        toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
+
+        for token_id in range(tokenizer.vocab_size()):
+            piece = tokenizer.IdToPiece(token_id)
+            text = piece.encode("utf-8")
+            score = tokenizer.GetScore(token_id)
+
+            toktype = SentencePieceTokenTypes.NORMAL
+            if tokenizer.IsUnknown(token_id):
+                toktype = SentencePieceTokenTypes.UNKNOWN
+            elif tokenizer.IsControl(token_id):
+                toktype = SentencePieceTokenTypes.CONTROL
+            elif tokenizer.IsUnused(token_id):
+                toktype = SentencePieceTokenTypes.UNUSED
+            elif tokenizer.IsByte(token_id):
+                toktype = SentencePieceTokenTypes.BYTE
+
+            tokens[token_id] = text
+            scores[token_id] = score
+            toktypes[token_id] = toktype
+
+        if vocab_size > len(tokens):
+            pad_count = vocab_size - len(tokens)
+            logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
+            for i in range(1, pad_count + 1):
+                tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
+                scores.append(-1000.0)
+                toktypes.append(SentencePieceTokenTypes.UNUSED)
+
+        # realign tokens (see HF tokenizer code)
+        tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
+        scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
+        toktypes = [
+            SentencePieceTokenTypes.CONTROL,
+            SentencePieceTokenTypes.CONTROL,
+            SentencePieceTokenTypes.CONTROL,
+            SentencePieceTokenTypes.UNKNOWN,
+        ] + toktypes[3:-1]
+
+        self.gguf_writer.add_tokenizer_model("t5")
+        self.gguf_writer.add_tokenizer_pre("default")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_scores(scores)
+        self.gguf_writer.add_token_types(toktypes)
+        self.gguf_writer.add_add_space_prefix(add_prefix)
+        self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
+        self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
+        if precompiled_charsmap:
+            self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
+
+        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+        self.gguf_writer.add_add_bos_token(True)
+        self.gguf_writer.add_add_eos_token(True)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        # if name starts with "roberta.", remove the prefix
+        # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
+        if name.startswith("roberta."):
+            name = name[8:]
+
+        # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
+        if name == "embeddings.position_embeddings.weight":
+            if self._position_offset is not None:
+                data_torch = data_torch[self._position_offset:,:]
+
+        return super().modify_tensors(data_torch, name, bid)
+
+
+@Model.register("GemmaForCausalLM")
+class GemmaModel(Model):
+    model_arch = gguf.MODEL_ARCH.GEMMA
+
+    def set_vocab(self):
+        self._set_vocab_sentencepiece()
+
+        # TODO: these special tokens should be exported only for the CodeGemma family
+        special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
+                                          special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
+        special_vocab._set_special_token("prefix", 67)
+        special_vocab._set_special_token("suffix", 69)
+        special_vocab._set_special_token("middle", 68)
+        special_vocab._set_special_token("fsep",   70)
+        special_vocab._set_special_token("eot",    107)
+        special_vocab.chat_template = None  # do not add it twice
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+        self.gguf_writer.add_add_space_prefix(False)
+
+    def set_gguf_parameters(self):
+        hparams = self.hparams
+        block_count = hparams["num_hidden_layers"]
+
+        self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
+        self.gguf_writer.add_embedding_length(hparams["hidden_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+        self.gguf_writer.add_head_count(hparams["num_attention_heads"])
+        self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+        self.gguf_writer.add_key_length(hparams["head_dim"])
+        self.gguf_writer.add_value_length(hparams["head_dim"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
+        # To prevent errors, skip loading lm_head.weight.
+        if name == "lm_head.weight":
+            logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
+            return []
+
+        # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
+        if name.endswith("norm.weight"):
+            data_torch = data_torch + 1
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("Gemma2ForCausalLM")
+class Gemma2Model(Model):
+    model_arch = gguf.MODEL_ARCH.GEMMA2
+
+    def set_vocab(self):
+        self._set_vocab_sentencepiece()
+
+        self.gguf_writer.add_add_space_prefix(False)
+
+    def set_gguf_parameters(self):
+        hparams = self.hparams
+        block_count = hparams["num_hidden_layers"]
+
+        self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
+        self.gguf_writer.add_embedding_length(hparams["hidden_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+        self.gguf_writer.add_head_count(hparams["num_attention_heads"])
+        self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+        self.gguf_writer.add_key_length(hparams["head_dim"])
+        self.gguf_writer.add_value_length(hparams["head_dim"])
+        self.gguf_writer.add_file_type(self.ftype)
+        self.gguf_writer.add_attn_logit_softcapping(
+            self.hparams["attn_logit_softcapping"]
+        )
+        self.gguf_writer.add_final_logit_softcapping(
+            self.hparams["final_logit_softcapping"]
+        )
+        self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
+        # To prevent errors, skip loading lm_head.weight.
+        if name == "lm_head.weight":
+            logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
+            return []
+
+        # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
+        if name.endswith("norm.weight"):
+            data_torch = data_torch + 1
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("Starcoder2ForCausalLM")
+class StarCoder2Model(Model):
+    model_arch = gguf.MODEL_ARCH.STARCODER2
+
+
+@Model.register("Rwkv6ForCausalLM")
+class Rwkv6Model(Model):
+    model_arch = gguf.MODEL_ARCH.RWKV6
+
+    def set_vocab(self):
+        assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
+        vocab_size = self.hparams.get("vocab_size", 65536)
+
+        tokens: list[bytes] = ['<s>'.encode("utf-8")]
+        toktypes: list[int] = [gguf.TokenType.CONTROL]
+
+        with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
+            lines = f.readlines()
+            for line in lines:
+                parts = line.split(' ')
+                assert len(parts) >= 3
+                token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
+                token = token.encode("utf-8") if isinstance(token, str) else token
+                assert isinstance(token, bytes)
+                assert len(token) == token_len
+                token_text: str = repr(token)[2:-1]  # "b'\xff'" -> "\xff"
+                tokens.append(token_text.encode("utf-8"))
+                toktypes.append(gguf.TokenType.NORMAL)
+        remainder = vocab_size - len(tokens)
+        assert remainder >= 0
+        for i in range(len(tokens), vocab_size):
+            tokens.append(f"[PAD{i}]".encode("utf-8"))
+            toktypes.append(gguf.TokenType.UNUSED)
+
+        self.gguf_writer.add_tokenizer_model("rwkv")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_types(toktypes)
+        special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
+        special_vocab.chat_template = "rwkv-world"
+        # hack: Add '\n\n' as the EOT token to make it chat normally
+        special_vocab._set_special_token("eot", 261)
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def set_gguf_parameters(self):
+        block_count = self.hparams["num_hidden_layers"]
+        head_size = self.hparams["head_size"]
+        hidden_size = self.hparams["hidden_size"]
+        layer_norm_eps = self.hparams["layer_norm_epsilon"]
+        rescale_every_n_layers = self.hparams["rescale_every"]
+        intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
+        time_mix_extra_dim = 64 if hidden_size == 4096 else 32
+        time_decay_extra_dim = 128 if hidden_size == 4096 else 64
+
+        # RWKV isn't context limited
+        self.gguf_writer.add_context_length(1048576)
+        self.gguf_writer.add_embedding_length(hidden_size)
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
+        self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
+        self.gguf_writer.add_wkv_head_size(head_size)
+        self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
+        self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
+        self.gguf_writer.add_feed_forward_length(intermediate_size)
+        self.gguf_writer.add_file_type(self.ftype)
+
+        # required by llama.cpp, unused
+        self.gguf_writer.add_head_count(0)
+
+    lerp_weights: dict[int, dict[str, Tensor]] = {}
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        new_name = self.map_tensor_name(name)
+
+        if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
+            new_name += ".weight"
+
+        if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
+            data_torch = data_torch.transpose(0, 1)
+
+        if new_name.endswith("time_mix_w2.weight"):
+            data_torch = data_torch.permute(0, 2, 1)
+
+        if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
+            data_torch = data_torch.squeeze()
+
+        try:
+            rescale_every_n_layers = self.hparams["rescale_every"]
+            if rescale_every_n_layers > 0:
+                if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
+                    data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
+        except KeyError:
+            pass
+
+        # concat time_mix_lerp weights to reduce some cpu overhead
+        # also reduces the number of tensors in the model
+        if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
+            try:
+                self.lerp_weights[bid][new_name] = data_torch
+            except KeyError:
+                self.lerp_weights[bid] = {new_name: data_torch}
+            if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
+                new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
+                data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
+                yield (new_name, data)
+            return
+
+        yield (new_name, data_torch)
+
+
+@Model.register("RWKV6Qwen2ForCausalLM")
+class RWKV6Qwen2Model(Rwkv6Model):
+    model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
+
+    def set_vocab(self):
+        try:
+            self._set_vocab_sentencepiece()
+        except FileNotFoundError:
+            self._set_vocab_gpt2()
+
+    def set_gguf_parameters(self):
+        block_count = self.hparams["num_hidden_layers"]
+        num_attention_heads = self.hparams["num_attention_heads"]
+        num_key_value_heads = self.hparams["num_key_value_heads"]
+        hidden_size = self.hparams["hidden_size"]
+        head_size = hidden_size // num_attention_heads
+        rms_norm_eps = self.hparams["rms_norm_eps"]
+        intermediate_size = self.hparams["intermediate_size"]
+        time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
+        time_decay_extra_dim = 128 if hidden_size >= 4096 else 64
+
+        # RWKV isn't context limited
+        self.gguf_writer.add_context_length(1048576)
+        self.gguf_writer.add_embedding_length(hidden_size)
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_wkv_head_size(head_size)
+        self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
+        self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
+        self.gguf_writer.add_feed_forward_length(intermediate_size)
+        self.gguf_writer.add_file_type(self.ftype)
+
+        # special parameters for time_mixing in RWKV6QWEN2
+        self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
+        self.gguf_writer.add_token_shift_count(1)
+        # RWKV6QWEN2 use grouped key/value like GQA
+        self.gguf_writer.add_head_count_kv(num_key_value_heads)
+
+        # required by llama.cpp, unused
+        self.gguf_writer.add_head_count(0)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        for new_name, data in super().modify_tensors(data_torch, name, bid):
+            if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
+                data = data.view(5, -1, data.shape[-1])
+                # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
+                # permute them here to avoid code changes
+                data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
+                if "w2" in new_name:
+                    data = data.view(5, -1, data.shape[-1])
+                yield (new_name, data)
+                continue
+            yield (new_name, data)
+
+
+@Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
+class MambaModel(Model):
+    model_arch = gguf.MODEL_ARCH.MAMBA
+
+    def set_vocab(self):
+        vocab_size = self.hparams["vocab_size"]
+        # Round vocab size to next multiple of 8
+        pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
+        # pad using ceiling division
+        # ref: https://stackoverflow.com/a/17511341/22827863
+        vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
+        self.hparams["vocab_size"] = vocab_size
+
+        if (self.dir_model / "tokenizer.json").is_file():
+            self._set_vocab_gpt2()
+        elif (self.dir_model / "tokenizer.model").is_file():
+            self._set_vocab_sentencepiece()
+        else:
+            # Use the GPT-NeoX tokenizer when no tokenizer files are present
+            self._set_vocab_builtin("gpt-neox", vocab_size)
+
+    def set_gguf_parameters(self):
+        d_model = self.find_hparam(["hidden_size",       "d_model"])
+        d_conv  = self.find_hparam(["conv_kernel",       "d_conv"],  optional=True) or 4
+        d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
+        d_state = self.find_hparam(["state_size",        "d_state"], optional=True) or 16
+        # ceiling division
+        # ref: https://stackoverflow.com/a/17511341/22827863
+        # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
+        dt_rank      = self.find_hparam(["time_step_rank",     "dt_rank"],      optional=True) or -(d_model // -16)
+        rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
+        use_dt_b_c_norm = False
+        # For falconmamba we do apply RMS norm on B / DT and C layers
+        if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
+            use_dt_b_c_norm = True
+        # Fail early for models which don't have a block expansion factor of 2
+        assert d_inner == 2 * d_model
+
+        self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
+        self.gguf_writer.add_embedding_length(d_model)
+        self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
+        self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
+        self.gguf_writer.add_block_count(self.block_count)
+        self.gguf_writer.add_ssm_conv_kernel(d_conv)
+        self.gguf_writer.add_ssm_inner_size(d_inner)
+        self.gguf_writer.add_ssm_state_size(d_state)
+        self.gguf_writer.add_ssm_time_step_rank(dt_rank)
+        self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
+        self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
+        self.gguf_writer.add_file_type(self.ftype)
+
+    _tok_embd = None
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
+        tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
+
+        new_name = self.map_tensor_name(name)
+
+        if name.endswith(".A_log"):
+            logger.debug("A_log --> A ==> " + new_name)
+            data_torch = -torch.exp(data_torch)
+
+        # assuming token_embd.weight is seen before output.weight
+        if self._tok_embd is not None and new_name == output_name:
+            if torch.equal(self._tok_embd, data_torch):
+                logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
+                return []
+        elif new_name == tok_embd_name:
+            self._tok_embd = data_torch
+
+        return [(new_name, data_torch)]
+
+
+@Model.register("CohereForCausalLM")
+class CommandR2Model(Model):
+    model_arch = gguf.MODEL_ARCH.COMMAND_R
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+
+        # max_position_embeddings = 8192 in config.json but model was actually
+        # trained on 128k context length
+        # aya-23 models don't have model_max_length specified
+        self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
+        self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
+
+
+@Model.register("Cohere2ForCausalLM")
+class Cohere2Model(Model):
+    model_arch = gguf.MODEL_ARCH.COHERE2
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+
+        self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
+        self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
+        self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
+
+        rotary_pct = self.hparams["rotary_pct"]
+        hidden_size = self.hparams["hidden_size"]
+        num_attention_heads = self.hparams["num_attention_heads"]
+        self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
+        self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
+
+
+@Model.register("OlmoForCausalLM")
+@Model.register("OLMoForCausalLM")
+class OlmoModel(Model):
+    model_arch = gguf.MODEL_ARCH.OLMO
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        self.gguf_writer.add_layer_norm_eps(1e-5)
+        clip_qkv = self.hparams.get("clip_qkv")
+        if clip_qkv is not None:
+            self.gguf_writer.add_clamp_kqv(clip_qkv)
+
+    # Same as super class, but permuting q_proj, k_proj
+    # Copied from: LlamaModel
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        n_head = self.hparams["num_attention_heads"]
+        n_kv_head = self.hparams.get("num_key_value_heads")
+
+        if name.endswith("q_proj.weight"):
+            data_torch = LlamaModel.permute(data_torch, n_head, n_head)
+        if name.endswith("k_proj.weight"):
+            data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("Olmo2ForCausalLM")
+class Olmo2Model(Model):
+    model_arch = gguf.MODEL_ARCH.OLMO2
+
+
+@Model.register("OlmoeForCausalLM")
+class OlmoeModel(Model):
+    model_arch = gguf.MODEL_ARCH.OLMOE
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        self.gguf_writer.add_layer_norm_rms_eps(1e-5)
+        if (n_experts := self.hparams.get("num_experts")) is not None:
+            self.gguf_writer.add_expert_count(n_experts)
+
+    _experts: list[dict[str, Tensor]] | None = None
+
+    # Copied from: Qwen2MoeModel
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        # process the experts separately
+        if name.find("experts") != -1:
+            n_experts = self.hparams["num_experts"]
+            assert bid is not None
+
+            if self._experts is None:
+                self._experts = [{} for _ in range(self.block_count)]
+
+            self._experts[bid][name] = data_torch
+
+            if len(self._experts[bid]) >= n_experts * 3:
+                tensors: list[tuple[str, Tensor]] = []
+
+                # merge the experts into a single 3d tensor
+                for w_name in ["down_proj", "gate_proj", "up_proj"]:
+                    datas: list[Tensor] = []
+
+                    for xid in range(n_experts):
+                        ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
+                        datas.append(self._experts[bid][ename])
+                        del self._experts[bid][ename]
+
+                    data_torch = torch.stack(datas, dim=0)
+
+                    merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
+
+                    new_name = self.map_tensor_name(merged_name)
+
+                    tensors.append((new_name, data_torch))
+                return tensors
+            else:
+                return []
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+    # Copied from: Qwen2MoeModel
+    def prepare_tensors(self):
+        super().prepare_tensors()
+
+        if self._experts is not None:
+            # flatten `list[dict[str, Tensor]]` into `list[str]`
+            experts = [k for d in self._experts for k in d.keys()]
+            if len(experts) > 0:
+                raise ValueError(f"Unprocessed experts: {experts}")
+
+
+@Model.register("JinaBertModel", "JinaBertForMaskedLM")
+class JinaBertV2Model(BertModel):
+    model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        self.intermediate_size = self.hparams["intermediate_size"]
+
+    def get_tensors(self):
+        for name, data in super().get_tensors():
+            if 'gated_layer' in name:
+                d1 = data[:self.intermediate_size, :]
+                name1 = name.replace('gated_layers', 'gated_layers_w')
+                name1 = name1.replace('up_gated_layer', 'gated_layers_v')
+                d2 = data[self.intermediate_size:, :]
+                name2 = name.replace('gated_layers', 'gated_layers_v')
+                name2 = name2.replace('up_gated_layer', 'gated_layers_w')
+                yield name1, d1
+                yield name2, d2
+                continue
+
+            yield name, data
+
+    def set_vocab(self):
+        tokenizer_class = 'BertTokenizer'
+        with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
+            tokenizer_class = json.load(f)['tokenizer_class']
+
+        if tokenizer_class == 'BertTokenizer':
+            super().set_vocab()
+        elif tokenizer_class == 'RobertaTokenizer':
+            self._set_vocab_gpt2()
+            self.gguf_writer.add_token_type_count(2)
+        else:
+            raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
+        self.gguf_writer.add_add_bos_token(True)
+        self.gguf_writer.add_add_eos_token(True)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        # if name starts with "bert.", remove the prefix
+        # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
+        if name.startswith("bert."):
+            name = name[5:]
+
+        return super().modify_tensors(data_torch, name, bid)
+
+
+@Model.register("OpenELMForCausalLM")
+class OpenELMModel(Model):
+    model_arch = gguf.MODEL_ARCH.OPENELM
+
+    @staticmethod
+    def _make_divisible(v: float | int, divisor: int) -> int:
+        # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
+        new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
+        # Make sure that round down does not go down by more than 10%.
+        if new_v < 0.9 * v:
+            new_v += divisor
+        return new_v
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+
+        ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
+        ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
+        self._n_embd: int = self.hparams["model_dim"]
+        self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
+        self._num_query_heads: list[int] = self.hparams["num_query_heads"]
+        self._ffn_dims: list[int] = [
+            OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
+            for multiplier in ffn_multipliers
+        ]
+        assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
+        assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
+
+    # Uses the tokenizer from meta-llama/Llama-2-7b-hf
+    def set_vocab(self):
+        try:
+            self._set_vocab_sentencepiece()
+        except FileNotFoundError:
+            self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
+
+    def set_gguf_parameters(self):
+        n_embd = self._n_embd
+        head_dim = self.hparams["head_dim"]
+        rot_pct = 1.0
+        assert self.block_count == len(self._num_kv_heads)
+        assert self.block_count == len(self._num_query_heads)
+        assert self.block_count == len(self._ffn_dims)
+
+        self.gguf_writer.add_block_count(self.block_count)
+        self.gguf_writer.add_context_length(self.hparams["max_context_length"])
+        self.gguf_writer.add_embedding_length(n_embd)
+        self.gguf_writer.add_feed_forward_length(self._ffn_dims)
+        self.gguf_writer.add_head_count(self._num_query_heads)
+        self.gguf_writer.add_head_count_kv(self._num_kv_heads)
+        self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
+        # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
+        self.gguf_writer.add_layer_norm_rms_eps(1e-6)
+        self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
+        self.gguf_writer.add_key_length(head_dim)
+        self.gguf_writer.add_value_length(head_dim)
+        self.gguf_writer.add_file_type(self.ftype)
+
+    def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
+        if "n_layers" in keys:
+            return self.hparams["num_transformer_layers"]
+
+        return super().find_hparam(keys, optional)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+
+        # split ff
+        if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
+            ff_dim = self._ffn_dims[bid]
+            yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
+            yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
+            return
+
+        yield (self.map_tensor_name(name), data_torch)
+
+
+@Model.register("ArcticForCausalLM")
+class ArcticModel(Model):
+    model_arch = gguf.MODEL_ARCH.ARCTIC
+
+    def set_vocab(self):
+        # The reason for using a custom implementation here is that the
+        # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
+        # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
+        from sentencepiece import SentencePieceProcessor
+
+        tokenizer_path = self.dir_model / 'tokenizer.model'
+
+        if not tokenizer_path.is_file():
+            logger.error(f'Error: Missing {tokenizer_path}')
+            sys.exit(1)
+
+        # Read the whole vocabulary from the tokenizer.model file
+        tokenizer = SentencePieceProcessor()
+        tokenizer.LoadFromFile(str(tokenizer_path))
+
+        vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+        tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
+        scores: list[float] = [-10000.0] * vocab_size
+        toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
+
+        for token_id in range(tokenizer.vocab_size()):
+
+            piece = tokenizer.IdToPiece(token_id)
+            text = piece.encode("utf-8")
+            score = tokenizer.GetScore(token_id)
+
+            toktype = SentencePieceTokenTypes.NORMAL
+            if tokenizer.IsUnknown(token_id):
+                toktype = SentencePieceTokenTypes.UNKNOWN
+            elif tokenizer.IsControl(token_id):
+                toktype = SentencePieceTokenTypes.CONTROL
+            elif tokenizer.IsUnused(token_id):
+                toktype = SentencePieceTokenTypes.UNUSED
+            elif tokenizer.IsByte(token_id):
+                toktype = SentencePieceTokenTypes.BYTE
+
+            tokens[token_id] = text
+            scores[token_id] = score
+            toktypes[token_id] = toktype
+
+        # Use the added_tokens_decoder field from tokeniser_config.json as the source
+        # of information about added/redefined tokens and modify them accordingly.
+        tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
+        if tokenizer_config_file.is_file():
+            with open(tokenizer_config_file, "r", encoding="utf-8") as f:
+                tokenizer_config_json = json.load(f)
+
+                if "added_tokens_decoder" in tokenizer_config_json:
+                    added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
+                    for token_id, token_json in added_tokens_decoder.items():
+                        token_id = int(token_id)
+                        if token_id >= vocab_size:
+                            logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
+                            continue
+
+                        token_content = token_json["content"]
+                        token_type = SentencePieceTokenTypes.USER_DEFINED
+                        token_score = -10000.0
+
+                        # Map unk_token to UNKNOWN, other special tokens to CONTROL
+                        # Set the score to 0.0 as in the original tokenizer.model
+                        if ("special" in token_json) and token_json["special"]:
+                            if token_content == tokenizer_config_json["unk_token"]:
+                                token_type = SentencePieceTokenTypes.UNKNOWN
+                            else:
+                                token_type = SentencePieceTokenTypes.CONTROL
+                            token_score = 0.0
+
+                        logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
+                        tokens[token_id] = token_content.encode("utf-8")
+                        toktypes[token_id] = token_type
+                        scores[token_id] = token_score
+
+        self.gguf_writer.add_tokenizer_model("llama")
+        self.gguf_writer.add_tokenizer_pre("default")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_scores(scores)
+        self.gguf_writer.add_token_types(toktypes)
+
+        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        hparams = self.hparams
+        self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+        self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
+
+    _experts: list[dict[str, Tensor]] | None = None
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        n_head = self.hparams["num_attention_heads"]
+        n_kv_head = self.hparams.get("num_key_value_heads")
+
+        if name.endswith("q_proj.weight"):
+            data_torch = LlamaModel.permute(data_torch, n_head, n_head)
+        if name.endswith("k_proj.weight"):
+            data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
+
+        # process the experts separately
+        if name.find("block_sparse_moe.experts") != -1:
+            n_experts = self.hparams["num_local_experts"]
+
+            assert bid is not None
+
+            if self._experts is None:
+                self._experts = [{} for _ in range(self.block_count)]
+
+            self._experts[bid][name] = data_torch
+
+            if len(self._experts[bid]) >= n_experts * 3:
+                tensors: list[tuple[str, Tensor]] = []
+
+                # merge the experts into a single 3d tensor
+                for wid in ["w1", "w2", "w3"]:
+                    datas: list[Tensor] = []
+
+                    for xid in range(n_experts):
+                        ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
+                        datas.append(self._experts[bid][ename])
+                        del self._experts[bid][ename]
+
+                    data_torch = torch.stack(datas, dim=0)
+
+                    merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
+
+                    new_name = self.map_tensor_name(merged_name)
+
+                    tensors.append((new_name, data_torch))
+                return tensors
+            else:
+                return []
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def prepare_tensors(self):
+        super().prepare_tensors()
+
+        if self._experts is not None:
+            # flatten `list[dict[str, Tensor]]` into `list[str]`
+            experts = [k for d in self._experts for k in d.keys()]
+            if len(experts) > 0:
+                raise ValueError(f"Unprocessed experts: {experts}")
+
+
+@Model.register("DeepseekForCausalLM")
+class DeepseekModel(Model):
+    model_arch = gguf.MODEL_ARCH.DEEPSEEK
+
+    def set_vocab(self):
+        try:
+            self._set_vocab_sentencepiece()
+        except FileNotFoundError:
+            self._set_vocab_gpt2()
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        hparams = self.hparams
+        if "head_dim" in hparams:
+            rope_dim = hparams["head_dim"]
+        else:
+            rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
+
+        self.gguf_writer.add_rope_dimension_count(rope_dim)
+        self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
+        self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
+        self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+        self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
+        self.gguf_writer.add_expert_weights_scale(1.0)
+        self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
+        self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
+
+    _experts: list[dict[str, Tensor]] | None = None
+
+    @staticmethod
+    def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
+        if n_head_kv is not None and n_head != n_head_kv:
+            n_head = n_head_kv
+        return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+                .swapaxes(1, 2)
+                .reshape(weights.shape))
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        n_head = self.hparams["num_attention_heads"]
+        n_kv_head = self.hparams.get("num_key_value_heads")
+
+        if name.endswith(("q_proj.weight", "q_proj.bias")):
+            data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
+        if name.endswith(("k_proj.weight", "k_proj.bias")):
+            data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
+
+        # process the experts separately
+        if name.find("mlp.experts") != -1:
+            n_experts = self.hparams["n_routed_experts"]
+            assert bid is not None
+
+            if self._experts is None:
+                self._experts = [{} for _ in range(self.block_count)]
+
+            self._experts[bid][name] = data_torch
+
+            if len(self._experts[bid]) >= n_experts * 3:
+                tensors: list[tuple[str, Tensor]] = []
+
+                # merge the experts into a single 3d tensor
+                for w_name in ["down_proj", "gate_proj", "up_proj"]:
+                    datas: list[Tensor] = []
+
+                    for xid in range(n_experts):
+                        ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
+                        datas.append(self._experts[bid][ename])
+                        del self._experts[bid][ename]
+
+                    data_torch = torch.stack(datas, dim=0)
+
+                    merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
+
+                    new_name = self.map_tensor_name(merged_name)
+
+                    tensors.append((new_name, data_torch))
+                return tensors
+            else:
+                return []
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def prepare_tensors(self):
+        super().prepare_tensors()
+
+        if self._experts is not None:
+            # flatten `list[dict[str, Tensor]]` into `list[str]`
+            experts = [k for d in self._experts for k in d.keys()]
+            if len(experts) > 0:
+                raise ValueError(f"Unprocessed experts: {experts}")
+
+
+@Model.register("DeepseekV2ForCausalLM")
+@Model.register("DeepseekV3ForCausalLM")
+class DeepseekV2Model(Model):
+    model_arch = gguf.MODEL_ARCH.DEEPSEEK2
+
+    def set_vocab(self):
+        self._set_vocab_gpt2()
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        hparams = self.hparams
+
+        self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
+        self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+        if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
+            self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
+        self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
+        self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
+        self.gguf_writer.add_value_length(hparams["v_head_dim"])
+        self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
+        self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
+        self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
+        self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
+        self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
+
+        if hparams["scoring_func"] == "sigmoid":
+            self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
+        elif hparams["scoring_func"] == "softmax":
+            self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
+        else:
+            raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
+
+        self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
+
+        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+            if self.hparams["rope_scaling"].get("type") == "yarn":
+                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
+                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+                self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
+                self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
+
+    _experts: list[dict[str, Tensor]] | None = None
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        # rename e_score_correction_bias tensors
+        if name.endswith("e_score_correction_bias"):
+            name = name.replace("e_score_correction_bias", "e_score_correction.bias")
+
+        # skip Multi-Token Prediction (MTP) layers
+        block_count = self.hparams["num_hidden_layers"]
+        match = re.match(r"model.layers.(\d+)", name)
+        if match and int(match.group(1)) >= block_count:
+            return []
+
+        # process the experts separately
+        if name.find("mlp.experts") != -1:
+            n_experts = self.hparams["n_routed_experts"]
+            assert bid is not None
+
+            if self._experts is None:
+                self._experts = [{} for _ in range(self.block_count)]
+
+            self._experts[bid][name] = data_torch
+
+            if len(self._experts[bid]) >= n_experts * 3:
+                tensors: list[tuple[str, Tensor]] = []
+
+                # merge the experts into a single 3d tensor
+                for w_name in ["down_proj", "gate_proj", "up_proj"]:
+                    datas: list[Tensor] = []
+
+                    for xid in range(n_experts):
+                        ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
+                        datas.append(self._experts[bid][ename])
+                        del self._experts[bid][ename]
+
+                    data_torch = torch.stack(datas, dim=0)
+
+                    merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
+
+                    new_name = self.map_tensor_name(merged_name)
+
+                    tensors.append((new_name, data_torch))
+                return tensors
+            else:
+                return []
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def prepare_tensors(self):
+        super().prepare_tensors()
+
+        if self._experts is not None:
+            # flatten `list[dict[str, Tensor]]` into `list[str]`
+            experts = [k for d in self._experts for k in d.keys()]
+            if len(experts) > 0:
+                raise ValueError(f"Unprocessed experts: {experts}")
+
+
+@Model.register("T5WithLMHeadModel")
+@Model.register("T5ForConditionalGeneration")
+@Model.register("MT5ForConditionalGeneration")
+@Model.register("UMT5ForConditionalGeneration")
+class T5Model(Model):
+    model_arch = gguf.MODEL_ARCH.T5
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        self.shared_token_embeddings_found = False
+
+    def set_vocab(self):
+        # to avoid TypeError: Descriptors cannot be created directly
+        # exception when importing sentencepiece_model_pb2
+        os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
+        from sentencepiece import SentencePieceProcessor
+        from sentencepiece import sentencepiece_model_pb2 as model
+
+        tokenizer_path = self.dir_model / 'tokenizer.model'
+
+        # many older models use spiece.model tokenizer model filename
+        if not tokenizer_path.is_file():
+            tokenizer_path = self.dir_model / 'spiece.model'
+
+        if not tokenizer_path.is_file():
+            raise FileNotFoundError(f"File not found: {tokenizer_path}")
+
+        sentencepiece_model = model.ModelProto()  # pyright: ignore[reportAttributeAccessIssue]
+        sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
+
+        # some models like Pile-T5 family use BPE tokenizer instead of Unigram
+        if sentencepiece_model.trainer_spec.model_type == 2:  # BPE
+            # assure the tokenizer model file name is correct
+            assert tokenizer_path.name == 'tokenizer.model'
+            return self._set_vocab_sentencepiece()
+        else:
+            assert sentencepiece_model.trainer_spec.model_type == 1  # UNIGRAM
+
+        add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
+        remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
+        precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
+
+        tokenizer = SentencePieceProcessor()
+        tokenizer.LoadFromFile(str(tokenizer_path))
+
+        vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+        tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
+        scores: list[float] = [-10000.0] * vocab_size
+        toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
+
+        for token_id in range(tokenizer.vocab_size()):
+            piece = tokenizer.IdToPiece(token_id)
+            text = piece.encode("utf-8")
+            score = tokenizer.GetScore(token_id)
+
+            toktype = SentencePieceTokenTypes.NORMAL
+            if tokenizer.IsUnknown(token_id):
+                toktype = SentencePieceTokenTypes.UNKNOWN
+            elif tokenizer.IsControl(token_id):
+                toktype = SentencePieceTokenTypes.CONTROL
+            elif tokenizer.IsUnused(token_id):
+                toktype = SentencePieceTokenTypes.UNUSED
+            elif tokenizer.IsByte(token_id):
+                toktype = SentencePieceTokenTypes.BYTE
+
+            tokens[token_id] = text
+            scores[token_id] = score
+            toktypes[token_id] = toktype
+
+        added_tokens_file = self.dir_model / 'added_tokens.json'
+        if added_tokens_file.is_file():
+            with open(added_tokens_file, "r", encoding="utf-8") as f:
+                added_tokens_json = json.load(f)
+                for key in added_tokens_json:
+                    token_id = added_tokens_json[key]
+                    if token_id >= vocab_size:
+                        logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
+                        continue
+
+                    tokens[token_id] = key.encode("utf-8")
+                    scores[token_id] = -1000.0
+                    toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+
+        if vocab_size > len(tokens):
+            pad_count = vocab_size - len(tokens)
+            logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
+            for i in range(1, pad_count + 1):
+                tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
+                scores.append(-1000.0)
+                toktypes.append(SentencePieceTokenTypes.UNUSED)
+
+        self.gguf_writer.add_tokenizer_model("t5")
+        self.gguf_writer.add_tokenizer_pre("default")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_scores(scores)
+        self.gguf_writer.add_token_types(toktypes)
+        self.gguf_writer.add_add_space_prefix(add_prefix)
+        self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
+        if precompiled_charsmap:
+            self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
+
+        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+        self.gguf_writer.add_add_bos_token(False)
+        self.gguf_writer.add_add_eos_token(True)
+
+    def set_gguf_parameters(self):
+        if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
+            logger.warning("Couldn't find context length in config.json, assuming default value of 512")
+            n_ctx = 512
+        self.gguf_writer.add_context_length(n_ctx)
+        self.gguf_writer.add_embedding_length(self.hparams["d_model"])
+        self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
+        self.gguf_writer.add_block_count(self.hparams["num_layers"])
+        self.gguf_writer.add_head_count(self.hparams["num_heads"])
+        self.gguf_writer.add_key_length(self.hparams["d_kv"])
+        self.gguf_writer.add_value_length(self.hparams["d_kv"])
+        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
+        # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
+        # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
+        # and decoder and ignore the remaining ones.
+        if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
+            if not self.shared_token_embeddings_found:
+                name = "shared.weight"
+                self.shared_token_embeddings_found = True
+            else:
+                logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
+                return []
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("T5EncoderModel")
+class T5EncoderModel(Model):
+    model_arch = gguf.MODEL_ARCH.T5ENCODER
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        self.shared_token_embeddings_found = False
+
+    def set_vocab(self):
+        # to avoid TypeError: Descriptors cannot be created directly
+        # exception when importing sentencepiece_model_pb2
+        os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
+        from sentencepiece import SentencePieceProcessor
+        from sentencepiece import sentencepiece_model_pb2 as model
+
+        tokenizer_path = self.dir_model / 'tokenizer.model'
+
+        # many older models use spiece.model tokenizer model filename
+        if not tokenizer_path.is_file():
+            tokenizer_path = self.dir_model / 'spiece.model'
+
+        if not tokenizer_path.is_file():
+            raise FileNotFoundError(f"File not found: {tokenizer_path}")
+
+        sentencepiece_model = model.ModelProto()  # pyright: ignore[reportAttributeAccessIssue]
+        sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
+
+        # some models like Pile-T5 family use BPE tokenizer instead of Unigram
+        if sentencepiece_model.trainer_spec.model_type == 2:  # BPE
+            # assure the tokenizer model file name is correct
+            assert tokenizer_path.name == 'tokenizer.model'
+            return self._set_vocab_sentencepiece()
+        else:
+            assert sentencepiece_model.trainer_spec.model_type == 1  # UNIGRAM
+
+        add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
+        remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
+        precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
+
+        tokenizer = SentencePieceProcessor()
+        tokenizer.LoadFromFile(str(tokenizer_path))
+
+        vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+        tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
+        scores: list[float] = [-10000.0] * vocab_size
+        toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
+
+        for token_id in range(tokenizer.vocab_size()):
+            piece = tokenizer.IdToPiece(token_id)
+            text = piece.encode("utf-8")
+            score = tokenizer.GetScore(token_id)
+
+            toktype = SentencePieceTokenTypes.NORMAL
+            if tokenizer.IsUnknown(token_id):
+                toktype = SentencePieceTokenTypes.UNKNOWN
+            elif tokenizer.IsControl(token_id):
+                toktype = SentencePieceTokenTypes.CONTROL
+            elif tokenizer.IsUnused(token_id):
+                toktype = SentencePieceTokenTypes.UNUSED
+            elif tokenizer.IsByte(token_id):
+                toktype = SentencePieceTokenTypes.BYTE
+
+            tokens[token_id] = text
+            scores[token_id] = score
+            toktypes[token_id] = toktype
+
+        added_tokens_file = self.dir_model / 'added_tokens.json'
+        if added_tokens_file.is_file():
+            with open(added_tokens_file, "r", encoding="utf-8") as f:
+                added_tokens_json = json.load(f)
+                for key in added_tokens_json:
+                    token_id = added_tokens_json[key]
+                    if token_id >= vocab_size:
+                        logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
+                        continue
+
+                    tokens[token_id] = key.encode("utf-8")
+                    scores[token_id] = -1000.0
+                    toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+
+        if vocab_size > len(tokens):
+            pad_count = vocab_size - len(tokens)
+            logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
+            for i in range(1, pad_count + 1):
+                tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
+                scores.append(-1000.0)
+                toktypes.append(SentencePieceTokenTypes.UNUSED)
+
+        self.gguf_writer.add_tokenizer_model("t5")
+        self.gguf_writer.add_tokenizer_pre("default")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_scores(scores)
+        self.gguf_writer.add_token_types(toktypes)
+        self.gguf_writer.add_add_space_prefix(add_prefix)
+        self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
+        if precompiled_charsmap:
+            self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
+
+        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+        self.gguf_writer.add_add_bos_token(False)
+        self.gguf_writer.add_add_eos_token(True)
+
+    def set_gguf_parameters(self):
+        if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
+            logger.warning("Couldn't find context length in config.json, assuming default value of 512")
+            n_ctx = 512
+        self.gguf_writer.add_context_length(n_ctx)
+        self.gguf_writer.add_embedding_length(self.hparams["d_model"])
+        self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
+        self.gguf_writer.add_block_count(self.hparams["num_layers"])
+        self.gguf_writer.add_head_count(self.hparams["num_heads"])
+        self.gguf_writer.add_key_length(self.hparams["d_kv"])
+        self.gguf_writer.add_value_length(self.hparams["d_kv"])
+        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
+        # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
+        # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
+        # and decoder and ignore the remaining ones.
+        if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
+            if not self.shared_token_embeddings_found:
+                name = "shared.weight"
+                self.shared_token_embeddings_found = True
+            else:
+                logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
+                return []
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("JAISLMHeadModel")
+class JaisModel(Model):
+    model_arch = gguf.MODEL_ARCH.JAIS
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+
+        # SwigLU activation
+        assert self.hparams["activation_function"] == "swiglu"
+        # ALiBi position embedding
+        assert self.hparams["position_embedding_type"] == "alibi"
+
+        # Embeddings scale
+        self.embeddings_scale = 1.0
+        if 'mup_embeddings_scale' in self.hparams:
+            self.embeddings_scale = self.hparams['mup_embeddings_scale']
+        elif 'embeddings_scale' in self.hparams:
+            self.embeddings_scale = self.hparams['embeddings_scale']
+        else:
+            assert False
+
+        self.width_scale = 1.0
+        if 'mup_output_alpha' in self.hparams:
+            assert 'mup_width_scale' in self.hparams
+            self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
+        elif 'width_scale' in self.hparams:
+            self.width_scale = self.hparams['width_scale']
+        else:
+            assert False
+
+        self.max_alibi_bias = 8.0
+
+    def set_vocab(self):
+        self._set_vocab_gpt2()
+
+    def set_gguf_parameters(self):
+        self.gguf_writer.add_block_count(self.hparams["n_layer"])
+        self.gguf_writer.add_context_length(self.hparams["n_positions"])
+        self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
+        self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
+        self.gguf_writer.add_head_count(self.hparams["n_head"])
+        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        tensors: list[tuple[str, Tensor]] = []
+
+        # we don't need these
+        if name.endswith((".attn.bias")):
+            return tensors
+
+        if name.endswith(("relative_pe.slopes")):
+            # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
+            # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
+            # but Jais's PyTorch model simply precalculates the slope values and places them
+            # in relative_pes.slopes
+            n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
+            first_val = float(data_torch[0].item())
+            self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
+
+            return tensors
+
+        if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
+            data_torch = data_torch.transpose(1, 0)
+
+        new_name = self.map_tensor_name(name)
+
+        if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
+            tensors.append((new_name, data_torch * self.embeddings_scale))
+        elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
+            tensors.append((new_name, data_torch * self.width_scale))
+        else:
+            tensors.append((new_name, data_torch))
+
+        return tensors
+
+    def prepare_tensors(self):
+        super().prepare_tensors()
+        self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
+
+
+@Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
+class ChatGLMModel(Model):
+    model_arch = gguf.MODEL_ARCH.CHATGLM
+
+    def set_vocab_chatglm3(self):
+        dir_model = self.dir_model
+        hparams = self.hparams
+        tokens: list[bytes] = []
+        toktypes: list[int] = []
+        scores: list[float] = []
+
+        from transformers import AutoTokenizer
+        tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
+        vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
+        assert max(tokenizer.get_vocab().values()) < vocab_size
+        role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
+        special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
+        for token_id in range(vocab_size):
+            piece = tokenizer._convert_id_to_token(token_id)
+            if token_id == 0:
+                piece = "<unk>"
+            elif token_id == 1:
+                piece = "<bos>"
+            elif token_id == 2:
+                piece = "<eos>"
+
+            text = piece.encode("utf-8")
+            score = 0.0
+            # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
+            # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
+            if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
+                score = tokenizer.tokenizer.sp_model.get_score(token_id)
+
+            if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
+                if piece in special_tokens:
+                    toktype = SentencePieceTokenTypes.CONTROL
+                elif len(piece) == 0:
+                    text = f"[PAD{token_id}]".encode("utf-8")
+                    toktype = SentencePieceTokenTypes.UNUSED
+                else:
+                    toktype = SentencePieceTokenTypes.USER_DEFINED
+                tokens.append(text)
+                scores.append(score)
+                toktypes.append(toktype)
+                continue
+
+            toktype = SentencePieceTokenTypes.NORMAL
+            if tokenizer.tokenizer.sp_model.is_unknown(token_id):
+                toktype = SentencePieceTokenTypes.UNKNOWN
+            elif tokenizer.tokenizer.sp_model.is_control(token_id):
+                toktype = SentencePieceTokenTypes.CONTROL
+            elif tokenizer.tokenizer.sp_model.is_unused(token_id):
+                toktype = SentencePieceTokenTypes.UNUSED
+            elif tokenizer.tokenizer.sp_model.is_byte(token_id):
+                toktype = SentencePieceTokenTypes.BYTE
+
+            tokens.append(text)
+            scores.append(score)
+            toktypes.append(toktype)
+
+        self.gguf_writer.add_tokenizer_model("llama")
+        # glm3 needs prefix and suffix formatted as:
+        # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
+        self.gguf_writer.add_tokenizer_pre("chatglm-spm")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_scores(scores)
+        self.gguf_writer.add_token_types(toktypes)
+
+        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    @staticmethod
+    def token_bytes_to_string(b):
+        from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
+        byte_encoder = bytes_to_unicode()
+        return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
+
+    @staticmethod
+    def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
+        parts = [bytes([b]) for b in token]
+        while True:
+            min_idx = None
+            min_rank = None
+            for i, pair in enumerate(zip(parts[:-1], parts[1:])):
+                rank = mergeable_ranks.get(pair[0] + pair[1])
+                if rank is not None and (min_rank is None or rank < min_rank):
+                    min_idx = i
+                    min_rank = rank
+            if min_rank is None or (max_rank is not None and min_rank >= max_rank):
+                break
+            assert min_idx is not None
+            parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
+        return parts
+
+    def set_vocab(self):
+        if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
+            self.set_vocab_chatglm3()
+            return
+
+        dir_model = self.dir_model
+        hparams = self.hparams
+        tokens: list[str] = []
+        toktypes: list[int] = []
+
+        from transformers import AutoTokenizer
+        tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
+        vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
+        assert max(tokenizer.get_vocab().values()) < vocab_size
+
+        tokens, toktypes, tokpre = self.get_vocab_base()
+        self.gguf_writer.add_tokenizer_model("gpt2")
+        self.gguf_writer.add_tokenizer_pre(tokpre)
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_types(toktypes)
+        special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
+        # only add special tokens when they were not already loaded from config.json
+        special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
+        special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
+        # this one is usually not in config.json anyway
+        special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def set_gguf_parameters(self):
+        n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
+        n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
+        n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
+        self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
+        self.gguf_writer.add_embedding_length(n_embed)
+        self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
+        self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
+        self.gguf_writer.add_head_count(n_head)
+        self.gguf_writer.add_head_count_kv(n_head_kv)
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
+        self.gguf_writer.add_file_type(self.ftype)
+        if "attention_dim" in self.hparams:
+            rope_dim = self.hparams["attention_dim"]
+        else:
+            rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
+        self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
+        self.gguf_writer.add_add_bos_token(False)
+        rope_freq = 10000
+        if "rope_ratio" in self.hparams:
+            rope_freq = rope_freq * self.hparams["rope_ratio"]
+        self.gguf_writer.add_rope_freq_base(rope_freq)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unused
+
+        if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
+            return []
+
+        name = name.removeprefix("transformer.")
+        return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("NemotronForCausalLM")
+class NemotronModel(Model):
+    model_arch = gguf.MODEL_ARCH.NEMOTRON
+
+    def set_vocab(self):
+        self._set_vocab_sentencepiece()
+        self.gguf_writer.add_pad_token_id(0)
+        self.gguf_writer.add_unk_token_id(1)
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        hparams = self.hparams
+        self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+
+        f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
+        self.gguf_writer.add_layer_norm_eps(f_norm_eps)
+
+        # * Partial RoPE
+        rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
+        n_embd = self.find_hparam(["hidden_size", "n_embd"])
+        n_head = self.find_hparam(["num_attention_heads", "n_head"])
+        self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
+
+        # * RopeScaling for Nemotron
+        if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
+        else:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+            self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
+        #   model.layers.{l}.input_layernorm.weight
+        #   model.layers.{l}.post_attention_layernorm.weight
+        #   model.norm.weight
+        if name.endswith("norm.weight"):
+            data_torch = data_torch + 1
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+
+@Model.register("ExaoneForCausalLM")
+class ExaoneModel(Model):
+    model_arch = gguf.MODEL_ARCH.EXAONE
+
+    def set_gguf_parameters(self):
+        hparams = self.hparams
+
+        assert (hparams["activation_function"] == "silu")
+
+        max_position_embeddings = hparams["max_position_embeddings"]
+        embed_dim = hparams["hidden_size"]
+        num_heads = hparams["num_attention_heads"]
+        num_kv_heads = hparams.get("num_key_value_heads", num_heads)
+        layer_norm_eps = hparams["layer_norm_epsilon"]
+        intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
+        num_layers = hparams["num_layers"]
+        # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
+        # attention_dropout_rate = hparams["attention_dropout"]
+        # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
+        # embed_dropout_rate = hparams["embed_dropout"]
+        self.gguf_writer.add_embedding_length(embed_dim)
+        self.gguf_writer.add_head_count(num_heads)
+        self.gguf_writer.add_head_count_kv(num_kv_heads)
+        self.gguf_writer.add_context_length(max_position_embeddings)
+        self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
+        self.gguf_writer.add_feed_forward_length(intermediate_size)
+        self.gguf_writer.add_block_count(num_layers)
+        self.gguf_writer.add_file_type(self.ftype)
+
+        if (rope_theta := self.hparams.get("rope_theta")) is not None:
+            self.gguf_writer.add_rope_freq_base(rope_theta)
+        rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
+        rotary_factor = rotary_factor if rotary_factor is not None else 1.0
+        self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
+        if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
+            if hparams["rope_scaling"].get("type") == "linear":
+                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+                self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
+
+    def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
+        if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
+            if rope_scaling.get("rope_type", '').lower() == "llama3":
+                base = self.hparams.get("rope_theta", 10000.0)
+                dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+                freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
+
+                factor = rope_scaling.get("factor", 8.0)
+                low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
+                high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
+                old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
+
+                low_freq_wavelen = old_context_len / low_freq_factor
+                high_freq_wavelen = old_context_len / high_freq_factor
+                assert low_freq_wavelen != high_freq_wavelen
+
+                rope_factors = []
+                for freq in freqs:
+                    wavelen = 2 * math.pi / freq
+                    if wavelen < high_freq_wavelen:
+                        rope_factors.append(1)
+                    elif wavelen > low_freq_wavelen:
+                        rope_factors.append(factor)
+                    else:
+                        smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
+                        rope_factors.append(1 / ((1 - smooth) / factor + smooth))
+
+                yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
+
+
+@Model.register("GraniteForCausalLM")
+class GraniteModel(LlamaModel):
+    """Conversion for IBM's GraniteForCausalLM"""
+    model_arch = gguf.MODEL_ARCH.GRANITE
+
+    def set_gguf_parameters(self):
+        """Granite uses standard llama parameters with the following differences:
+
+        - No head_dim support
+        - New multiplier params:
+            - attention_scale
+            - embedding_scale
+            - residual_scale
+        - logits_scaling
+        """
+        if head_dim := self.hparams.pop("head_dim", None):
+            logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
+        super().set_gguf_parameters()
+        # NOTE: Convert _multiplier params to _scale params for naming
+        #   consistency
+        if attention_scale := self.hparams.get("attention_multiplier"):
+            self.gguf_writer.add_attention_scale(attention_scale)
+            logger.info("gguf: (granite) attention_scale = %s", attention_scale)
+        if embedding_scale := self.hparams.get("embedding_multiplier"):
+            self.gguf_writer.add_embedding_scale(embedding_scale)
+            logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
+        if residual_scale := self.hparams.get("residual_multiplier"):
+            self.gguf_writer.add_residual_scale(residual_scale)
+            logger.info("gguf: (granite) residual_scale = %s", residual_scale)
+        if logits_scale := self.hparams.get("logits_scaling"):
+            self.gguf_writer.add_logit_scale(logits_scale)
+            logger.info("gguf: (granite) logits_scale = %s", logits_scale)
+
+
+@Model.register("GraniteMoeForCausalLM")
+class GraniteMoeModel(GraniteModel):
+    """Conversion for IBM's GraniteMoeForCausalLM"""
+    model_arch = gguf.MODEL_ARCH.GRANITE_MOE
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        """In modeling_granitemoe, the JetMoe implementation of parallel experts
+        is used. This essentially merges w1 and w3 into a single tensor with 2x
+        the hidden size that is then split during forward. To keep compatibility
+        with existing mixtral support, we pull them apart here.
+        """
+
+        if name.endswith("block_sparse_moe.input_linear.weight"):
+            ffn_dim = self.hparams["intermediate_size"]
+            assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
+            gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
+            return [
+                (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
+                (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
+            ]
+
+        return super().modify_tensors(data_torch, name, bid)
+
+
+@Model.register("ChameleonForConditionalGeneration")
+@Model.register("ChameleonForCausalLM")  # obsolete
+class ChameleonModel(Model):
+    model_arch = gguf.MODEL_ARCH.CHAMELEON
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
+
+    def set_vocab(self):
+        self._set_vocab_gpt2()
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        # ignore image tokenizer for now
+        # TODO: remove this once image support is implemented for Chameleon
+        if name.startswith("model.vqmodel"):
+            return []
+
+        n_head = self.hparams["num_attention_heads"]
+        n_kv_head = self.hparams.get("num_key_value_heads")
+        hidden_dim = self.hparams.get("hidden_size")
+
+        if name.endswith(("q_proj.weight", "q_proj.bias")):
+            data_torch = LlamaModel.permute(data_torch, n_head, n_head)
+        if name.endswith(("k_proj.weight", "k_proj.bias")):
+            data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
+        if name.endswith(("q_norm.weight", "q_norm.bias")):
+            data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
+        if name.endswith(("k_norm.weight", "k_norm.bias")):
+            data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+    # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
+    @staticmethod
+    def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
+        head_dim = hidden_dim // n_heads
+        data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
+        data_torch = data_torch.repeat_interleave(n_heads, 0)
+        return data_torch
+
+
+###### CONVERSION LOGIC ######
+
+
+# tree of lazy tensors
+class LazyTorchTensor(gguf.LazyBase):
+    _tensor_type = torch.Tensor
+    # to keep the type-checker happy
+    dtype: torch.dtype
+    shape: torch.Size
+
+    # only used when converting a torch.Tensor to a np.ndarray
+    _dtype_map: dict[torch.dtype, type] = {
+        torch.float16: np.float16,
+        torch.float32: np.float32,
+    }
+
+    # used for safetensors slices
+    # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
+    # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
+    _dtype_str_map: dict[str, torch.dtype] = {
+        "F64": torch.float64,
+        "F32": torch.float32,
+        "BF16": torch.bfloat16,
+        "F16": torch.float16,
+        # "U64": torch.uint64,
+        "I64": torch.int64,
+        # "U32": torch.uint32,
+        "I32": torch.int32,
+        # "U16": torch.uint16,
+        "I16": torch.int16,
+        "U8": torch.uint8,
+        "I8": torch.int8,
+        "BOOL": torch.bool,
+        "F8_E4M3": torch.float8_e4m3fn,
+        "F8_E5M2": torch.float8_e5m2,
+    }
+
+    def numpy(self) -> gguf.LazyNumpyTensor:
+        dtype = self._dtype_map[self.dtype]
+        return gguf.LazyNumpyTensor(
+            meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
+            args=(self,),
+            func=(lambda s: s.numpy())
+        )
+
+    @classmethod
+    def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
+        return torch.empty(size=shape, dtype=dtype, device="meta")
+
+    @classmethod
+    def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
+        dtype = cls._dtype_str_map[st_slice.get_dtype()]
+        shape: tuple[int, ...] = tuple(st_slice.get_shape())
+        lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
+        return cast(torch.Tensor, lazy)
+
+    @classmethod
+    def __torch_function__(cls, func, types, args=(), kwargs=None):
+        del types  # unused
+
+        if kwargs is None:
+            kwargs = {}
+
+        if func is torch.Tensor.numpy:
+            return args[0].numpy()
+
+        return cls._wrap_fn(func)(*args, **kwargs)
+
+
+def parse_args() -> argparse.Namespace:
+    parser = argparse.ArgumentParser(
+        description="Convert a huggingface model to a GGML compatible file")
+    parser.add_argument(
+        "--vocab-only", action="store_true",
+        help="extract only the vocab",
+    )
+    parser.add_argument(
+        "--outfile", type=Path,
+        help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
+    )
+    parser.add_argument(
+        "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
+        help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
+    )
+    parser.add_argument(
+        "--bigendian", action="store_true",
+        help="model is executed on big endian machine",
+    )
+    parser.add_argument(
+        "model", type=Path,
+        help="directory containing model file",
+        nargs="?",
+    )
+    parser.add_argument(
+        "--use-temp-file", action="store_true",
+        help="use the tempfile library while processing (helpful when running out of memory, process killed)",
+    )
+    parser.add_argument(
+        "--no-lazy", action="store_true",
+        help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
+    )
+    parser.add_argument(
+        "--model-name", type=str, default=None,
+        help="name of the model",
+    )
+    parser.add_argument(
+        "--verbose", action="store_true",
+        help="increase output verbosity",
+    )
+    parser.add_argument(
+        "--split-max-tensors", type=int, default=0,
+        help="max tensors in each split",
+    )
+    parser.add_argument(
+        "--split-max-size", type=str, default="0",
+        help="max size per split N(M|G)",
+    )
+    parser.add_argument(
+        "--dry-run", action="store_true",
+        help="only print out a split plan and exit, without writing any new files",
+    )
+    parser.add_argument(
+        "--no-tensor-first-split", action="store_true",
+        help="do not add tensors to the first split (disabled by default)"
+    )
+    parser.add_argument(
+        "--metadata", type=Path,
+        help="Specify the path for an authorship metadata override file"
+    )
+    parser.add_argument(
+        "--print-supported-models", action="store_true",
+        help="Print the supported models"
+    )
+
+    args = parser.parse_args()
+    if not args.print_supported_models and args.model is None:
+        parser.error("the following arguments are required: model")
+    return args
+
+
+def split_str_to_n_bytes(split_str: str) -> int:
+    if split_str.endswith("K"):
+        n = int(split_str[:-1]) * 1000
+    elif split_str.endswith("M"):
+        n = int(split_str[:-1]) * 1000 * 1000
+    elif split_str.endswith("G"):
+        n = int(split_str[:-1]) * 1000 * 1000 * 1000
+    elif split_str.isnumeric():
+        n = int(split_str)
+    else:
+        raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
+
+    if n < 0:
+        raise ValueError(f"Invalid split size: {split_str}, must be positive")
+
+    return n
+
+
+def main() -> None:
+    args = parse_args()
+
+    if args.print_supported_models:
+        logger.error("Supported models:")
+        Model.print_registered_models()
+        sys.exit(0)
+
+    if args.verbose:
+        logging.basicConfig(level=logging.DEBUG)
+    else:
+        logging.basicConfig(level=logging.INFO)
+
+    dir_model = args.model
+
+    if not dir_model.is_dir():
+        logger.error(f'Error: {args.model} is not a directory')
+        sys.exit(1)
+
+    ftype_map: dict[str, gguf.LlamaFileType] = {
+        "f32": gguf.LlamaFileType.ALL_F32,
+        "f16": gguf.LlamaFileType.MOSTLY_F16,
+        "bf16": gguf.LlamaFileType.MOSTLY_BF16,
+        "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
+        "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
+        "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
+        "auto": gguf.LlamaFileType.GUESSED,
+    }
+
+    is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
+    if args.use_temp_file and is_split:
+        logger.error("Error: Cannot use temp file when splitting")
+        sys.exit(1)
+
+    if args.outfile is not None:
+        fname_out = args.outfile
+    else:
+        fname_out = dir_model
+
+    logger.info(f"Loading model: {dir_model.name}")
+
+    hparams = Model.load_hparams(dir_model)
+
+    with torch.inference_mode():
+        output_type = ftype_map[args.outtype]
+        model_architecture = hparams["architectures"][0]
+
+        try:
+            model_class = Model.from_model_architecture(model_architecture)
+        except NotImplementedError:
+            logger.error(f"Model {model_architecture} is not supported")
+            sys.exit(1)
+
+        model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
+                                     is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
+                                     eager=args.no_lazy,
+                                     metadata_override=args.metadata, model_name=args.model_name,
+                                     split_max_tensors=args.split_max_tensors,
+                                     split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
+                                     small_first_shard=args.no_tensor_first_split)
+
+        if args.vocab_only:
+            logger.info("Exporting model vocab...")
+            model_instance.write_vocab()
+            logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
+        else:
+            logger.info("Exporting model...")
+            model_instance.write()
+            out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
+            logger.info(f"Model successfully exported to {out_path}")
+
+
+if __name__ == '__main__':
+    main()