#include "common.cuh" #include "cross-entropy-loss.cuh" #include "sum.cuh" #include #include template static __global__ void cross_entropy_loss_f32( const float * __restrict__ logits, const float * __restrict__ labels, float * __restrict__ dst, const int nclasses, const int k) { extern __shared__ float tmp[]; logits += int64_t(blockIdx.x)*nclasses; labels += int64_t(blockIdx.x)*nclasses; // Find maximum for softmax: float max_logit = -INFINITY; for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) { const float val = logits[i]; max_logit = fmaxf(max_logit, val); if (use_shared) { tmp[i] = val; } } max_logit = warp_reduce_max(max_logit); // Calculate log(softmax(logits)) which is just logits - max: float sum = 0.0f; for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) { const float logit_i = use_shared ? tmp[i] : logits[i]; sum += expf(logit_i - max_logit); } sum = warp_reduce_sum(sum); sum = logf(sum); // log(exp(logits - max) / sum) = (logits - max) - log(sum) float loss = 0.0f; for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) { const float logit_i = use_shared ? tmp[i] : logits[i]; loss += (logit_i - max_logit - sum) * labels[i]; } loss = -warp_reduce_sum(loss) / (float)k; if (threadIdx.x != 0) { return; } dst[blockIdx.x] = loss; } template static __global__ void cross_entropy_loss_back_f32( const float * __restrict__ grad, const float * __restrict__ logits, const float * __restrict__ labels, float * __restrict__ dst, const int nclasses) { extern __shared__ float tmp[]; logits += int64_t(blockIdx.x)*nclasses; labels += int64_t(blockIdx.x)*nclasses; dst += int64_t(blockIdx.x)*nclasses; float maxval = -INFINITY; for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) { const float val = logits[i]; maxval = fmaxf(maxval, val); if (use_shared) { tmp[i] = val; } } maxval = warp_reduce_max(maxval); float sum = 0.0f; for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) { const float val = expf((use_shared ? tmp[i] : logits[i]) - maxval); sum += val; if (use_shared) { tmp[i] = val; } else { dst[i] = val; } } sum = warp_reduce_sum(sum); const float sm_scale = 1.0f/sum; const float d_by_nrows = *grad/gridDim.x; for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) { const float val = use_shared ? tmp[i] : dst[i]; dst[i] = (val*sm_scale - labels[i])*d_by_nrows; } } void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); GGML_ASSERT(ggml_is_contiguous(dst)); const int64_t ne00 = src0->ne[0]; const int64_t nrows = ggml_nrows(src0); const float * src0_d = (const float *) src0->data; const float * src1_d = (const float *) src1->data; float * dst_d = (float *) dst->data; ggml_cuda_pool & pool = ctx.pool(); cudaStream_t stream = ctx.stream(); const dim3 blocks_dim(WARP_SIZE, 1, 1); const dim3 blocks_num(nrows, 1, 1); const size_t nbytes_shared = ne00*sizeof(float); const int id = ggml_cuda_get_device(); const size_t smpbo = ggml_cuda_info().devices[id].smpbo; ggml_cuda_pool_alloc dst_tmp(pool, blocks_num.x); if (nbytes_shared <= smpbo) { #if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false}; if (!shared_memory_limit_raised[id]) { CUDA_CHECK(cudaFuncSetAttribute(cross_entropy_loss_back_f32, cudaFuncAttributeMaxDynamicSharedMemorySize, smpbo)); shared_memory_limit_raised[id] = true; } #endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) cross_entropy_loss_f32<<>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows); } else { cross_entropy_loss_f32<<>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows); } CUDA_CHECK(cudaGetLastError()); // Combine results from individual blocks: sum_f32_cuda(pool, dst_tmp.ptr, dst_d, blocks_num.x, stream); } void ggml_cuda_cross_entropy_loss_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * grad = dst->src[0]; const ggml_tensor * src0f = dst->src[1]; const ggml_tensor * src1f = dst->src[2]; GGML_ASSERT(src0f->type == GGML_TYPE_F32); GGML_ASSERT(src1f->type == GGML_TYPE_F32); GGML_ASSERT( grad->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT(ggml_is_scalar(grad)); GGML_ASSERT(ggml_is_contiguous(src0f)); GGML_ASSERT(ggml_is_contiguous(src1f)); GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ggml_are_same_shape(src0f, src1f)); GGML_ASSERT(ggml_are_same_shape(src0f, dst)); const int64_t ne00 = src0f->ne[0]; const int64_t nrows = ggml_nrows(src0f); const float * grad_d = (const float *) grad->data; const float * src0f_d = (const float *) src0f->data; const float * src1f_d = (const float *) src1f->data; float * dst_d = (float *) dst->data; cudaStream_t stream = ctx.stream(); const dim3 blocks_dim(WARP_SIZE, 1, 1); const dim3 blocks_num(nrows, 1, 1); const size_t nbytes_shared = ne00*sizeof(float); const int id = ggml_cuda_get_device(); const size_t smpbo = ggml_cuda_info().devices[id].smpbo; if (nbytes_shared <= smpbo) { #if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false}; if (!shared_memory_limit_raised[id]) { CUDA_CHECK(cudaFuncSetAttribute(cross_entropy_loss_back_f32, cudaFuncAttributeMaxDynamicSharedMemorySize, smpbo)); shared_memory_limit_raised[id] = true; } #endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) cross_entropy_loss_back_f32<<>>(grad_d, src0f_d, src1f_d, dst_d, ne00); } else { cross_entropy_loss_back_f32<<>>(grad_d, src0f_d, src1f_d, dst_d, ne00); } }