#include "getrows.cuh" #include "dequantize.cuh" template static __global__ void k_get_rows( const void * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst, const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/ /*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/ /*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3, /*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03, const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) { const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2; const int i10 = blockDim.y*blockIdx.y + threadIdx.y; const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12; const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12; if (i00 >= ne00) { return; } const int i01 = src1[i10*s10 + i11*s11 + i12*s12]; dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3; const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03; const int ib = i00/qk; // block index const int iqs = (i00%qk)/qr; // quant index const int iybs = i00 - i00%qk; // dst block start index const int y_offset = qr == 1 ? 1 : qk/2; // dequantize dfloat2 v; dequantize_kernel(src0_row, ib, iqs, v); dst_row[iybs + iqs + 0] = v.x; dst_row[iybs + iqs + y_offset] = v.y; } template static __global__ void k_get_rows_float( const src0_t * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst, const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/ /*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/ /*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3, /*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03, const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) { const int i00 = blockIdx.x*blockDim.x + threadIdx.x; const int i10 = blockDim.y*blockIdx.y + threadIdx.y; const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12; const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12; if (i00 >= ne00) { return; } const int i01 = src1[i10*s10 + i11*s11 + i12*s12]; dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3; const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03); dst_row[i00] = src0_row[i00]; } template static __global__ void k_get_rows_back_float( const grad_t * __restrict__ grad, const int32_t * __restrict__ rows, dst_t * __restrict__ dst, const int64_t ncols, const int64_t nrows_grad) { const int col = blockIdx.x*blockDim.x + threadIdx.x; if (col >= ncols) { return; } const int dst_row = blockIdx.y*blockDim.y + threadIdx.y; float sum = 0.0f; for (int64_t i = 0; i < nrows_grad; ++i) { if (rows[i] != dst_row) { continue; } sum += grad[i*ncols + col]; } dst[dst_row*ncols + col] = sum; } template static void get_rows_cuda( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) { GGML_TENSOR_BINARY_OP_LOCALS const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1); const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE); const dim3 block_nums(block_num_x, ne10, ne11*ne12); // strides in elements //const size_t s0 = nb0 / ggml_element_size(dst); const size_t s1 = nb1 / ggml_element_size(dst); const size_t s2 = nb2 / ggml_element_size(dst); const size_t s3 = nb3 / ggml_element_size(dst); const size_t s10 = nb10 / ggml_element_size(src1); const size_t s11 = nb11 / ggml_element_size(src1); const size_t s12 = nb12 / ggml_element_size(src1); //const size_t s13 = nb13 / ggml_element_size(src1); GGML_ASSERT(ne00 % 2 == 0); k_get_rows<<>>( src0_dd, src1_dd, dst_dd, ne00, /*ne01, ne02, ne03,*/ /*ne10, ne11,*/ ne12, /*ne13,*/ /* s0,*/ s1, s2, s3, /* nb00,*/ nb01, nb02, nb03, s10, s11, s12/*, s13*/); GGML_UNUSED(dst); } template static void get_rows_cuda_float( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) { GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT(ne13 == 1); const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1); const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE; const dim3 block_nums(block_num_x, ne10, ne11*ne12); // strides in elements //const size_t s0 = nb0 / ggml_element_size(dst); const size_t s1 = nb1 / ggml_element_size(dst); const size_t s2 = nb2 / ggml_element_size(dst); const size_t s3 = nb3 / ggml_element_size(dst); const size_t s10 = nb10 / ggml_element_size(src1); const size_t s11 = nb11 / ggml_element_size(src1); const size_t s12 = nb12 / ggml_element_size(src1); //const size_t s13 = nb13 / ggml_element_size(src1); k_get_rows_float<<>>( src0_dd, src1_dd, dst_dd, ne00, /*ne01, ne02, ne03,*/ /*ne10, ne11,*/ ne12, /*ne13,*/ /* s0,*/ s1, s2, s3, /* nb00,*/ nb01, nb02, nb03, s10, s11, s12/*, s13*/); GGML_UNUSED(dst); } void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; const void * src0_d = (const void *) src0->data; const int32_t * src1_d = (const int32_t *) src1->data; float * dst_d = (float *) dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(src1->type == GGML_TYPE_I32); GGML_ASSERT(dst->type == GGML_TYPE_F32); GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type)); GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type)); GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type)); switch (src0->type) { case GGML_TYPE_F16: get_rows_cuda_float(src0, src1, dst, (const half *) src0_d, src1_d, dst_d, stream); break; case GGML_TYPE_F32: get_rows_cuda_float(src0, src1, dst, (const float *) src0_d, src1_d, dst_d, stream); break; case GGML_TYPE_Q4_0: get_rows_cuda(src0, src1, dst, src0_d, src1_d, dst_d, stream); break; case GGML_TYPE_Q4_1: get_rows_cuda(src0, src1, dst, src0_d, src1_d, dst_d, stream); break; case GGML_TYPE_Q5_0: get_rows_cuda(src0, src1, dst, src0_d, src1_d, dst_d, stream); break; case GGML_TYPE_Q5_1: get_rows_cuda(src0, src1, dst, src0_d, src1_d, dst_d, stream); break; case GGML_TYPE_Q8_0: get_rows_cuda(src0, src1, dst, src0_d, src1_d, dst_d, stream); break; default: // TODO: k-quants GGML_ABORT("%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type)); break; } } void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output const ggml_tensor * src1 = dst->src[1]; // src1 in forward pass GGML_TENSOR_BINARY_OP_LOCALS const float * src0_d = (const float *) src0->data; const int32_t * src1_d = (const int32_t *) src1->data; float * dst_d = (float *) dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_I32); GGML_ASSERT(dst->type == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ne02*ne03 == 1); GGML_ASSERT(ne12*ne13 == 1); GGML_ASSERT(ne2*ne3 == 1); const dim3 block_dims(CUDA_GET_ROWS_BACK_BLOCK_SIZE, 1, 1); const int block_num_x = (ne00 + CUDA_GET_ROWS_BACK_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BACK_BLOCK_SIZE; const dim3 block_nums(block_num_x, ne1, 1); k_get_rows_back_float<<>>(src0_d, src1_d, dst_d, ne00, ne10); }