Spaces:
Sleeping
Sleeping
File size: 1,777 Bytes
1bab366 646d871 0444608 646d871 4ca0fe6 8f43cf9 4ca0fe6 1232638 646d871 4ca0fe6 1bab366 fc4ec0f 4ca0fe6 1bab366 fc4ec0f 1bab366 fc4ec0f 1bab366 e6569b4 1bab366 0444608 ec49702 0444608 3122083 4ca0fe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
from dash import callback, Dash, dcc, html, Input, Output
import pandas as pd
import plotly.express as px
import pyarrow
app = Dash(__name__, suppress_callback_exceptions=True)
server = app.server
df = pd.read_parquet("odr.parquet")
app.layout = html.Div([
html.H1(children='ODR Exploratory Data Analysis Dashboard'),
html.Div([
html.H3(children="Select a visualization option:"),
dcc.Dropdown(["Visualize Statistical Properties of Data", "Visualize Time Series"], "Visualize Statistical Properties of Data", id="drop1")
]),
html.Div(id="gui-2"),
html.Div(id="figs")
])
@callback(
Output(component_id='gui-2', component_property='children'),
Input(component_id='drop1', component_property='value')
)
def update_dropdown_one(input_value):
if input_value == "Visualize Statistical Properties of Data":
return html.Div([
html.H3(children="Select the label to visualize statistical properties across:"),
dcc.Dropdown([
"Monkey's Age",
"Brain Region",
"Stimuli Location"
], "Stimuli Location", id="drop2")
])
else:
return html.Div([
html.H3(children="Input a row to visualize time series data from:"),
dcc.Input(id='range', type='number', min=0, max=len(df)-1, step=1)
])
@callback(
Output(component_id='figs', component_property='children'),
Input(component_id='drop2', component_property='value')
)
def visualize_stats(input_value):
create_stat_figs(input_value)
def create_stat_figs(val):
if val == "Monkey's Age":
return html.Div([
dcc.Graph(figure=px.box(df, x="monkey_age", y="cue_rate"))
])
def main():
app.run(debug=True) |