File size: 42,591 Bytes
43a87b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "T4"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "## 1. 掛載雲端硬碟"
      ],
      "metadata": {
        "id": "JvFnrA5V65pO"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "vu6SEPk764ES",
        "outputId": "98defb30-9be6-45bb-d950-d1d861639033"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## 2. 安裝套件"
      ],
      "metadata": {
        "id": "eOlb0q627EZI"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install --upgrade pyyaml==5.3.1"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "5SCKBEDB7EFG",
        "outputId": "2fde67ff-35e0-47d9-89c8-2d353c58b93e"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting pyyaml==5.3.1\n",
            "  Downloading PyYAML-5.3.1.tar.gz (269 kB)\n",
            "\u001b[?25l     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/269.4 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K     \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m266.2/269.4 kB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m269.4/269.4 kB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  \u001b[1;31merror\u001b[0m: \u001b[1msubprocess-exited-with-error\u001b[0m\n",
            "  \n",
            "  \u001b[31m×\u001b[0m \u001b[32mpython setup.py egg_info\u001b[0m did not run successfully.\n",
            "  \u001b[31m│\u001b[0m exit code: \u001b[1;36m1\u001b[0m\n",
            "  \u001b[31m╰─>\u001b[0m See above for output.\n",
            "  \n",
            "  \u001b[1;35mnote\u001b[0m: This error originates from a subprocess, and is likely not a problem with pip.\n",
            "  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25herror\n",
            "\u001b[1;31merror\u001b[0m: \u001b[1mmetadata-generation-failed\u001b[0m\n",
            "\n",
            "\u001b[31m×\u001b[0m Encountered error while generating package metadata.\n",
            "\u001b[31m╰─>\u001b[0m See above for output.\n",
            "\n",
            "\u001b[1;35mnote\u001b[0m: This is an issue with the package mentioned above, not pip.\n",
            "\u001b[1;36mhint\u001b[0m: See above for details.\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## 3. 下載程式碼"
      ],
      "metadata": {
        "id": "ngH7Q6Kx6f7m"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "QA5CaOZY6aMM",
        "outputId": "fbc42cd6-ac25-4351-bed7-2f433781a1ed"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "/content/drive/MyDrive/example/yolov7\n",
            "/content/drive/MyDrive/example\n"
          ]
        }
      ],
      "source": [
        "#顯示當前目錄\n",
        "!pwd\n",
        "\n",
        "#切換目錄\n",
        "%cd /content/drive/MyDrive/example"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# 從git上面下載程式碼(只要執行一次)\n",
        "!git clone https://github.com/WongKinYiu/yolov7.git"
      ],
      "metadata": {
        "id": "VGe25V0bVkdb",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "6f897937-b800-4c81-8e43-4f4b58ded23c"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "fatal: destination path 'yolov7' already exists and is not an empty directory.\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## 4. 下載已經使用coco dataset預先訓練好的權重\n",
        "* 從 https://github.com/WongKinYiu/yolov7.git 上面去尋找連結"
      ],
      "metadata": {
        "id": "zdM561AuAUZc"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "ffh4H-2E6eEo",
        "outputId": "39d575b3-6988-4046-866c-e71e31552bf1"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "--2024-06-04 07:39:18--  https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt\n",
            "Resolving github.com (github.com)... 20.205.243.166\n",
            "Connecting to github.com (github.com)|20.205.243.166|:443... connected.\n",
            "HTTP request sent, awaiting response... 302 Found\n",
            "Location: https://objects.githubusercontent.com/github-production-release-asset-2e65be/511187726/b0243edf-9fb0-4337-95e1-42555f1b37cf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=releaseassetproduction%2F20240604%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240604T073918Z&X-Amz-Expires=300&X-Amz-Signature=a8e26a0d2ba27ab8566423ded52aeb9976e2fee7a53483137b1bee72606a3ad5&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=511187726&response-content-disposition=attachment%3B%20filename%3Dyolov7.pt&response-content-type=application%2Foctet-stream [following]\n",
            "--2024-06-04 07:39:18--  https://objects.githubusercontent.com/github-production-release-asset-2e65be/511187726/b0243edf-9fb0-4337-95e1-42555f1b37cf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=releaseassetproduction%2F20240604%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240604T073918Z&X-Amz-Expires=300&X-Amz-Signature=a8e26a0d2ba27ab8566423ded52aeb9976e2fee7a53483137b1bee72606a3ad5&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=511187726&response-content-disposition=attachment%3B%20filename%3Dyolov7.pt&response-content-type=application%2Foctet-stream\n",
            "Resolving objects.githubusercontent.com (objects.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
            "Connecting to objects.githubusercontent.com (objects.githubusercontent.com)|185.199.108.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 75587165 (72M) [application/octet-stream]\n",
            "Saving to: ‘yolov7.pt’\n",
            "\n",
            "yolov7.pt           100%[===================>]  72.08M  59.9MB/s    in 1.2s    \n",
            "\n",
            "2024-06-04 07:39:20 (59.9 MB/s) - ‘yolov7.pt’ saved [75587165/75587165]\n",
            "\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## 5. 上傳資料與新增設定檔"
      ],
      "metadata": {
        "id": "usnmC9u8AtTw"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "#切換目錄到剛下載的git專案\n",
        "%cd yolov7"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "0FaLnNRP6eB9",
        "outputId": "d99a8520-445f-4194-dbea-5e6eb7905b03"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "/content/drive/MyDrive/example/yolov7\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## 6-1. 在./yolo/data/目錄底下手動建立資料夾 [project名稱]\n",
        "## 6-2. 上傳訓練資料到./yolo/data/train跟 ./yolo/data/val/\n",
        "## 6-3. 複製data目錄底下的coco.yaml, 改名為[project名稱].yaml\n",
        "## 6-4. 編輯[project名稱].yaml裡面的參數\n",
        "* train: ./data/[project名稱]/train\n",
        "* val: ./data/[project名稱]/val\n",
        "* test: ./data/[project名稱]/test\n",
        "* nc: [總共有多少類別]\n",
        "* names: [每個類別代表的英文名稱]\n",
        "\n",
        "## 6-5. 複製cfg/training目錄底下的yolov7.yaml 並改名為yolov7_[project名稱].yaml\n",
        "## 6-6. 編輯yolov7_[project名稱].yaml\n",
        "* nc: [總共有多少類別]"
      ],
      "metadata": {
        "id": "px5Ui1z691Gf"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## 7. 訓練模型"
      ],
      "metadata": {
        "id": "o1qlx6w0BIY4"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!pwd\n",
        "\n",
        "%cd /content/drive/MyDrive/example/yolov7"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Z-vgRl_mVUGk",
        "outputId": "f9885773-741b-4c25-9c35-15e5519fc554"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "/content/drive/MyDrive/example/yolov7\n",
            "/content/drive/MyDrive/example/yolov7\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!python train.py --device 0 \\\n",
        "--batch-size 16 --epochs 20 \\\n",
        "--data data/crosswalk.yaml --img 640 640 \\\n",
        "--hyp data/hyp.scratch.custom.yaml --cfg cfg/training/yolov7.yaml \\\n",
        "--weights 'yolov7.pt' --name yolov7-crosswalk"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "TtHOAGy56c2Q",
        "outputId": "5ce0a0a8-d37f-46f2-f0b8-b1d8fcbc30d0"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "2024-06-04 08:36:55.417279: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
            "2024-06-04 08:36:55.417338: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
            "2024-06-04 08:36:55.418662: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
            "2024-06-04 08:36:55.426203: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
            "To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
            "2024-06-04 08:36:56.637540: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
            "YOLOR 🚀 v0.1-128-ga207844 torch 2.3.0+cu121 CUDA:0 (Tesla T4, 15102.0625MB)\n",
            "\n",
            "Namespace(weights='yolov7.pt', cfg='cfg/training/yolov7.yaml', data='data/crosswalk.yaml', hyp='data/hyp.scratch.custom.yaml', epochs=20, batch_size=16, img_size=[640, 640], rect=False, resume=False, nosave=False, notest=False, noautoanchor=False, evolve=False, bucket='', cache_images=False, image_weights=False, device='0', multi_scale=False, single_cls=False, adam=False, sync_bn=False, local_rank=-1, workers=8, project='runs/train', entity=None, name='yolov7-crosswalk', exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias='latest', freeze=[0], v5_metric=False, world_size=1, global_rank=-1, save_dir='runs/train/yolov7-crosswalk5', total_batch_size=16)\n",
            "\u001b[34m\u001b[1mtensorboard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
            "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.3, cls_pw=1.0, obj=0.7, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.2, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, paste_in=0.0, loss_ota=1\n",
            "\u001b[34m\u001b[1mwandb: \u001b[0mInstall Weights & Biases for YOLOR logging with 'pip install wandb' (recommended)\n",
            "\n",
            "                 from  n    params  module                                  arguments                     \n",
            "  0                -1  1       928  models.common.Conv                      [3, 32, 3, 1]                 \n",
            "  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                \n",
            "  2                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]                \n",
            "  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               \n",
            "  4                -1  1      8320  models.common.Conv                      [128, 64, 1, 1]               \n",
            "  5                -2  1      8320  models.common.Conv                      [128, 64, 1, 1]               \n",
            "  6                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]                \n",
            "  7                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]                \n",
            "  8                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]                \n",
            "  9                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]                \n",
            " 10  [-1, -3, -5, -6]  1         0  models.common.Concat                    [1]                           \n",
            " 11                -1  1     66048  models.common.Conv                      [256, 256, 1, 1]              \n",
            " 12                -1  1         0  models.common.MP                        []                            \n",
            " 13                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
            " 14                -3  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
            " 15                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              \n",
            " 16          [-1, -3]  1         0  models.common.Concat                    [1]                           \n",
            " 17                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
            " 18                -2  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
            " 19                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]              \n",
            " 20                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]              \n",
            " 21                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]              \n",
            " 22                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]              \n",
            " 23  [-1, -3, -5, -6]  1         0  models.common.Concat                    [1]                           \n",
            " 24                -1  1    263168  models.common.Conv                      [512, 512, 1, 1]              \n",
            " 25                -1  1         0  models.common.MP                        []                            \n",
            " 26                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
            " 27                -3  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
            " 28                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              \n",
            " 29          [-1, -3]  1         0  models.common.Concat                    [1]                           \n",
            " 30                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
            " 31                -2  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
            " 32                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]              \n",
            " 33                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]              \n",
            " 34                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]              \n",
            " 35                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]              \n",
            " 36  [-1, -3, -5, -6]  1         0  models.common.Concat                    [1]                           \n",
            " 37                -1  1   1050624  models.common.Conv                      [1024, 1024, 1, 1]            \n",
            " 38                -1  1         0  models.common.MP                        []                            \n",
            " 39                -1  1    525312  models.common.Conv                      [1024, 512, 1, 1]             \n",
            " 40                -3  1    525312  models.common.Conv                      [1024, 512, 1, 1]             \n",
            " 41                -1  1   2360320  models.common.Conv                      [512, 512, 3, 2]              \n",
            " 42          [-1, -3]  1         0  models.common.Concat                    [1]                           \n",
            " 43                -1  1    262656  models.common.Conv                      [1024, 256, 1, 1]             \n",
            " 44                -2  1    262656  models.common.Conv                      [1024, 256, 1, 1]             \n",
            " 45                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]              \n",
            " 46                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]              \n",
            " 47                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]              \n",
            " 48                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]              \n",
            " 49  [-1, -3, -5, -6]  1         0  models.common.Concat                    [1]                           \n",
            " 50                -1  1   1050624  models.common.Conv                      [1024, 1024, 1, 1]            \n",
            " 51                -1  1   7609344  models.common.SPPCSPC                   [1024, 512, 1]                \n",
            " 52                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
            " 53                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
            " 54                37  1    262656  models.common.Conv                      [1024, 256, 1, 1]             \n",
            " 55          [-1, -2]  1         0  models.common.Concat                    [1]                           \n",
            " 56                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
            " 57                -2  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
            " 58                -1  1    295168  models.common.Conv                      [256, 128, 3, 1]              \n",
            " 59                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]              \n",
            " 60                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]              \n",
            " 61                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]              \n",
            " 62[-1, -2, -3, -4, -5, -6]  1         0  models.common.Concat                    [1]                           \n",
            " 63                -1  1    262656  models.common.Conv                      [1024, 256, 1, 1]             \n",
            " 64                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
            " 65                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
            " 66                24  1     65792  models.common.Conv                      [512, 128, 1, 1]              \n",
            " 67          [-1, -2]  1         0  models.common.Concat                    [1]                           \n",
            " 68                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
            " 69                -2  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
            " 70                -1  1     73856  models.common.Conv                      [128, 64, 3, 1]               \n",
            " 71                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]                \n",
            " 72                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]                \n",
            " 73                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]                \n",
            " 74[-1, -2, -3, -4, -5, -6]  1         0  models.common.Concat                    [1]                           \n",
            " 75                -1  1     65792  models.common.Conv                      [512, 128, 1, 1]              \n",
            " 76                -1  1         0  models.common.MP                        []                            \n",
            " 77                -1  1     16640  models.common.Conv                      [128, 128, 1, 1]              \n",
            " 78                -3  1     16640  models.common.Conv                      [128, 128, 1, 1]              \n",
            " 79                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              \n",
            " 80      [-1, -3, 63]  1         0  models.common.Concat                    [1]                           \n",
            " 81                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
            " 82                -2  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
            " 83                -1  1    295168  models.common.Conv                      [256, 128, 3, 1]              \n",
            " 84                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]              \n",
            " 85                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]              \n",
            " 86                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]              \n",
            " 87[-1, -2, -3, -4, -5, -6]  1         0  models.common.Concat                    [1]                           \n",
            " 88                -1  1    262656  models.common.Conv                      [1024, 256, 1, 1]             \n",
            " 89                -1  1         0  models.common.MP                        []                            \n",
            " 90                -1  1     66048  models.common.Conv                      [256, 256, 1, 1]              \n",
            " 91                -3  1     66048  models.common.Conv                      [256, 256, 1, 1]              \n",
            " 92                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              \n",
            " 93      [-1, -3, 51]  1         0  models.common.Concat                    [1]                           \n",
            " 94                -1  1    525312  models.common.Conv                      [1024, 512, 1, 1]             \n",
            " 95                -2  1    525312  models.common.Conv                      [1024, 512, 1, 1]             \n",
            " 96                -1  1   1180160  models.common.Conv                      [512, 256, 3, 1]              \n",
            " 97                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]              \n",
            " 98                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]              \n",
            " 99                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]              \n",
            "100[-1, -2, -3, -4, -5, -6]  1         0  models.common.Concat                    [1]                           \n",
            "101                -1  1   1049600  models.common.Conv                      [2048, 512, 1, 1]             \n",
            "102                75  1    328704  models.common.RepConv                   [128, 256, 3, 1]              \n",
            "103                88  1   1312768  models.common.RepConv                   [256, 512, 3, 1]              \n",
            "104               101  1   5246976  models.common.RepConv                   [512, 1024, 3, 1]             \n",
            "105   [102, 103, 104]  1     34156  models.yolo.IDetect                     [1, [[12, 16, 19, 36, 40, 28], [36, 75, 76, 55, 72, 146], [142, 110, 192, 243, 459, 401]], [256, 512, 1024]]\n",
            "Model Summary: 415 layers, 37196556 parameters, 37196556 gradients\n",
            "\n",
            "Transferred 552/566 items from yolov7.pt\n",
            "Scaled weight_decay = 0.0005\n",
            "Optimizer groups: 95 .bias, 95 conv.weight, 98 other\n",
            "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/content/drive/MyDrive/example/dataset1/train/labels' images and labels... 354 found, 0 missing, 1 empty, 0 corrupted: 100% 354/354 [04:01<00:00,  1.47it/s]\n",
            "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/drive/MyDrive/example/dataset1/train/labels.cache\n",
            "/usr/lib/python3.10/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n",
            "  self.pid = os.fork()\n",
            "\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/drive/MyDrive/example/dataset1/valid/labels' images and labels... 101 found, 0 missing, 0 empty, 0 corrupted: 100% 101/101 [01:07<00:00,  1.50it/s]\n",
            "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/drive/MyDrive/example/dataset1/valid/labels.cache\n",
            "\n",
            "\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 2.86, Best Possible Recall (BPR) = 0.9856\n",
            "Image sizes 640 train, 640 test\n",
            "Using 2 dataloader workers\n",
            "Logging results to runs/train/yolov7-crosswalk5\n",
            "Starting training for 20 epochs...\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "      0/19        1G   0.07408   0.01941         0    0.0935         5       640: 100% 23/23 [00:57<00:00,  2.52s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95:   0% 0/4 [00:00<?, ?it/s]/usr/local/lib/python3.10/dist-packages/torch/functional.py:512: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3587.)\n",
            "  return _VF.meshgrid(tensors, **kwargs)  # type: ignore[attr-defined]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:11<00:00,  2.96s/it]\n",
            "                 all         101         145      0.0261      0.0828     0.00967     0.00165\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "      1/19       13G   0.06503   0.01499         0   0.08002         7       640: 100% 23/23 [00:34<00:00,  1.49s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:04<00:00,  1.19s/it]\n",
            "                 all         101         145      0.0327       0.262       0.016     0.00269\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "      2/19     12.2G   0.05957   0.01349         0   0.07305         5       640: 100% 23/23 [00:29<00:00,  1.29s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:04<00:00,  1.04s/it]\n",
            "                 all         101         145      0.0773       0.131      0.0305     0.00698\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "      3/19     12.2G   0.05641   0.01217         0   0.06859         5       640: 100% 23/23 [00:29<00:00,  1.27s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:04<00:00,  1.16s/it]\n",
            "                 all         101         145       0.144       0.172      0.0614      0.0174\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "      4/19     12.2G    0.0603   0.01195         0   0.07224         8       640: 100% 23/23 [00:29<00:00,  1.30s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:05<00:00,  1.49s/it]\n",
            "                 all         101         145       0.262       0.314       0.132      0.0444\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "      5/19     12.2G   0.05356   0.01149         0   0.06505         6       640: 100% 23/23 [00:30<00:00,  1.33s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:04<00:00,  1.21s/it]\n",
            "                 all         101         145       0.484       0.441       0.351       0.146\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "      6/19     12.2G    0.0552  0.009911         0   0.06511         4       640: 100% 23/23 [00:31<00:00,  1.37s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:05<00:00,  1.31s/it]\n",
            "                 all         101         145       0.517         0.4       0.359       0.143\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "      7/19     12.2G   0.05493  0.009802         0   0.06473         7       640: 100% 23/23 [00:29<00:00,  1.28s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:04<00:00,  1.07s/it]\n",
            "                 all         101         145       0.533       0.441        0.37       0.142\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "      8/19     12.3G    0.0562  0.009743         0   0.06594         7       640: 100% 23/23 [00:29<00:00,  1.27s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:03<00:00,  1.17it/s]\n",
            "                 all         101         145       0.501       0.476       0.401       0.146\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "      9/19     12.3G   0.05401  0.009289         0    0.0633         6       640: 100% 23/23 [00:30<00:00,  1.34s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:03<00:00,  1.29it/s]\n",
            "                 all         101         145       0.467       0.379        0.36       0.148\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "     10/19     12.3G   0.05595  0.009192         0   0.06514         3       640: 100% 23/23 [00:29<00:00,  1.29s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:02<00:00,  1.40it/s]\n",
            "                 all         101         145       0.532       0.392       0.386        0.16\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "     11/19     12.3G   0.05449  0.009189         0   0.06368         3       640: 100% 23/23 [00:29<00:00,  1.30s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:03<00:00,  1.16it/s]\n",
            "                 all         101         145       0.483       0.297       0.297       0.106\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "     12/19     12.3G   0.05591  0.009251         0   0.06516         4       640: 100% 23/23 [00:30<00:00,  1.34s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:02<00:00,  1.35it/s]\n",
            "                 all         101         145       0.353       0.289       0.253      0.0839\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "     13/19     12.3G   0.05664  0.009008         0   0.06565         7       640: 100% 23/23 [00:31<00:00,  1.38s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:03<00:00,  1.33it/s]\n",
            "                 all         101         145       0.671       0.428       0.463         0.2\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "     14/19     12.3G   0.05176  0.009181         0   0.06094         7       640: 100% 23/23 [00:32<00:00,  1.41s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:02<00:00,  1.38it/s]\n",
            "                 all         101         145       0.484       0.483       0.446       0.201\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "     15/19     12.3G   0.04926  0.009321         0   0.05858         4       640: 100% 23/23 [00:32<00:00,  1.41s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:03<00:00,  1.32it/s]\n",
            "                 all         101         145       0.493       0.509       0.445       0.186\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "     16/19     12.3G   0.05073  0.009481         0   0.06021         8       640: 100% 23/23 [00:29<00:00,  1.29s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:04<00:00,  1.03s/it]\n",
            "                 all         101         145       0.581        0.49       0.491       0.236\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "     17/19     12.3G     0.052  0.009147         0   0.06115         4       640: 100% 23/23 [00:31<00:00,  1.37s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:03<00:00,  1.13it/s]\n",
            "                 all         101         145        0.54       0.586       0.525        0.23\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "     18/19     12.3G   0.04705  0.009325         0   0.05638         6       640: 100% 23/23 [00:34<00:00,  1.48s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:02<00:00,  1.39it/s]\n",
            "                 all         101         145       0.658       0.586       0.572       0.292\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
            "     19/19     12.3G   0.05307  0.009194         0   0.06226         5       640: 100% 23/23 [00:35<00:00,  1.53s/it]\n",
            "               Class      Images      Labels           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:05<00:00,  1.36s/it]\n",
            "                 all         101         145        0.77       0.531       0.578       0.309\n",
            "20 epochs completed in 0.238 hours.\n",
            "\n",
            "Optimizer stripped from runs/train/yolov7-crosswalk5/weights/last.pt, 74.8MB\n",
            "Optimizer stripped from runs/train/yolov7-crosswalk5/weights/best.pt, 74.8MB\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "NQKA4hYUX-CE"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## 8. 預測影像"
      ],
      "metadata": {
        "id": "dAiCCP5SE5TR"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!python detect.py \\\n",
        "--weight /content/drive/MyDrive/example/yolov7/runs/train/yolov7-crosswalk5/weights/best.pt \\\n",
        "--conf 0.4 --img-size 640 \\\n",
        "--source /content/drive/MyDrive/example/dataset1/test/images/fcfa0089-554b-47fc-b3f5-452e125913b4_jpg.rf.27db42514f441a4ab639887f45e51334.jpg --no-trace"
      ],
      "metadata": {
        "id": "fRG73MdTE6zT",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "453d6af1-796c-4fd7-a369-eb5f32cf475a"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Namespace(weights=['/content/drive/MyDrive/example/yolov7/runs/train/yolov7-crosswalk5/weights/best.pt'], source='/content/drive/MyDrive/example/dataset1/test/images/fcfa0089-554b-47fc-b3f5-452e125913b4_jpg.rf.27db42514f441a4ab639887f45e51334.jpg', img_size=640, conf_thres=0.4, iou_thres=0.45, device='', view_img=False, save_txt=False, save_conf=False, nosave=False, classes=None, agnostic_nms=False, augment=False, update=False, project='runs/detect', name='exp', exist_ok=False, no_trace=True)\n",
            "YOLOR 🚀 v0.1-128-ga207844 torch 2.3.0+cu121 CUDA:0 (Tesla T4, 15102.0625MB)\n",
            "\n",
            "Fusing layers... \n",
            "RepConv.fuse_repvgg_block\n",
            "RepConv.fuse_repvgg_block\n",
            "RepConv.fuse_repvgg_block\n",
            "IDetect.fuse\n",
            "Model Summary: 314 layers, 36481772 parameters, 6194944 gradients\n",
            "/usr/local/lib/python3.10/dist-packages/torch/functional.py:512: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3587.)\n",
            "  return _VF.meshgrid(tensors, **kwargs)  # type: ignore[attr-defined]\n",
            "1 crosswalk, Done. (22.1ms) Inference, (645.1ms) NMS\n",
            " The image with the result is saved in: runs/detect/exp/fcfa0089-554b-47fc-b3f5-452e125913b4_jpg.rf.27db42514f441a4ab639887f45e51334.jpg\n",
            "Done. (2.600s)\n"
          ]
        }
      ]
    }
  ]
}