Stopwolf commited on
Commit
9428350
·
1 Parent(s): dbfdf1a

Adding MMS instead of SpeechT5

Browse files
Files changed (1) hide show
  1. app.py +14 -10
app.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -12,24 +12,28 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
 
 
 
 
33
 
34
 
35
  def speech_to_speech_translation(audio):
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import VitsModel, AutoTokenizer, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ # processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
+ model = VitsModel.from_pretrained("facebook/mms-tts-por").to(device)
18
+ tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-por")
19
 
20
+ # embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
+ # speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "pt"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
+ inputs = tokenizer(text=text, return_tensors="pt")
31
+
32
+ with torch.no_grad():
33
+ output = model(**inputs).waveform
34
+ # inputs = processor(text=text, return_tensors="pt")
35
+ # speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
36
+ return output.cpu()
37
 
38
 
39
  def speech_to_speech_translation(audio):