Spaces:
Runtime error
Runtime error
File size: 7,764 Bytes
e1412bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
"""
Implementation of model from:
Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using
Convolutional Recurrent Neural Networks" (2019)
Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d
"""
import torch
from torch import nn
class JDCNet(nn.Module):
"""
Joint Detection and Classification Network model for singing voice melody.
"""
def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01):
super().__init__()
self.num_class = num_class
# input = (b, 1, 31, 513), b = batch size
self.conv_block = nn.Sequential(
nn.Conv2d(
in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False
), # out: (b, 64, 31, 513)
nn.BatchNorm2d(num_features=64),
nn.LeakyReLU(leaky_relu_slope, inplace=True),
nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513)
)
# res blocks
self.res_block1 = ResBlock(
in_channels=64, out_channels=128
) # (b, 128, 31, 128)
self.res_block2 = ResBlock(
in_channels=128, out_channels=192
) # (b, 192, 31, 32)
self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8)
# pool block
self.pool_block = nn.Sequential(
nn.BatchNorm2d(num_features=256),
nn.LeakyReLU(leaky_relu_slope, inplace=True),
nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2)
nn.Dropout(p=0.2),
)
# maxpool layers (for auxiliary network inputs)
# in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2)
self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40))
# in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2)
self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20))
# in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2)
self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10))
# in = (b, 640, 31, 2), out = (b, 256, 31, 2)
self.detector_conv = nn.Sequential(
nn.Conv2d(640, 256, 1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(leaky_relu_slope, inplace=True),
nn.Dropout(p=0.2),
)
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
self.bilstm_classifier = nn.LSTM(
input_size=512, hidden_size=256, batch_first=True, bidirectional=True
) # (b, 31, 512)
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
self.bilstm_detector = nn.LSTM(
input_size=512, hidden_size=256, batch_first=True, bidirectional=True
) # (b, 31, 512)
# input: (b * 31, 512)
self.classifier = nn.Linear(
in_features=512, out_features=self.num_class
) # (b * 31, num_class)
# input: (b * 31, 512)
self.detector = nn.Linear(
in_features=512, out_features=2
) # (b * 31, 2) - binary classifier
# initialize weights
self.apply(self.init_weights)
def get_feature_GAN(self, x):
seq_len = x.shape[-2]
x = x.float().transpose(-1, -2)
convblock_out = self.conv_block(x)
resblock1_out = self.res_block1(convblock_out)
resblock2_out = self.res_block2(resblock1_out)
resblock3_out = self.res_block3(resblock2_out)
poolblock_out = self.pool_block[0](resblock3_out)
poolblock_out = self.pool_block[1](poolblock_out)
return poolblock_out.transpose(-1, -2)
def get_feature(self, x):
seq_len = x.shape[-2]
x = x.float().transpose(-1, -2)
convblock_out = self.conv_block(x)
resblock1_out = self.res_block1(convblock_out)
resblock2_out = self.res_block2(resblock1_out)
resblock3_out = self.res_block3(resblock2_out)
poolblock_out = self.pool_block[0](resblock3_out)
poolblock_out = self.pool_block[1](poolblock_out)
return self.pool_block[2](poolblock_out)
def forward(self, x):
"""
Returns:
classification_prediction, detection_prediction
sizes: (b, 31, 722), (b, 31, 2)
"""
###############################
# forward pass for classifier #
###############################
seq_len = x.shape[-1]
x = x.float().transpose(-1, -2)
convblock_out = self.conv_block(x)
resblock1_out = self.res_block1(convblock_out)
resblock2_out = self.res_block2(resblock1_out)
resblock3_out = self.res_block3(resblock2_out)
poolblock_out = self.pool_block[0](resblock3_out)
poolblock_out = self.pool_block[1](poolblock_out)
GAN_feature = poolblock_out.transpose(-1, -2)
poolblock_out = self.pool_block[2](poolblock_out)
# (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512)
classifier_out = (
poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512))
)
classifier_out, _ = self.bilstm_classifier(
classifier_out
) # ignore the hidden states
classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512)
classifier_out = self.classifier(classifier_out)
classifier_out = classifier_out.view(
(-1, seq_len, self.num_class)
) # (b, 31, num_class)
# sizes: (b, 31, 722), (b, 31, 2)
# classifier output consists of predicted pitch classes per frame
# detector output consists of: (isvoice, notvoice) estimates per frame
return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out
@staticmethod
def init_weights(m):
if isinstance(m, nn.Linear):
nn.init.kaiming_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight)
elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell):
for p in m.parameters():
if p.data is None:
continue
if len(p.shape) >= 2:
nn.init.orthogonal_(p.data)
else:
nn.init.normal_(p.data)
class ResBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01):
super().__init__()
self.downsample = in_channels != out_channels
# BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper
self.pre_conv = nn.Sequential(
nn.BatchNorm2d(num_features=in_channels),
nn.LeakyReLU(leaky_relu_slope, inplace=True),
nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only
)
# conv layers
self.conv = nn.Sequential(
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
padding=1,
bias=False,
),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU(leaky_relu_slope, inplace=True),
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
)
# 1 x 1 convolution layer to match the feature dimensions
self.conv1by1 = None
if self.downsample:
self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
def forward(self, x):
x = self.pre_conv(x)
if self.downsample:
x = self.conv(x) + self.conv1by1(x)
else:
x = self.conv(x) + x
return x
|