File size: 13,784 Bytes
e1412bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
"""
This file contains the Predictor class, which is used to run predictions on the
Whisper model. It is based on the Predictor class from the original Whisper
repository, with some modifications to make it work with the RP platform.
"""

from concurrent.futures import ThreadPoolExecutor
import numpy as np

from runpod.serverless.utils import rp_cuda
import boto3
import random
random.seed(0)
from glob import glob
import subprocess

import io

import numpy as np
np.random.seed(0)
import subprocess
import se_extractor

import yaml
from munch import Munch
import uuid
import shutil
from openai import OpenAI


import time
import os
import phonemizer
import torch
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
from nltk.tokenize import word_tokenize
import nltk
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
nltk.download('punkt')
from models import *
from utils import *
import soundfile as sf
from tortoise.utils.text import split_and_recombine_text
from resemble_enhance.enhancer.inference import denoise, enhance
from text_utils import TextCleaner
from pydantic import BaseModel, HttpUrl
from api import BaseSpeakerTTS, ToneColorConverter

class Predictor:
    def __init__(self):
        self.model = None
        self.sampler = None
        self.to_mel = None
        self.global_phonemizer = None
        self.model_params = None
        self.textclenaer = None
        self.mean = 0
        self.std = 0
        self.device = 'cuda:0'

        self.ckpt_base = 'checkpoints/base_speakers/EN'
        self.ckpt_converter = 'checkpoints/converter'
        self.base_speaker_tts = None
        self.tone_color_converter = None
        self.output_dir = 'outputs'
        self.processed_dir = 'processed'
        os.makedirs(self.processed_dir, exist_ok=True)
        os.makedirs(self.output_dir, exist_ok=True)
        self.s3_client = boto3.client('s3',aws_access_key_id=os.getenv('AWS_ACCESS_KEY'), aws_secret_access_key=os.getenv('AWS_SECRET_KEY'))
        print(os.getenv("AWS_ACCESS_KEY"))
        print(os.getenv("AWS_SECRET_KEY"))


    def setup(self):
        self.global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True,  with_stress=True)
        self.textclenaer = TextCleaner()
        self.to_mel = torchaudio.transforms.MelSpectrogram(
            n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
        self.mean, self.std = -4, 4

        config = yaml.safe_load(open("Configs/hg.yml"))
        print(config)

        ASR_config = config.get('ASR_config', False)
        ASR_path = config.get('ASR_path', False)
        text_aligner = load_ASR_models(ASR_path, ASR_config)

        F0_path = config.get('F0_path', False)
        pitch_extractor = load_F0_models(F0_path)

        from Utils.PLBERT.util import load_plbert
        BERT_path = config.get('PLBERT_dir', False)
        plbert = load_plbert(BERT_path)

        self.model_params = recursive_munch(config['model_params'])
        self.model = build_model(self.model_params, text_aligner, pitch_extractor, plbert)
        _ = [self.model[key].eval() for key in self.model]
        _ = [self.model[key].to(self.device) for key in self.model]

        params_whole = torch.load("Models/epochs_2nd_00020.pth", map_location='cpu')
        params = params_whole['net']

        for key in self.model:
            if key in params:
                print('%s loaded' % key)
                try:
                    self.model[key].load_state_dict(params[key])
                except:
                    from collections import OrderedDict
                    state_dict = params[key]
                    new_state_dict = OrderedDict()
                    for k, v in state_dict.items():
                        name = k[7:] # remove `module.`
                        new_state_dict[name] = v
                    # load params
                    self.model[key].load_state_dict(new_state_dict, strict=False)
        #             except:
        #                 _load(params[key], model[key])
        _ = [self.model[key].eval() for key in self.model]
        self.sampler = DiffusionSampler(
            self.model.diffusion.diffusion,
            sampler=ADPM2Sampler(),
            sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
            clamp=False
        )


    def predict(self,s3_url,passage,method_type='voice_clone'):
        output_dir = 'processed'
        gen_id = str(uuid.uuid4())
        os.makedirs(output_dir,exist_ok=True)
        raw_dir = os.path.join(output_dir,gen_id,'raw')
        segments_dir = os.path.join(output_dir,gen_id,'segments')
        results_dir = os.path.join(output_dir,gen_id,'results')
        openvoice_dir = os.path.join(output_dir,gen_id,'openvoice')
        os.makedirs(raw_dir)
        os.makedirs(segments_dir)
        os.makedirs(results_dir)
        
        
        s3_key = s3_url.split('/')[-1]
        bucket_name = 'demovidelyuseruploads'
        local_file_path = os.path.join(raw_dir,s3_key)
        self.download_file_from_s3(self.s3_client,bucket_name,s3_key,local_file_path)
        
        se_extractor.generate_voice_segments(local_file_path,segments_dir,vad=True)

        if method_type == 'voice_clone':
            #voice_clone with styletts2
            model,sampler = self.model,self.sampler
            processed_seg_dir = os.path.join(segments_dir,s3_key.split('.')[0],'wavs')
            result = self.process_audio_file(processed_seg_dir,passage,model,sampler)
            final_output = os.path.join(results_dir,f"{gen_id}-voice-clone-1.wav")
            sf.write(final_output,result,24000)
            
           
            mp3_final_output_1 = str(final_output).replace('wav','mp3')
            self.convert_wav_to_mp3(final_output,mp3_final_output_1)
            print(mp3_final_output_1)
            self.upload_file_to_s3(mp3_final_output_1,'demovidelyusergenerations',f"{gen_id}-voice-clone-1.mp3")
            return {"voice_clone_1":f"https://demovidelyusergenerations.s3.amazonaws.com/{gen_id}-voice-clone-1.mp3"}
        

    def _fn(self,path, solver, nfe, tau):
        if path is None:
            return None, None

        solver = solver.lower()
        nfe = int(nfe)
        lambd = 0.9

        dwav, sr = torchaudio.load(path)
        dwav = dwav.mean(dim=0)

        wav1, new_sr = enhance(dwav, sr, self.device, nfe=nfe, solver=solver, lambd=lambd, tau=tau)

        wav1 = wav1.cpu().numpy()

        return (new_sr, wav1)

    def _fn_denoise(self,path, solver, nfe, tau):
        if path is None:
            return None
        print(torch.cuda.is_available())
        print("Going to denoise")
        solver = solver.lower()
        nfe = int(nfe)
        lambd = 0.9

        dwav, sr = torchaudio.load(path)
        dwav = dwav.mean(dim=0)

        wav1, new_sr = denoise(dwav, sr, self.device)

        wav1 = wav1.cpu().numpy()
        print("Done noising")

        return (new_sr, wav1)

    def LFinference(self,model,sampler,text, s_prev, ref_s, alpha = 0.3, beta = 0.7, t = 0.7, diffusion_steps=5, embedding_scale=1):
        text = text.strip()
        ps = self.global_phonemizer.phonemize([text])
        ps = word_tokenize(ps[0])
        ps = ' '.join(ps)
        ps = ps.replace('``', '"')
        ps = ps.replace("''", '"')

        tokens = self.textclenaer(ps)
        tokens.insert(0, 0)
        tokens = torch.LongTensor(tokens).to(self.device).unsqueeze(0)
        
        with torch.no_grad():
            input_lengths = torch.LongTensor([tokens.shape[-1]]).to(self.device)
            text_mask = self.length_to_mask(input_lengths).to(self.device)

            t_en = model.text_encoder(tokens, input_lengths, text_mask)
            bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
            d_en = model.bert_encoder(bert_dur).transpose(-1, -2) 

            s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(self.device), 
                                            embedding=bert_dur,
                                            embedding_scale=embedding_scale,
                                                features=ref_s, # reference from the same speaker as the embedding
                                                num_steps=diffusion_steps).squeeze(1)
            
            if s_prev is not None:
                # convex combination of previous and current style
                s_pred = t * s_prev + (1 - t) * s_pred
            
            s = s_pred[:, 128:]
            ref = s_pred[:, :128]
            
            ref = alpha * ref + (1 - alpha)  * ref_s[:, :128]
            s = beta * s + (1 - beta)  * ref_s[:, 128:]

            s_pred = torch.cat([ref, s], dim=-1)

            d = model.predictor.text_encoder(d_en, 
                                            s, input_lengths, text_mask)

            x, _ = model.predictor.lstm(d)
            duration = model.predictor.duration_proj(x)

            duration = torch.sigmoid(duration).sum(axis=-1)
            pred_dur = torch.round(duration.squeeze()).clamp(min=1)


            pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
            c_frame = 0
            for i in range(pred_aln_trg.size(0)):
                pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
                c_frame += int(pred_dur[i].data)

            # encode prosody
            en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(self.device))
            if self.model_params.decoder.type == "hifigan":
                asr_new = torch.zeros_like(en)
                asr_new[:, :, 0] = en[:, :, 0]
                asr_new[:, :, 1:] = en[:, :, 0:-1]
                en = asr_new

            F0_pred, N_pred = model.predictor.F0Ntrain(en, s)

            asr = (t_en @ pred_aln_trg.unsqueeze(0).to(self.device))
            if self.model_params.decoder.type == "hifigan":
                asr_new = torch.zeros_like(asr)
                asr_new[:, :, 0] = asr[:, :, 0]
                asr_new[:, :, 1:] = asr[:, :, 0:-1]
                asr = asr_new

            out = model.decoder(asr, 
                                    F0_pred, N_pred, ref.squeeze().unsqueeze(0))
        
            
        return out.squeeze().cpu().numpy()[..., :-100], s_pred #

    def length_to_mask(self,lengths):
        mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
        mask = torch.gt(mask+1, lengths.unsqueeze(1))
        return mask

    def preprocess(self,wave):
        wave_tensor = torch.from_numpy(wave).float()
        mel_tensor = self.to_mel(wave_tensor)
        mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - self.mean) / self.std
        return mel_tensor

    def compute_style(self,path,model):
        wave, sr = librosa.load(path, sr=24000)
        audio, index = librosa.effects.trim(wave, top_db=30)
        if sr != 24000:
            audio = librosa.resample(audio, sr, 24000)
        mel_tensor = self.preprocess(audio).to(self.device)

        with torch.no_grad():
            ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
            ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))

        return torch.cat([ref_s, ref_p], dim=1)

    def process_audio_file(self,file_dir,passage,model,sampler):
        print(file_dir)
        audio_segs = glob(f'{file_dir}/*.wav')
        print(audio_segs)
        if len(audio_segs) >= 1:
            s_ref = self.compute_style(audio_segs[0], model)
        else:
            raise NotImplementedError('No audio segments found!') 
        sentences = split_and_recombine_text(passage)
        wavs = []
        s_prev = None
        for text in sentences:
            if text.strip() == "": continue
            text += '.'
            wav, s_prev = self.LFinference(model,sampler,text, 
                                    s_prev, 
                                    s_ref, 
                                    alpha = 0, 
                                    beta = 0.3,  # make it more suitable for the text
                                    t = 0.7, 
                                    diffusion_steps=10, embedding_scale=1)
            wavs.append(wav)

        audio_arrays = []
        for wav_file in wavs:
            audio_arrays.append(wav_file)
        concatenated_audio = np.concatenate(audio_arrays)
        return concatenated_audio

    def download_file_from_s3(self,s3_client,bucket_name, s3_key, local_file_path):
        try:
            s3_client.download_file(bucket_name, s3_key, local_file_path)
            print(f"File downloaded successfully: {local_file_path}")
        except Exception as e:
            print(f"Error downloading file: {e}")


    def convert_wav_to_mp3(self,wav_file, mp3_file):
        command = ['ffmpeg', '-i', wav_file, '-q:a', '0', '-map', 'a', mp3_file]
        subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)


    def upload_file_to_s3(self,file_name, bucket, object_name=None, content_type="audio/mpeg"):

        if object_name is None:
            object_name = file_name

        try:
            with open(file_name, 'rb') as file_data:
                self.s3_client.put_object(Bucket=bucket, Key=object_name, Body=file_data, ContentType=content_type)
            print("File uploaded successfully")
            return True
        except NoCredentialsError:
            print("Error: No AWS credentials found")
            return False
        except Exception as e:
            print(f"Error uploading file: {e}")
            return False