Spaces:
Runtime error
Runtime error
File size: 13,784 Bytes
e1412bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
"""
This file contains the Predictor class, which is used to run predictions on the
Whisper model. It is based on the Predictor class from the original Whisper
repository, with some modifications to make it work with the RP platform.
"""
from concurrent.futures import ThreadPoolExecutor
import numpy as np
from runpod.serverless.utils import rp_cuda
import boto3
import random
random.seed(0)
from glob import glob
import subprocess
import io
import numpy as np
np.random.seed(0)
import subprocess
import se_extractor
import yaml
from munch import Munch
import uuid
import shutil
from openai import OpenAI
import time
import os
import phonemizer
import torch
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
from nltk.tokenize import word_tokenize
import nltk
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
nltk.download('punkt')
from models import *
from utils import *
import soundfile as sf
from tortoise.utils.text import split_and_recombine_text
from resemble_enhance.enhancer.inference import denoise, enhance
from text_utils import TextCleaner
from pydantic import BaseModel, HttpUrl
from api import BaseSpeakerTTS, ToneColorConverter
class Predictor:
def __init__(self):
self.model = None
self.sampler = None
self.to_mel = None
self.global_phonemizer = None
self.model_params = None
self.textclenaer = None
self.mean = 0
self.std = 0
self.device = 'cuda:0'
self.ckpt_base = 'checkpoints/base_speakers/EN'
self.ckpt_converter = 'checkpoints/converter'
self.base_speaker_tts = None
self.tone_color_converter = None
self.output_dir = 'outputs'
self.processed_dir = 'processed'
os.makedirs(self.processed_dir, exist_ok=True)
os.makedirs(self.output_dir, exist_ok=True)
self.s3_client = boto3.client('s3',aws_access_key_id=os.getenv('AWS_ACCESS_KEY'), aws_secret_access_key=os.getenv('AWS_SECRET_KEY'))
print(os.getenv("AWS_ACCESS_KEY"))
print(os.getenv("AWS_SECRET_KEY"))
def setup(self):
self.global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
self.textclenaer = TextCleaner()
self.to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
self.mean, self.std = -4, 4
config = yaml.safe_load(open("Configs/hg.yml"))
print(config)
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)
from Utils.PLBERT.util import load_plbert
BERT_path = config.get('PLBERT_dir', False)
plbert = load_plbert(BERT_path)
self.model_params = recursive_munch(config['model_params'])
self.model = build_model(self.model_params, text_aligner, pitch_extractor, plbert)
_ = [self.model[key].eval() for key in self.model]
_ = [self.model[key].to(self.device) for key in self.model]
params_whole = torch.load("Models/epochs_2nd_00020.pth", map_location='cpu')
params = params_whole['net']
for key in self.model:
if key in params:
print('%s loaded' % key)
try:
self.model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
self.model[key].load_state_dict(new_state_dict, strict=False)
# except:
# _load(params[key], model[key])
_ = [self.model[key].eval() for key in self.model]
self.sampler = DiffusionSampler(
self.model.diffusion.diffusion,
sampler=ADPM2Sampler(),
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
clamp=False
)
def predict(self,s3_url,passage,method_type='voice_clone'):
output_dir = 'processed'
gen_id = str(uuid.uuid4())
os.makedirs(output_dir,exist_ok=True)
raw_dir = os.path.join(output_dir,gen_id,'raw')
segments_dir = os.path.join(output_dir,gen_id,'segments')
results_dir = os.path.join(output_dir,gen_id,'results')
openvoice_dir = os.path.join(output_dir,gen_id,'openvoice')
os.makedirs(raw_dir)
os.makedirs(segments_dir)
os.makedirs(results_dir)
s3_key = s3_url.split('/')[-1]
bucket_name = 'demovidelyuseruploads'
local_file_path = os.path.join(raw_dir,s3_key)
self.download_file_from_s3(self.s3_client,bucket_name,s3_key,local_file_path)
se_extractor.generate_voice_segments(local_file_path,segments_dir,vad=True)
if method_type == 'voice_clone':
#voice_clone with styletts2
model,sampler = self.model,self.sampler
processed_seg_dir = os.path.join(segments_dir,s3_key.split('.')[0],'wavs')
result = self.process_audio_file(processed_seg_dir,passage,model,sampler)
final_output = os.path.join(results_dir,f"{gen_id}-voice-clone-1.wav")
sf.write(final_output,result,24000)
mp3_final_output_1 = str(final_output).replace('wav','mp3')
self.convert_wav_to_mp3(final_output,mp3_final_output_1)
print(mp3_final_output_1)
self.upload_file_to_s3(mp3_final_output_1,'demovidelyusergenerations',f"{gen_id}-voice-clone-1.mp3")
return {"voice_clone_1":f"https://demovidelyusergenerations.s3.amazonaws.com/{gen_id}-voice-clone-1.mp3"}
def _fn(self,path, solver, nfe, tau):
if path is None:
return None, None
solver = solver.lower()
nfe = int(nfe)
lambd = 0.9
dwav, sr = torchaudio.load(path)
dwav = dwav.mean(dim=0)
wav1, new_sr = enhance(dwav, sr, self.device, nfe=nfe, solver=solver, lambd=lambd, tau=tau)
wav1 = wav1.cpu().numpy()
return (new_sr, wav1)
def _fn_denoise(self,path, solver, nfe, tau):
if path is None:
return None
print(torch.cuda.is_available())
print("Going to denoise")
solver = solver.lower()
nfe = int(nfe)
lambd = 0.9
dwav, sr = torchaudio.load(path)
dwav = dwav.mean(dim=0)
wav1, new_sr = denoise(dwav, sr, self.device)
wav1 = wav1.cpu().numpy()
print("Done noising")
return (new_sr, wav1)
def LFinference(self,model,sampler,text, s_prev, ref_s, alpha = 0.3, beta = 0.7, t = 0.7, diffusion_steps=5, embedding_scale=1):
text = text.strip()
ps = self.global_phonemizer.phonemize([text])
ps = word_tokenize(ps[0])
ps = ' '.join(ps)
ps = ps.replace('``', '"')
ps = ps.replace("''", '"')
tokens = self.textclenaer(ps)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(self.device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(self.device)
text_mask = self.length_to_mask(input_lengths).to(self.device)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(self.device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps).squeeze(1)
if s_prev is not None:
# convex combination of previous and current style
s_pred = t * s_prev + (1 - t) * s_pred
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
s_pred = torch.cat([ref, s], dim=-1)
d = model.predictor.text_encoder(d_en,
s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(self.device))
if self.model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(self.device))
if self.model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
out = model.decoder(asr,
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
return out.squeeze().cpu().numpy()[..., :-100], s_pred #
def length_to_mask(self,lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
def preprocess(self,wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = self.to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - self.mean) / self.std
return mel_tensor
def compute_style(self,path,model):
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = self.preprocess(audio).to(self.device)
with torch.no_grad():
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
return torch.cat([ref_s, ref_p], dim=1)
def process_audio_file(self,file_dir,passage,model,sampler):
print(file_dir)
audio_segs = glob(f'{file_dir}/*.wav')
print(audio_segs)
if len(audio_segs) >= 1:
s_ref = self.compute_style(audio_segs[0], model)
else:
raise NotImplementedError('No audio segments found!')
sentences = split_and_recombine_text(passage)
wavs = []
s_prev = None
for text in sentences:
if text.strip() == "": continue
text += '.'
wav, s_prev = self.LFinference(model,sampler,text,
s_prev,
s_ref,
alpha = 0,
beta = 0.3, # make it more suitable for the text
t = 0.7,
diffusion_steps=10, embedding_scale=1)
wavs.append(wav)
audio_arrays = []
for wav_file in wavs:
audio_arrays.append(wav_file)
concatenated_audio = np.concatenate(audio_arrays)
return concatenated_audio
def download_file_from_s3(self,s3_client,bucket_name, s3_key, local_file_path):
try:
s3_client.download_file(bucket_name, s3_key, local_file_path)
print(f"File downloaded successfully: {local_file_path}")
except Exception as e:
print(f"Error downloading file: {e}")
def convert_wav_to_mp3(self,wav_file, mp3_file):
command = ['ffmpeg', '-i', wav_file, '-q:a', '0', '-map', 'a', mp3_file]
subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
def upload_file_to_s3(self,file_name, bucket, object_name=None, content_type="audio/mpeg"):
if object_name is None:
object_name = file_name
try:
with open(file_name, 'rb') as file_data:
self.s3_client.put_object(Bucket=bucket, Key=object_name, Body=file_data, ContentType=content_type)
print("File uploaded successfully")
return True
except NoCredentialsError:
print("Error: No AWS credentials found")
return False
except Exception as e:
print(f"Error uploading file: {e}")
return False |